VibeBuilders.ai Logo
VibeBuilders.ai

Download

Explore resources related to download to help implement AI solutions for your business.

I made a super niche app for sailors and scaled it to 500k downloads
reddit
LLM Vibe Score0
Human Vibe Score0.5
TechPrimoThis week

I made a super niche app for sailors and scaled it to 500k downloads

I started developing this app in 2016, and it was my first app ever. I already had several years of programming experience. Since I was studying maritime navigation, I came up with the idea of creating a maritime app to help students with various nautical calculations and learn maritime regulations. Although I had no experience in mobile app development, I chose the Ionic framework and started development gradually. First Version The first version took me about four months to develop because I literally had to learn everything from scratch: how to develop mobile apps, how to publish them, and everything needed to enable downloads on the app stores. Many of you might recognize me from my story about developing Sintelly and its late monetization. I made the same mistake with this maritime app. At that time, in my country, there was no possibility of earning through in-app purchases, only through ad displays. Since the app was predominantly downloaded in countries like India, the Philippines, and Indonesia, the ad revenue was quite low, and after some time, I removed the ads. Abandonment and Realization As I started developing other apps, this one fell into obscurity. I even just remembered that I needed to renew the domain, which resulted in losing it. The domain buyer tried to sell it back to me for years for $20k, which was absurd. All this led me to rebrand and start working on this app again. Interestingly, during these 8 years, the app never showed a declining trend in installations or active users. I'll share some numbers to give you insight: Total installations (Android + iOS): 501,000 Active installations (Android): 48,000 Monthly active users: 20,000 Average rating: Android 4.8, iOS 4.7 When I considered these numbers, I realized they weren't bad at all and that I was far ahead of most competitors. This led to my decision to rebrand and create a new website. I quickly built the website using WordPress and published lots of existing content from the app. What surprises me is that today, after a year and a half, the website has about 8-10k monthly organic visits. Choosing a Direction Based on all this, I decided it was time to create a Premium version and start selling the app. Since I've been working with AI for many years (which I've written about here), I started thinking about using AI to help seafarers speed up some of their tasks. This led to the idea of creating a multi-agent system equipped with numerous tools to help seafarers. I developed various agents with functionalities, including retrieving maritime weather information, locating and tracking ships, doing various nautical calculations, calculating the shortest maritime routes and unit conversions, and learning about all courses and maritime regulations. All this required considerable work, but thanks to tools like Cursor and Claude, I implemented it in less than four weeks. Last week, I published this new version and started selling subscriptions, and I can already boast that I've earned slightly over $100. This isn't much, but I'm happy to see my first app generating some income, which I always thought impossible. Along this journey, I learned many lessons, and the most important one is to never give up or write off a product. With a little effort, everything can be brought back to life and secure at least some passive income, enough for your morning coffee. Additionally, I learned how to develop mobile apps, which has shaped my career since then. If it weren't for this app, I probably would never have become a developer. I have numerous plans for what to add next and how to improve. I'll base everything on AI features and push the app in that direction.

I grew my mobile app to 1.4 million downloads
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

I grew my mobile app to 1.4 million downloads

I started developing the app in early 2017, well before the AI era, when mobile apps were at their peak popularity. My idea was to create an app for emotional and psychological support in the form of helpful articles and various quizzes, such as personality assessments and life satisfaction tests. I named the app "Emotional Intelligence" because this keyword showed good ASO potential for positioning at the top of mobile stores. This proved to be accurate, and the app quickly gained traction in terms of downloads. A major problem I faced then was monetization. Unfortunately, in my country, it wasn't possible to sell through Google Play then, so I could only display ads. I started with Google AdMob, earning $2000 monthly after just a few months. The app then got about 1500 organic downloads daily and quickly surpassed 500,000. Three years after launching the app, I decided it was time for branding to build recognition. By combining the words "sentiment" and "intelligence," I came up with "Sintelly." I then pushed the app toward a social network, which differed from the right move. Adding features like discussion forums for problems, likes, and comments would result in even more growth, but the opposite happened. The app started declining, and I began investing in advertising campaigns. I managed to maintain a balance between income and expenses but without any profit. Then COVID-19 hit, and everything went downhill. I had to give up development and find a job as a developer to ensure my livelihood. Two years passed since I gave up, and that's when ChatGPT started gaining popularity. This immediately showed me how to steer the app towards active support for well-being questions. As I'm not an expert in psychology, I found several external psychotherapists who helped me put together CBT therapy, which I then implemented through a chatbot. This is how the new Sintelly app was born, with its main feature being a chatbot system composed of 17 AI agents that adapt to the user and guide them through a five-phase CBT therapy (I'll write a post about the technology). In addition to the agents, I added various exercises and tests to provide better personalization for the user. Initially, I made all of this free, which was also a mistake. I followed the principle of first showing what the app can do and gathering enough new users before starting to charge. I started selling subscriptions at the beginning of July, and since then, the app has had stable growth. If you want a check app, here is the link. Lessons learned: If things are working, don't touch them Start selling immediately upon app release; there's no need to wait Regularly test prices and types of subscriptions Onboarding is the most essential part of the app because most users buy subscriptions during onboarding It's essential to listen to user feedback. From day one, have a website and work on content to generate organic visits and redirect users from the web to the mobile app Stats: Over 1.4 million downloads 4.4 rating Only 40,000 active users (I had a massive loss during the period when I gave up) 280 active subscribers $3000 monthly revenue Next steps: Work on improving the Agent AI approach Setting up email campaigns and transactional emails Introducing in-app and push notifications Introducing gamification Potential for B2B I hope you can extract useful information from my example and avoid repeating my mistakes. I'm interested in your thoughts and if you have any recommendations for the next steps. I'm always looking to learn and improve.

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

Why you should consider using small open source fine-tuned models
reddit
LLM Vibe Score0
Human Vibe Score0.929
hamada0001This week

Why you should consider using small open source fine-tuned models

Context I want to start off by giving some context on what fine-tuning is, why it's useful and who it would be useful for: What is fine-tuning? When controlling the output of an LLM there are, broadly, three levels. Prompt engineering, RAG and fine-tuning. Most of you are likely familiar with the first two. Prompt engineering is when you try to optimize the prompt to get the model to do what you want better. RAG (retrieval augmented generation) is when you first do a search on some data (usually stored in a vector database which allows you to search by similarity), then you insert the results into the prompt so that the model can use that context to more accurately answer any questions. It's like letting the LLM access external information right before answering, using that additional context to improve its response Fine-tuning is when you want to fundamentally teach a model something new or teach it to behave in a particular way. You would provide the model with high quality data (i.e. inputs and outputs) which it will train on. Why is it useful? At the moment, many of you use the largest and best LLMs because they give the best results. However, for a lot of use cases you are likely using a sledgehammer for a small nail. Does it do a great job? Damn yeah! Well... why not use a smaller hammer? Because it might miss or hit your finger. The solution shouldn't be to use a sledgehammer, but rather to learn how to use a smaller hammer properly so you never miss! That's exactly what fine-tuning a smaller model is like. Once you fine-tune it on a specific task with good high quality data, it can surpass even the best models at that specific task. It'll be 10x cheaper to run, much faster and, if you use an open source model, you'll own the model (no vendor lock-in!). If you run a SaaS and your biggest expense is AI costs then you should definitely consider fine-tuning. It'll take some time to set up but it'll be well worth it in the medium/long term (a bit like SEO). You can always resort to the best models for more complex tasks. How to fine-tune? I'm going to give you a breakdown of the process from beginning to end. You do need to be (a bit) technical in order to do this. Getting the data Let's suppose we want to fine-tune a model to make high-quality SEO content. At the moment, you might be using a large sophisticated prompt or using multiple large LLMs to write different parts or utilizing RAG. This is all slow and expensive but might be giving you great results. Our goal is to replace this with a fine-tuned model that is great at one thing: writing high-quality SEO content quickly at a much lower cost. The first step is gathering the appropriate data. If you want the model to write 3 or 4 paragraphs based on a prompt that contains the topic and a few keywords, then your data should match that. There are a few way you can do this: You can manually gather high-quality SEO content. You'd write the prompt and the response that the model should give. You can use a larger more powerful LLM to generate the content for you (also known as synthetic data). It'll be expensive but remember that it'll be a larger one-off cost to get the data. If you already have a pipeline that works great then you can use the prompts and the generated content that you already have from that pipeline. You can buy a high-quality dataset or get someone to make it for you. The data is the most important part of this process. Remember, garbage in garbage out. Your data needs to have a good variety and should not contain any bad examples. You should aim for around 1000 examples. The more the better! The actual fine-tuning. At this stage you are now ready to choose a model and setup the fine-tuning. If you are unsure I'd stick to the Llama 3.1 family of models. They are great and reliable. There are three models: 8b, 70b and 405b. Depending on the complexity of the task you should select an appropriate size. However, to really reap the cost saving benefits and the speed you should try to stick with the 8b model or the the 70b model if the 8b is not good enough. For our SEO example, let's use the 8b model. Important note on selecting a model: You might see multiple models with the 8b flag. You might see 4bit-bnb or instruct. The instruct version of the models have basically been trained to be chatbots. So if you want to keep the chatbot-like instruction-following functionality then you should use the instruct version as the base. The non-instruct version simply generates text. It won't 'act' like a chatbot which is better for use cases like creative writing. The 4bit-bnb means that the model has been 'quantized'. Basically it has been made 4x smaller (the original is in 16 bits) so that it is faster to download and faster to fine-tune. This slightly reduces the accuracy of the model but it's usually fine for most use cases :) Fine-tuning should be done on a good GPU. CPU aren't good enough. So you can't spin up a droplet on digital ocean and use that. You'll specifically need to spin up a GPU. One website that I think is great is Runpod .io (I am not affiliated with them). You simply pay for the GPU by the hour. If you want the training to be fast you can use the H100, if you want something cheaper but slower you can use the A40. Although the A40 won't be good enough to run the 70b parameter model. For the 405b model you'll need multiple H100s but let's leave that for more advanced use cases. Once you've spun up your H100 and ssh-ed into it. I would recommend using the unsloth open source library to do the fine-tuning. They have great docs and good boilerplate code. You want to train using a method called QLoRA. This won't train the entire model but only "part of it". I don't want to get into the technical details as t3hat isn't important but essentially it's a very efficient and effective way of fine-tuning models. When fine-tuning you can provide something called a 'validation set'. As your model is training it will be tested against the 'validation set' to see how well it's doing. You'll get an 'eval loss' which basically means how well is your model doing when compared with the unseen validation data. If you have 1000 training examples I'd recommend taking out 100-200 so it can act as the validation set. Your model may start off with an eval loss of 1.1 and by the end of the training (e.g. 3 epochs - the number of epochs is the number of times your model will be trained on the entire dataset. It's like reading a book more than once so you can understand it better. Usually 3-5 epochs is enough) the eval loss would drop to 0.6 or 0.7 which means your model has made great progress in learning your dataset! You don't want it to be too low as that means it is literally memorizing which isn't good. Post fine-tuning You'll want to save the model with the best eval loss. You actually won't have the whole model, just something called the "QLoRA adapters". These are basically like the new neurons that contain the "understanding" of the data you trained the model on. You can combine these with the base model (using unsloth again) to prompt the model. You can also (and I recommend this) convert the model to GGUF format (using unsloth again). This basically packages the QLoRA adapters and model together into an optimized format so you can easily and efficiently run it and prompt it (using unsloth again... lol). I would then recommend running some evaluations on the new model. You can do this by simply prompting the new model and a more powerful model (or using your old pipeline) and then asking a powerful model e.g. Claude to judge which is better. If your model consistently does better then you've hit a winner! You can then use runpod again to deploy the model to their serverless AI endpoint so you only pay when it's actually being inferenced. (Again, I'm not affiliated with them) I hope this was useful and you at least got a good idea of what fine-tuning is and how you might go about doing it. By the way, I've just launched a website where you can easily fine-tune Llama 3.1 models. I'm actually hoping to eventually automate this entire process as I believe small fine-tuned models will be much more common in the future. If you want more info, feel free to DM me :)

From "There's an App for that" to "There's YOUR App for that" - AI workflows will transform generic apps into deeply personalized experiences
reddit
LLM Vibe Score0
Human Vibe Score1
Important-Ostrich69This week

From "There's an App for that" to "There's YOUR App for that" - AI workflows will transform generic apps into deeply personalized experiences

I will not promote. For the past decade mobile apps were a core element of daily life for entertainment, productivity and connectivity. However, as the ecosystem saturated the general desire to download "just one more app" became apprehensive. There were clear monopolistic winners in different categories, such as Instagram and TikTok, which completely captured the majority of people's screentime. The golden age of creating indie apps and becoming a millionaire from them was dead. Conceptual models of these popular apps became ingrained in the general consciousness, and downloading new apps where re-learning new UI layouts was required, became a major friction point. There is high reluctance to download a new app rather than just utilizing the tooling of the growing market share of the existing winners. Content marketing and white labeled apps saw a resurgence of new app downloads, as users with parasympathetic relationships with influencers could be more easily persuaded to download them. However, this has led to a series of genericized tooling that lacks the soul of the early indie developer apps from the 2010s (Flappy bird comes to mind). A seemingly grim spot to be in, until everything changed on November 30th 2022. Sam Altman, Ilya Sutskever and team announced chatGPT, a Large Language Model that was the first publicly available generative AI tool. The first non-deterministic tool that could reason probablisitically in a similar (if flawed) way, to the human mind. At first, it was a clear paradigm shift in the world of computing, this was obvious from the fact that it climbed to 1 Million users within the first 5 days of its launch. However, despite the insane hype around the AI, its utility was constrained to chatbot interfaces for another year or more. As the models reasoning abilities got better and better, engineers began to look for other ways of utilizing this new paradigm shift, beyond chatbots. It became clear that, despite the powerful abilities to generate responses to prompts, the LLMs suffered from false hallucinations with extreme confidence, significantly impacting the reliability of their use, in search, coding and general utility. Retrieval Augmented Generation (RAG) was coined to provide a solution to this. Now, the LLM would apply a traditional search for data, via a database, a browser or other source of truth, and then feed that information into the prompt as it generates, allowing for more accurate results. Furthermore, it became clear that you could enhance an LLM by providing them metadata to interact with tools such as APIs for other services, allowing LLMs to perform actions typically reserved for humans, like fetching data, manipulating it and acting as an independent Agent. This prompted engineers to start treating LLMs, not as a database and a search engine, but rather a reasoning system, that could be part of a larger system of inputs and feedback to handle workflows independently. These "AI Agents" are poised to become the core technology in the next few years for hyper-personalizing and automating processes for specific users. Rather than having a generic B2B SaaS product that is somewhat useful for a team, one could standup a modular system of Agents that can handle the exactly specified workflow for that team. Frameworks such as LlangChain and LLamaIndex will help enable this for companies worldwide. The power is back in the hands of the people. However, it's not just big tech that is going to benefit from this revolution. AI Agentic workflows will allow for a resurgence in personalized applications that work like personal digital employee's. One could have a Personal Finance agent keeping track of their budgets, a Personal Trainer accountability coaching you making sure you meet your goals, or even a silly companion that roasts you when you're procrastinating. The options are endless ! At the core of this technology is the fact that these agents will be able to recall all of your previous data and actions, so they will get better at understanding you and your needs as a function of time. We are at the beginning of an exciting period in history, and I'm looking forward to this new period of deeply personalized experiences. What are your thoughts ? Let me know in the comments !

How I made a high tech salary in my first selling month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Negotiation_2587This week

How I made a high tech salary in my first selling month

For over 7 years I worked as a full-stack developer, helping other companies bring their ideas to life. But one day, I thought “Why not try making my own dream come true?”. That’s when I decided to quit my job and start my own journey to becoming an entrepreneur. At first, it wasn’t easy. I didn’t make any money for months and had no idea where to start. I felt lost. Then, I decided to focus on something popular and trending. AI was everywhere, and ChatGPT was the most used AI platform. So I looked into it and I found the OpenAI community forum where people had been asking for features that weren’t being added. That gave me an idea. Why not build those features myself? I created a Chrome extension and I worked on some of the most requested features, like: Downloading the advanced voice mode and messages as MP3 Adding folders to organize chats Saving and reusing prompts Pinning important chats Exporting chats to TXT/JSON files Deleting or archiving multiple chats at once Making chat history searches faster and better It took me about a week to build the first version, and when I published it, the response was incredible. People loved it! Some even said things like, “You’re a lifesaver!” That’s when I realized I had something that could not only help people but also turn into a real business. I kept the first version free to see how people would respond. Many users have been downloading my extension, which prompted Chrome to review it to determine if it qualified for the featured badge. I received the badge, and it has significantly boosted traffic to my extension ever since. After all the positive feedback, I launched a paid version one month ago. A few minutes after publishing it, I made my first sale! That moment was so exciting, and it motivated me to keep going. I already have over 4,000 users and have made more than $4,500 in my first selling month. I’ve decided to release 1-2 new features every month to keep improving the extension based on what users ask for. I also created the same extension for Firefox and Edge users because many people have been asking for it! I also started a Reddit community, where I share updates, sales, discount codes, and ideas for new features. It’s been awesome to connect with users directly and get their feedback. Additionally, I’ve started working on another extension for Claude, which I’m hoping will be as successful as this one. My message to you is this: never give up on your dreams. It might feel impossible at first, but with patience, hard work, and some creativity, you can make it happen. I hope this inspires you to go after what you want. Good luck to all of us!

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months
reddit
LLM Vibe Score0
Human Vibe Score0.333
lazymentorsThis week

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months

Tiktok expanded its caption limits from 100 to 500 Characters. Reddit Updates Search tools, Now you can search User Comments. “Comment search is here”. Pinterest Announces New Partnership with WooCommerce to Expand Product Listings. Google’s launched ‘multisearch’ feature that lets you search using text and image at the same time. Etsy sellers went on strike after platform increases transaction fees. Reddit launched $1 million fund to support various projects going on platform. Instagram is updating its ranking algorithm to put more focus on Original Content LinkedIn Added New tools In creator mode: improved content analytics and Updates profile video Options. Tiktok launched its own gif library “Effect House”. Instagram Updates Reels editing tools adding reordering clips feature. Google Search got a new label to direct people to original news sources YouTube launches new Profile Rings for Stories and Live. Snapchat launched YouTube Link stickers to make video sharing easier! Messenger adds new shortcuts, including a slack like @everyone feature. Pinterest Expands it’s Creator funds program to help more Underrepresented creators. Reddit brings back r/place after 5 years. Google Adds New Seller Performance Badges, New Pricing Insights for eCommerce Brands. Meta and Google agrees to New Data Transfer agreement to keep Instagram and Facebook running in EU. Twitter tests New Interactive Ad types to boost its promotional Appeal. Instagram removed In-stream Ads from its Advertising Options. Tiktok launched new program “CAP” to help creative agencies reach its audience. Twitch shuts down its desktop app. Meta launched the ability to add “share to Reels” feature to third Party Apps. TikTok Adds New ‘Background Player’ Option for Live-Streams. Twitter rolls out ALT badge and improved image description. Fast, A Checkout Startup with $15 billion valuation shuts down after spending all the funds raised in 2021. Wordpress announced new pricing with more traffic and storage limits after receiving backlash from the community. Sales force upgrades marketing field services and sales tools with AI. Dropbox shop launches in open beta to allow creators to sell digital content. Tiktok is the most downloaded app in Quarter 1 of 2022. WhatsApp announced launch of ‘Communities’ - more structured group chats with admin controls. Tiktok expands testing a private dislike button for comments. Twitter acquired “Openback” A notification app to improve timeline and relevance of push notifications YouTube and Tiktok added New options for Automated Captions, Improving Accessibility. A new social media App “Be Real” is trending across the internet grabbing Gen-Zs attention to try the app. WhatsApp got permission to expand payment services to its Indian user base of 100 Million. YouTube Shorts now allows creators to splice in long-form videos. You can use long form video audios and clips for YT shorts. New Snapchat feature ‘Dynamic Stories’ uses a publisher’s RSS feed to automatically create Stories posts. Zoom launches AI-powered features aimed at sales teams. Tiktok started testing who viewed your profile feature. Ogilvy Announced they will no longer work with who edit their bodies and faces for ads. If you don’t know “Oglivy” is the most successful advertising agency of the decade. YouTube Launches New ‘Search Insights’ for all creators. Snapchat Added 13 million new users in Q1 2022 more than both Twitter and Facebook. Google is Introduced new options to reject tracking cookies in Europe after receiving fines from violating EU data laws. Sony & Microsoft are planning to integrate Ads into their gaming platforms Xbox and PlayStation. YouTube Adds new Shorts Shelf to Trending Tab to show Top Shorts in an alternative section. Instagram started testing a reels template feature which enables creators to copy formats from other reels. Google Tests “What People Are Saying” Search Results. Twitter Launches New Test of Promotions for Third Party Tools Within the App. Instagram is changing how hashtags work by experimenting removing Recents tab from hashtags section. Google Adds New Publisher Verification Badges to Extension Listings in the Google Web Store Amazon AWS launches $30M accelerator program aimed at minority founders. Meta launched more fundraising options for Instagram Reels in 30 countries. Brave Search and DuckDuckGo will no longer support Google AMP due to privacy issues. Instagram is working on a pinned post feature and will officially launch in next few months. Meta: You can now add Music to your Facebook comments Twitter tests new closed caption button to switch on captions in Video Clip Elon Musk Bought Twitter $44 Billion and Company is set to go private. Google now lets you request the removal of personal contact information from search results YouTube reveals that Ads between YT Shorts are being tested with selective brands. LinkedInis rolling out a new website link feature. Google Reduces Visibility Of Business Edits With Color Changes To Profile Updates. Instagram expands testing of 90 second Reels. Microsoft Advertising now offers incentive features like cash-back and adding stock images from your website. Facebook & Pinterest are growing again despite all the hype around slow growth of both platform in last quarter. Google Added 9 new Ad policies to prevent misleading ads taking place. Tiktok Introduces Third-party cookies to its Pixel. (like Facebook Pixel) Twitter reportedly overcounted number of daily active users for last 3 years. Google launched Media CDN to compete on content delivery. YouTube expands Thank You Monetisation tool to all eligible creators. Twitch is looking to expand their cut from streamers earnings from 30 to 50% and also thinks of boosting Ads. Snapchat launches a $230 flying drone camera and new e-commerce integrations in Snap Summit 2022. YouTube Expands its ‘Pre-Publish Checks’ Tool to the Mobile App Google Search Console’s URL parameter tool is officially removed for a time period. Twitter creators can now get paid through Cryptocurrency on Twitter with Stripe. Jellysmack- One of the Influencer marketing agency acquires YouTube analytics tool Google & Microsoft Ads brought more revenue in last quarter- 22% Gains! WhatsApp is working on a paid subscription for multi-phone and tablet chatting. Instagram users now spend 20% of their time in the reels section. Google tests new Color for clicked search results by you. Now Clicked results are in Purple. Twitter: Elon plans to remove employees and focus more on influencers for twitter’s growth + new monetisation ideas were shared. YouTube revenue falls as more users spend time on shorts tab than consuming long form content. Drop 👋 to receive June Updates!

How I Started Learning Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

How I Started Learning Machine Learning

Hello, everyone. As promised, I'll write a longer post about how I entered the world of ML, hoping it will help someone shape their path. I'll include links to all the useful materials I used alongside the story, which you can use for learning. I like to call myself an AI Research Scientist who enjoys exploring new AI trends, delving deeper into understanding their background, and applying them to real products. This way, I try to connect science and entrepreneurship because I believe everything that starts as scientific research ends up "on the shelves" as a product that solves a specific user problem. I began my journey in ML in 2016 when it wasn't such a popular field. Everyone had heard of it, but few were applying it. I have several years of development experience and want to try my hand at ML. The first problem I encountered was where to start - whether to learn mathematics, statistics, or something else. That's when I came across a name and a course that completely changed my career. Let's start You guessed it. It was Professor Andrew Ng and his globally popular Machine Learning course available on Coursera (I still have the certificate, hehe). This was also my first official online course ever. Since that course no longer exists as it's been replaced by a new one, I recommend you check out: Machine Learning (Stanford CS229) Machine Learning Specialization These two courses start from the basics of ML and all the necessary calculus you need to know. Many always ask questions like whether to learn linear algebra, statistics, or probability, but you don't need to know everything in depth. This knowledge helps if you're a scientist developing a new architecture, but as an engineer, not really. You need to know some basics to understand, such as how the backpropagation algorithm works. I know that Machine Learning (Stanford CS229) is a very long and arduous course, but it's the right start if you want to be really good at ML. In my time, I filled two thick notebooks by hand while taking the course mentioned above. TensorFlow and Keras After the course, I didn't know how to apply my knowledge because I hadn't learned specifically how to code things. Then, I was looking for ways to learn how to code it. That's when I came across a popular framework called Keras, now part of TensorFlow. I started with a new course and acquiring practical knowledge: Deep Learning Specialization Deep Learning by Ian Goodfellow Machine Learning Yearning by Andrew Ng These resources above were my next step. I must admit that I learned the most from that course and from the book Deep Learning by Ian Goodfellow because I like reading books (although this one is quite difficult to read). Learn by coding To avoid just learning, I went through various GitHub repositories that I manually retyped and learned that way. It may be an old-fashioned technique, but it helped me a lot. Now, most of those repositories don't exist, so I'll share some that I found to be good: Really good Jupyter notebooks that can teach you the basics of TensorFlow Another good repo for learning TF and Keras Master the challenge After mastering the basics in terms of programming in TF/Keras, I wanted to try solving some real problems. There's no better place for that challenge than Kaggle and the popular Titanic dataset. Here, you can really find a bunch of materials and simple examples of ML applications. Here are some of my favorites: Titanic - Machine Learning from Disaster Home Credit Default Risk House Prices - Advanced Regression Techniques Two Sigma: Using News to Predict Stock Movements I then decided to further develop my career in the direction of applying ML to the stock market, first using predictions on time series and then using natural language processing. I've remained in this field until today and will defend my doctoral dissertation soon. How to deploy models To continue, before I move on to the topic of specialization, we need to address the topic of deployment. Now that we've learned how to make some basic models in Keras and how to use them, there are many ways and services, but I'll only mention what I use today. For all my ML models, whether simple regression models or complex GPT models, I use FastAPI. It's a straightforward framework, and you can quickly create API endpoints. I'll share a few older and useful tutorials for beginners: AI as an API tutorial series A step-by-step guide Productizing an ML Model with FastAPI and Cloud Run Personally, I've deployed on various cloud providers, of which I would highlight GCP and AWS because they have everything needed for model deployment, and if you know how to use them, they can be quite cheap. Chose your specialization The next step in developing my career, besides choosing finance as the primary area, was my specialization in the field of NLP. This happened in early 2020 when I started working with models based on the Transformer architecture. The first model I worked with was BERT, and the first tasks were related to classifications. My recommendations are to master the Transformer architecture well because 99% of today's LLM models are based on it. Here are some resources: The legendary paper "Attention Is All You Need" Hugging Face Course on Transformers Illustrated Guide to Transformers - Step by Step Explanation Good repository How large language models work, a visual intro to transformers After spending years using encoder-based Transformer models, I started learning GPT models. Good open-source models like Llama 2 then appear. Then, I started fine-tuning these models using the excellent Unsloth library: How to Finetune Llama-3 and Export to Ollama Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth After that, I focused on studying various RAG techniques and developing Agent AI systems. This is now called AI engineering, and, as far as I can see, it has become quite popular. So I'll write more about that in another post, but here I'll leave what I consider to be the three most famous representatives, i.e., their tutorials: LangChain tutorial LangGraph tutorial CrewAI examples Here I am today Thanks to the knowledge I've generated over all these years in the field of ML, I've developed and worked on numerous projects. The most significant publicly available project is developing an agent AI system for well-being support, which I turned into a mobile application. Also, my entire doctoral dissertation is related to applying ML to the stock market in combination with the development of GPT models and reinforcement learning (more on that in a separate post). After long 6 years, I've completed my dissertation, and now I'm just waiting for its defense. I'll share everything I'm working on for the dissertation publicly on the project, and in tutorials I'm preparing to write. If you're interested in these topics, I announce that I'll soon start with activities of publishing content on Medium and a blog, but I'll share all of that here on Reddit as well. Now that I've gathered years of experience and knowledge in this field, I'd like to share it with others and help as much as possible. If you have any questions, feel free to ask them, and I'll try to answer all of them. Thank you for reading.

How I Started Learning Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
TechPrimoThis week

How I Started Learning Machine Learning

Hello, everyone. As promised, I'll write a longer post about how I entered the world of ML, hoping it will help someone shape their path. I'll include links to all the useful materials I used alongside the story, which you can use for learning. I like to call myself an AI Research Scientist who enjoys exploring new AI trends, delving deeper into understanding their background, and applying them to real products. This way, I try to connect science and entrepreneurship because I believe everything that starts as scientific research ends up "on the shelves" as a product that solves a specific user problem. I began my journey in ML in 2016 when it wasn't such a popular field. Everyone had heard of it, but few were applying it. I have several years of development experience and want to try my hand at ML. The first problem I encountered was where to start - whether to learn mathematics, statistics, or something else. That's when I came across a name and a course that completely changed my career. Let's start You guessed it. It was Professor Andrew Ng and his globally popular Machine Learning course available on Coursera (I still have the certificate, hehe). This was also my first official online course ever. Since that course no longer exists as it's been replaced by a new one, I recommend you check out: Machine Learning (Stanford CS229) Machine Learning Specialization These two courses start from the basics of ML and all the necessary calculus you need to know. Many always ask questions like whether to learn linear algebra, statistics, or probability, but you don't need to know everything in depth. This knowledge helps if you're a scientist developing a new architecture, but as an engineer, not really. You need to know some basics to understand, such as how the backpropagation algorithm works. I know that Machine Learning (Stanford CS229) is a very long and arduous course, but it's the right start if you want to be really good at ML. In my time, I filled two thick notebooks by hand while taking the course mentioned above. TensorFlow and Keras After the course, I didn't know how to apply my knowledge because I hadn't learned specifically how to code things. Then, I was looking for ways to learn how to code it. That's when I came across a popular framework called Keras, now part of TensorFlow. I started with a new course and acquiring practical knowledge: Deep Learning Specialization Deep Learning by Ian Goodfellow Machine Learning Yearning by Andrew Ng These resources above were my next step. I must admit that I learned the most from that course and from the book Deep Learning by Ian Goodfellow because I like reading books (although this one is quite difficult to read). Learn by coding To avoid just learning, I went through various GitHub repositories that I manually retyped and learned that way. It may be an old-fashioned technique, but it helped me a lot. Now, most of those repositories don't exist, so I'll share some that I found to be good: Really good Jupyter notebooks that can teach you the basics of TensorFlow Another good repo for learning TF and Keras Master the challenge After mastering the basics in terms of programming in TF/Keras, I wanted to try solving some real problems. There's no better place for that challenge than Kaggle and the popular Titanic dataset. Here, you can really find a bunch of materials and simple examples of ML applications. Here are some of my favorites: Titanic - Machine Learning from Disaster Home Credit Default Risk House Prices - Advanced Regression Techniques Two Sigma: Using News to Predict Stock Movements I then decided to further develop my career in the direction of applying ML to the stock market, first using predictions on time series and then using natural language processing. I've remained in this field until today and will defend my doctoral dissertation soon. How to deploy models To continue, before I move on to the topic of specialization, we need to address the topic of deployment. Now that we've learned how to make some basic models in Keras and how to use them, there are many ways and services, but I'll only mention what I use today. For all my ML models, whether simple regression models or complex GPT models, I use FastAPI. It's a straightforward framework, and you can quickly create API endpoints. I'll share a few older and useful tutorials for beginners: AI as an API tutorial series A step-by-step guide Productizing an ML Model with FastAPI and Cloud Run Personally, I've deployed on various cloud providers, of which I would highlight GCP and AWS because they have everything needed for model deployment, and if you know how to use them, they can be quite cheap. Chose your specialization The next step in developing my career, besides choosing finance as the primary area, was my specialization in the field of NLP. This happened in early 2020 when I started working with models based on the Transformer architecture. The first model I worked with was BERT, and the first tasks were related to classifications. My recommendations are to master the Transformer architecture well because 99% of today's LLM models are based on it. Here are some resources: The legendary paper "Attention Is All You Need" Hugging Face Course on Transformers Illustrated Guide to Transformers - Step by Step Explanation Good repository How large language models work, a visual intro to transformers After spending years using encoder-based Transformer models, I started learning GPT models. Good open-source models like Llama 2 then appear. Then, I started fine-tuning these models using the excellent Unsloth library: How to Finetune Llama-3 and Export to Ollama Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth After that, I focused on studying various RAG techniques and developing Agent AI systems. This is now called AI engineering, and, as far as I can see, it has become quite popular. So I'll write more about that in another post, but here I'll leave what I consider to be the three most famous representatives, i.e., their tutorials: LangChain tutorial LangGraph tutorial CrewAI examples Here I am today Thanks to the knowledge I've generated over all these years in the field of ML, I've developed and worked on numerous projects. The most significant publicly available project is developing an agent AI system for well-being support, which I turned into a mobile application. Also, my entire doctoral dissertation is related to applying ML to the stock market in combination with the development of GPT models and reinforcement learning (more on that in a separate post). After long 6 years, I've completed my dissertation, and now I'm just waiting for its defense. I'll share everything I'm working on for the dissertation publicly on the project, and in tutorials I'm preparing to write. If you're interested in these topics, I announce that I'll soon start with activities of publishing content on Medium and a blog, but I'll share all of that here on Reddit as well. Now that I've gathered years of experience and knowledge in this field, I'd like to share it with others and help as much as possible. If you have any questions, feel free to ask them, and I'll try to answer all of them. Thank you for reading.

[Help Needed] Developing an AI to Play Mini Metro – Struggling with Data Extraction & Strategy method
reddit
LLM Vibe Score0
Human Vibe Score1
Primary_Cheesecake63This week

[Help Needed] Developing an AI to Play Mini Metro – Struggling with Data Extraction & Strategy method

Hello everyone ! First of all, please excuse my English if i do mistakes, as it is not my native language and I am not necessarily comfortable with it :) Regarding this project, I will explain my initial intention. I know very little about coding, but I enjoy it and have had some Python lessons, along with a few small personal projects for fun, mostly using YouTube tutorials. Nothing too advanced... However, now I want to take it to the next level. Since I have some familiarity with coding, I’ve wanted to work on artificial intelligence for a while. I have never coded AI myself, but I enjoy downloading existing projects (for chess, checkers, cat-and-mouse games, etc.), testing their limits, and understanding how they work. One of my favorite strategy game genres is management games, especially Mini Metro. Given its relatively simple mechanics, I assumed there would already be AI projects for it. But to my surprise, I could only find mods that add maps ! I admit that I am neither the best nor the most patient researcher, so I haven’t spent hours searching, but the apparent lack of projects for this game struck me. Maybe the community is just small ? I haven't looked deeply into it. So, I got it into my head to create my own AI. After all, everything is on the internet, and perseverance is key ! However, perseverance alone is not enough when you are not particularly experienced, so I am turning to the community to find knowledgeable people who can help me. The First Obstacle: Getting Game Data I quickly realized that the biggest challenge is that Mini Metro does not have an accessible API (at least, not one I could find). This means I cannot easily extract game data. My initial idea was to have an AI analyze the game, think about the best move, and then write out the actions to be performed, instead of coding a bot that directly manipulates the game. But first, I needed a way to retrieve and store game data. Attempt #1: Image Recognition (Failed) Since there was no API, I tried using image recognition to gather game data. Unfortunately, it was a disaster. I used mss for screenshots ,Tesseract for OCR, andNumPy to manipulate images in the HSV color space but it produced unreliable results : It detected many false positives (labeling empty spaces as stations) It failed to consistently detect numbers (scores or resources like trains and lines) Dotted bridge indicators over rivers were misinterpreted as stations While I could detect stations, lines, and moving trains, the data was chaotic and unreliable Attempt #2: Manual Data Entry (Partially Successful but Impractical) Since image recognition was unreliable, I decided to manually update the game data in real-time. I created a script that : Displays an overlay when I press Shift+R. Allows me to manually input stations, lines, and other game elements. Saves the current state when I press Shift+R again, so I can resume playing. Implements a simple resource management system (trains, lines, etc.). This works better than image recognition because I control the input, but I’m running into serious limitations : Some game mechanics are hard to implement manually (adding a station in the middle of a line, extending the correct line when two lines overlap at a station) Keeping track of station demands (the shapes passengers want to travel to) becomes overwhelming as the game progresses Updating the score in real-time is practically impossible manually, and the score is essential for training an AI (for my reward systems) My Dilemma At this point, I am unsure of how to proceed. My questions for the community : Am I going in the right direction? Should I continue improving my manual tracking system or is it a dead end? Should I have persevered with image recognition instead? Is there a better way to extract game data that I haven’t thought of? I would appreciate any guidance or ideas. Thanks in advance ! if you need more info, i have posted my codes here : https://github.com/Dmsday/mini\metro\data\analyzer (for the image detection version I'm not sure that it's the latest version aka the most "functional" version that I could do because I think I deleted it out of boredom...)

MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: https://preview.redd.it/mdyyv1qmdz291.png?width=1834&format=png&auto=webp&s=e9e10710794c78c64cc05adb75db385aa53aba40 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: ​ https://preview.redd.it/nz8zrbbpdz291.png?width=1280&format=png&auto=webp&s=28dae7e031621bc8819519667ed03d8d085d8ace Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/d7syq47rdz291.png?width=1280&format=png&auto=webp&s=b43df9abd380b7d9a52e3045dd787f4feeb69635 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: ​ https://preview.redd.it/aa7pxx8tdz291.png?width=1280&format=png&auto=webp&s=e3727c29d1bde6eea2e1cccf6c46d3cae3f4750e Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: ​ https://preview.redd.it/2mw4qpjudz291.png?width=1280&format=png&auto=webp&s=1cf1db667892b9b3a40451993680fbd6980b5520 The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

Let’s Build One Person Business Using 100% AI
reddit
LLM Vibe Score0
Human Vibe Score1
AssistanceOk2217This week

Let’s Build One Person Business Using 100% AI

AI made it possible for 9-to-5 workers to start a one-person business without quitting their jobs. Full Article https://preview.redd.it/tynb9y6z695d1.png?width=1309&format=png&auto=webp&s=b490d3676a63adcc01faff8c476056cb7d420022 https://i.redd.it/9x3okti0795d1.gif The Opportunities for Starting a Business ○ There are huge opportunities to start your own business by leveraging valuable skills to attract paying audiences. ○ New software and AI platforms make it easier to distribute products/services and automate tasks that were previously time-consuming. Our One Person Book Publication House ○ This article explores building a one-person AI-powered business focused on publishing books. ○ Users input data on a topic, and AI generates a comprehensive book structure and content based on that. ○ The generated content can be formatted, designed, and published digitally or in print easily. Why Read This Article? ○ It presents an innovative AI-powered approach to streamline the book publishing process. ○ It provides technical implementation details using LLM, Python and the Streamlit library as a reference. ○ It highlights AI's potential in automating creative tasks like writing and content creation. Approaching the One Person Business ○ Reflect on areas where you overcame personal struggles and gained valuable skills. ○ Leverage that expertise to build an AI business serving others facing similar obstacles. ○ Use AI tools to create content, automate processes, and efficiently scale your offerings. The Publication Business Idea ○ Focus on writing and publishing small books using AI writing assistants. ○ AI can streamline research, writing drafts, outlines, and ideas across genres. ○ Concentrate efforts on editing, formatting, and marketing while AI handles writing. The Book Generation Process ○ Users input structured topic data like outlines, key points, and references. ○ Advanced AI language models generate flowing book content from that data. ○ Minimal human effort is needed beyond initial inputs and refinement. ○ AI systems automatically handle formatting, design, and publishing. Technical Implementation ○ Includes a Book class to represent a book's hierarchical structure in Python. ○ Functions to generate book structures and section content using AI models. ○ Integrates with a Streamlit app for user input and output. ○ Allows downloading the final book in Markdown format. Closing Thoughts ○ This AI-powered approach makes book writing and publishing more accessible to individuals. ○ AI handles the heavy lifting, with humans providing quality control through editing. ○ It opens up possibilities for innovative knowledge sharing as technology evolves.

Let’s Build One Person Business Using 100% AI
reddit
LLM Vibe Score0
Human Vibe Score1
AssistanceOk2217This week

Let’s Build One Person Business Using 100% AI

AI made it possible for 9-to-5 workers to start a one-person business without quitting their jobs. Full Article https://preview.redd.it/tynb9y6z695d1.png?width=1309&format=png&auto=webp&s=b490d3676a63adcc01faff8c476056cb7d420022 https://i.redd.it/9x3okti0795d1.gif The Opportunities for Starting a Business ○ There are huge opportunities to start your own business by leveraging valuable skills to attract paying audiences. ○ New software and AI platforms make it easier to distribute products/services and automate tasks that were previously time-consuming. Our One Person Book Publication House ○ This article explores building a one-person AI-powered business focused on publishing books. ○ Users input data on a topic, and AI generates a comprehensive book structure and content based on that. ○ The generated content can be formatted, designed, and published digitally or in print easily. Why Read This Article? ○ It presents an innovative AI-powered approach to streamline the book publishing process. ○ It provides technical implementation details using LLM, Python and the Streamlit library as a reference. ○ It highlights AI's potential in automating creative tasks like writing and content creation. Approaching the One Person Business ○ Reflect on areas where you overcame personal struggles and gained valuable skills. ○ Leverage that expertise to build an AI business serving others facing similar obstacles. ○ Use AI tools to create content, automate processes, and efficiently scale your offerings. The Publication Business Idea ○ Focus on writing and publishing small books using AI writing assistants. ○ AI can streamline research, writing drafts, outlines, and ideas across genres. ○ Concentrate efforts on editing, formatting, and marketing while AI handles writing. The Book Generation Process ○ Users input structured topic data like outlines, key points, and references. ○ Advanced AI language models generate flowing book content from that data. ○ Minimal human effort is needed beyond initial inputs and refinement. ○ AI systems automatically handle formatting, design, and publishing. Technical Implementation ○ Includes a Book class to represent a book's hierarchical structure in Python. ○ Functions to generate book structures and section content using AI models. ○ Integrates with a Streamlit app for user input and output. ○ Allows downloading the final book in Markdown format. Closing Thoughts ○ This AI-powered approach makes book writing and publishing more accessible to individuals. ○ AI handles the heavy lifting, with humans providing quality control through editing. ○ It opens up possibilities for innovative knowledge sharing as technology evolves.

MarkDrop
reddit
LLM Vibe Score0
Human Vibe Score1
Willing-Ear-8271This week

MarkDrop

I’m excited to share my Python package, Markdrop, which has hit 5.01k+ downloads in just a month, so updated it just now! 🚀 It’s a powerful tool for converting PDF documents into structured formats like Markdown (.md) and HTML (.html) while automatically processing images and tables into descriptions for downstream use. Here's what Markdrop does: Key Features: PDF to Markdown/HTML Conversion: Converts PDFs into clean, structured Markdown files (.md) or HTML outputs, preserving the content layout. AI-Powered Descriptions: Replaces tables and images with descriptive summaries generated by LLM, making the content fully textual and easy to analyze. Earlier I added support of 6 different LLM Clients, but to improve the inference time, now this supports only GEMINI\API\KEY and OPENAI\API\KEY. Downloadable Tables: Can add accurate download buttons in HTML for tables, allowing users to download them as Excel files. Seamless Table and Image Handling: Extracts tables and images, generating detailed summaries for each, which are then embedded into the final Markdown document. At the end, one can have a .md file that contains only textual data, including the AI-generated summaries of tables, images, graphs, etc. This results in a highly portable format that can be used directly for several downstream tasks, such as: Can be directly integrated into a RAG pipeline for enhanced content understanding and querying on documents containg useful images and tabular data. Ideal for automated content summarization and report generation. Facilitates extracting key data points from tables and images for further analysis. The .md files can serve as input for machine learning tasks or data-driven projects. Ideal for data extraction, simplifying the task of gathering key data from tables and images. The downloadable table feature is perfect for analysts, reducing the manual task of copying tables into Excel. Markdrop streamlines workflows for document processing, saving time and enhancing productivity. You can easily install it via: pip install markdrop There’s also a Colab demo available to try it out directly: Open in Colab. Github Repo If you've used Markdrop or plan to, I’d love to hear your feedback! Share your experience, any improvements, or how it helped in your workflow. Check it out on PyPI and let me know your thoughts!

 Looking for beta testers for my AI-powered website builder - no templates, no coding required
reddit
LLM Vibe Score0
Human Vibe Score1
Interesting_Flow_342This week

Looking for beta testers for my AI-powered website builder - no templates, no coding required

Hey r/sideproject, I'm working on an exciting new project since 4 months- an AI-powered website builder that creates completely custom, professional-looking websites from scratch. No templates, no coding The key capabilities of this AI website builder are: Designing unique, mobile-responsive layouts based on your preferences and content Generating custom written content for each page, section, and element Ensuring best practices for things like typography, color schemes, and SEO But the real power comes in the customization. Once the AI generates your initial website, you can easily make changes to any part of it - from the design and layout to the text and images. Simply select the specific element you want to modify, and the AI will make the requested changes, whether that's tweaking the font and colors, rearranging the page structure, or rewriting the copy. It's a truly interactive, AI-driven web building experience. This is perfect for things like: Marketing/informational websites Landing pages Online resumes and portfolios Small business websites When you're ready, you can publish your AI-generated, fully customized website on a free subdomain or download the full code. I'm looking to get a few early users to try this out and provide feedback before the full public launch. If you're interested in being a beta tester, I'd love to hear from you! This could be especially useful for small business owners, freelancers, job seekers, or anyone who needs a professional web presence but doesn't have the time or skills for traditional web development. If you're interested, just leave a comment below or send me a DM. I'll be in touch to get you set up with early access. Thanks for checking it out! Muhammad Bilal Moten

How I built my SaaS and earned $273 MRR in the first month
reddit
LLM Vibe Score0
Human Vibe Score1
Ok_Damage_1764This week

How I built my SaaS and earned $273 MRR in the first month

Hi everyone! I’m Alex Varga, an indie developer. Last year, I focused on accelerating my development speed and launched 10 projects in 12 months. One of them called Bulk Image Generation started growing through SEO, so I decided to focus on it. After one month of SEO efforts, it’s generating $273 MRR. I hope my experience will be useful to others. Concept bulkimagegeneration.com website helps to generate up to 100 images in 15 seconds using AI I was using Google, started with keywords like "Bulk Image ..." a lot of them are Bulk Image Resizer, Downloader etc. But there was no Bulk Image Generator. I thought: yeah, this domain is available, let's buy. So I bought bulkimagegeneration.com and bulkimagegenerator.com So, the app concept is to help people generate images with AI at scale: let\`s say 100 images in 15 seconds. Marketing Gap https://preview.redd.it/4luzib02bbie1.png?width=1905&format=png&auto=webp&s=cbe845107aca46ae5729dfe121fefd5e9cdab9ac Most builders create a product first and figure out how to sell it later. I took a completely different approach with Bulk Image Generator. I identified a market gap and secured a domain name that matched exactly what people were searching for and launched app. https://preview.redd.it/h6vwur34bbie1.png?width=1905&format=png&auto=webp&s=9a163ff6f503be4c175c6e5e82e2003b32df1fe0 Growth Strategy SEO has become the main acquisition channel, so I’ve decided to focus even more on it with this experiment. Almost every day, I publish either a new article or a free micro-app (as a lead magnet) for Bulk Image Generator. I also tried Google Ads, spent $20, and got a $0.35 CPC. https://preview.redd.it/3rhnzvs6bbie1.png?width=1905&format=png&auto=webp&s=f9819d1e82d3e2429d6ccb7b00dcac86a7a351c2 In comparison, the Free Image to Text Prompt Converter (one of the lead magnets) has a $0.011 CPC, which is more than 30 times cheaper than Google Ads. So I decided not to focus now on paid ads. https://preview.redd.it/p333fyl9bbie1.png?width=1905&format=png&auto=webp&s=2e96532d7709b44b7459e7ccf37ef9a0fa784728 After using our free tools, some users explore our main product - a bulk image generation service. Users pay a monthly subscription to get credits, which they can spend on image generation, face swaps, and bulk background removal. Currently, this app generates around $250 in Monthly Recurring Revenue: https://preview.redd.it/9wcm0tjfbbie1.png?width=1905&format=png&auto=webp&s=41bcdd4f7594b09087c51cc5044e4b9c94c129c8 SEO Keyword Research I use Semrush or similar tools to find keywords with a search volume greater than 300 and then write articles targeting those keywords. If the topic has enough potential, I might create a free tool (e.g., a Free Image to Text Prompt Converter) to attract more users. Occasions matter. For instance, I wrote an article about creating images for Super Bowl ads, which led to one paying user who replicated the exact creatives showcased in the article https://preview.redd.it/shpax6mlbbie1.png?width=1905&format=png&auto=webp&s=d491385761df126424c2f9ba14c5da15f8cbb603 AI Tools Aggregators This can be an excellent acquisition channel. When BulkImageGeneration.com was featured in an article on Toolify.ai, I immediately gained three paying users (\~$60). I took 2 more AI Aggregators, and on average I had CPC = $0.2, which is a fair price and usually it has ROAs > 100%. However, some major aggregators are expensive ($300–400 per placement). I want to try it once I reach $500+ MRR. Next Steps bulkimagegeneration.com currently ranks #1 in search results for relevant keywords (e.g., “bulk image generation,” “bulk image generator”). I plan to keep producing content targeting niche keywords and timely occasions. buy more places in AI Aggregators I also want to reach out to YouTubers and ask them to include Bulk in their reviews for free

I made a bunch of side projects over the last 9 months, and even accrued 500+ accounts and some donations!
reddit
LLM Vibe Score0
Human Vibe Score1
firebird8541154This week

I made a bunch of side projects over the last 9 months, and even accrued 500+ accounts and some donations!

I just stumbled upon this subreddit and have a bunch of fun projects I'd like to present, any thoughts/feedback/criticism, etc. all welcome. So, first things first, a little about me, I work full time in an unrelated job, but have picked up full stack and mobile programming. I have two roommates who help a bit in their own way, one is a server expert and happened to have a server in our apartment basement, and the other is my brother and he picked up some frontend programming. We're all avid cyclists and decided to start building about 9 months ago. Our first idea was https://sherpa-map.com a SPA website allowing users to create cycling routes, send them to their Garmin devices, download them as GPX files, etc. This site uses the open-source software Graphhopper on the backend which I've augmented to send back surface type information. This site has a loooonnnggg list of features, from the simple, like a live weather radar, to the extreme like this functionality: ​ AI surface classification This video demonstrates the ability to classify road surface types in real time using high-resolution satellite imagery of road portions with unknown surface types! I trained a Pytorch resnet 50 model with tuned hyperparameters and 10 epochs on 200,000 satellite images of roads with known surface types! (We host a OSM Postgres server with coordinates of roads and their associated surface types, I made a script to pull images of said roads for training). I built the model into a secondary backend written in flask and piped the images being used back through live web sockets to my node.js backend to the person who is logged in! ​ Okay, on to the next side project, a cycling physics simulator! https://sherpa-map.com/cycling-route-calculator.html Cycling Physics Simulation This site lets users enter information about their bike setup, upload or use a preset route, and enter in their physical information to see how different changes in their setup might affect how fast they will be throughout a course! It can also pull complex weather information throughout the course and give a full suite of nutrition details! ​ Okay, Next project! The Activity Racer! https://sherpa-map.com/activity-racer.html Activity Racer This site lets users upload their own or competitors' GPX activity files and line them up against each other at any point in an event, to see who was faster where! It's great if you've done the same even year after year with differing setups, allowing you to get insights as to which might have done better at what point. ​ Okay, final project, this one's pretty half-baked as I'm still in the process of implementing so many other things, a podcast creation app! (I was bored and just started working on this a week or so ago, for no good reason). Currently, this one lives on https://sherpa-map.com/podcast.html This podcasting web app creates a peer to peer to peer... mesh network using webRTC so, small groups can communicate with the highest level of fidelity both in audio and video! Simply enter a room name and have other users enter the room name as well and they're connected! I've already used tensorflow.js AI to allow a blur background option, similar to MS Teams, whereby bodypix classifier AI picks out the person and I use a blur on a JS canvas behind them. I also went a little bit off the deep end and managed to implement the RNNoise background noise suppressor on the frontend, it's written in C, but I was able to use Windows Subsystem for Linux + emscrption to compile it in just the right way, with exposed malloc and free and a JS wrapper to use on the frontend in WASM. I actually use WASM (typically Rust) in many fun ways throughout all of these projects. I'm also in the middle of recreating the first site in React-Native + Maplibre for IOS and Android as individual APPs. In addition, I'm also working on the integration of my main site into a different project for a different group. So, I have a fun collection of side projects with slightly different GUIs, across different platforms with no coherent landing page as of yet but I've been having a blaaaast putting them together. As a final note, I even have a bit of an easter egg in the automated email system I use for account verifications and password resets do\not\reply@sherpa-map.com I hooked it up to ChatGPT API and told it it is a disgruntled worker whose sole task in life is to watch a do\not\reply email box and respond sarcastic/snarky to anyone who dares send a message to it, if AI comes for humanity, I bet I'll be on a list for this one lol.

Running and selling multiple side projects alongside a 9-5
reddit
LLM Vibe Score0
Human Vibe Score1
leanpreneur1This week

Running and selling multiple side projects alongside a 9-5

My current side project started 56 days ago when I started writing 1,000 words per day. My core businesses are an agency and job board, and I just needed a creative outlet. The likes of Chris Guillebeau and Nathan Barry attribute their progression to writing so I thought I’d see if it might do the same for me. At first I was just vomiting words onto the screen, I made a blog and wrote mainly technical guides related to my skills. Over time I realised I was writing more and more about running a business as a solopreneur, or lean operator. There is tons of content out there giving you the Birds Eye of going from 0 to £10m. Inspiring stuff, but I think there is a void in real content, explaining the nuts and bolts of the how.  What is the day-to-day like for the solopreneurs who make a good living and have plenty of free time? That’s what I’m striving for anyway. I’m not talking about the 7-figure outliers. Or the ones teaching you to make content so you can have a business teaching others how to make content, and so on. I’m also sick of the ‘I made $X in 5 minutes and how you can too’  So, I started chatting to people in my network who run lean businesses and/or side hustles. I ask them a bit about their journey and ask them to teach something - how they operate, or a skill/process/system/tool that other people like you/me will find useful. One of my first chats was with Sam Dickie, who runs multiple side projects so thought I’d share here, see if others find it useful and get some feedback. I’ve removed all links as I’ve never posted on Reddit before so conscious of not being promotional, I’m posting this stuff to a tiny email list of friends with no upsells. Just finding my feet on whether others find it useful or not: — Sam is a serial entrepreneur who builds projects in his spare time whilst working a 9-5. He’s scaled and sold multiple ventures and currently runs one of the best newsletters out there for builders and entrepreneurs. Building audience through newsletters has always been a cornerstone strategy for him, so, along with sharing his advice on solopreneurism, he’s also generously shared his lean newsletter writing process. About Sam Sam is a Senior Product Manager who has spent the last 15 years working in the tech sector after starting his career as a town planner. In addition to his job he spends some of his spare time building side projects. These have included a 3D printing startup, a tech directory, a newsletter, a beta product directory, and consultancy. Sam is the epitome of making a success out of following your interest and curiosity. It’s clear he enjoys his business ventures and builds in a risk-free way.   It’s often touted by business gurus to avoid building around your interests, but Sam bucks the trend successfully. I think he’s someone who has already found his 1,000 true fans.  Descending rabbit holes, Sam’s journey of invention and curation 3D printing Sam’s first foray into launching a startup was with Fiilo, a 3D printing business. This was at the height of the 3D printing craze and he self-admits that he used the launch as an excuse to buy a 3D printer. He ended up with two and launching a product called GrowGo. GrowGo is a sustainable 3D-printed product that turns any bottle into somewhere that you can grow plants and herbs. He eventually sold this business and the printers, making around £10k. Along the way, he was exposed to various business tasks, including building a website in Weebly, the biggest nocode website builder of the time, and built an API that enabled print on demand for his product. NoCode.Tech The experiences of building as someone non-technical led to numerous friends asking how he built all of this tech. Back then, nocode wasn’t popular, and it had almost zero search volume, so Sam created a basic directory. A quick landing page on Weebly with a basic value prop, a short explanation and a list of the tools he had used before. It hit the top spot on Product Hunt, and he landed 2,000 subscribers in the first 48 hours. But, he hadn’t built it at this point, so he set about getting to work. He built the directory and list to 30,000 subs and monetised the site through advertising. At its peak with Sam, it was receiving about £2,000 per month in ad revenue. He was still working his 9-5 at this point, so thought it might be a good time to exit. The site was still growing, but it was becoming anxiety inducing whilst he was still working full-time. So, he ended up selling the site and making friend’s with the buyer. Fast forwarding a bit, Nocode.tech was eventually acquired by Stackr, a nocode app. Sam was working for their competitor at the time and ended up being offered a job by his friend who acquired the site. All of this from a side project in his area of passion. Creator Club After selling the directory, Sam lost his outlet for sharing his tools and learnings.  Being fascinated with curation and loving sifting through for nuggets, he invested more time into his personal website and launched Creator Club newsletter. Sam writes monthly and currently has over 8,000 subs. It’s one of the few newsletters that I let bypass my email filters and land in my main inbox. Life as a Part-Time Multipreneur Side Hustler If it’s not obvious already Sam is a curiosity led business creator. He’s found that the products without a revenue focus or intention have ironically outperformed those created for the sole purpose of creating money. He enjoys working on his side hustles. He could have run the Nocode.Tech for 10 more years and wouldn’t have tired of it as it’s a byproduct of his interest. For this reason, he has also created the Beta Directory, simply because he loves unearthing early-stage products. He admits he gets the fear when he thinks about quitting his 9-5, although he suspects if he devoted the same energy to one of his projects it could replace his income (no doubts from me here). This same fear means that he can run his ventures with less fear. This way, he can experiment with freedom and isn’t risking the ranch with a young family to consider. For example, recently he stopped paid sponsors on his newsletter as it was more stress than the value of the income to him. Sam divides his time on evenings and weekends (unequally) between the following: Creator Club Validation Co Beta directory Consultancy The pure side hustle status magnifies the need to run lean, let’s jump into his process…. Sam’s lean newsletter curation and creation process Starting out publishing his personal newsletter Going against his expertise, Sam originally over-engineered his process.  He curated with Feedly and tried to automate the full writing process with Zapier. The trouble is that there are too many points of failure which can lead the whole  chain to break down, and you spend more time fixing the system. For a 200 subscriber newsletter, he needed to pare things back. His set-up now Sam scaled back and now simple builds automations when he needs them. He keeps the process simple, right down to the design and any welcome automations. Keeping things real We touched on the trend that keeping things raw is better. Content has come full circle with the advent of AI. Everything looks too perfect and consequently, people’s tastes are changing. Sam mentioned watermarks that show content isn’t AI written, and we referenced content such as Greg Isenberg’s sketches, and Chris Donnelly’s image posts. \\Step by Step Process:\\ Using Stoop Inbox to manage sources Curation with Pocket Managing content with Airtable and Zapier Using Bearly to summarise Substack for writing Monitoring content sources Sam uses Stoop Inbox, an RSS curation tool, to manage his content sources. It gives him a dedicated email address for newsletters and he follows an Inbox Zero methodology. He checks in daily in Stoop, and on X, Reddit and IndieHackers. With X, he just uses the standard interface but has been careful to curate his feed, sometimes adding in extra notifications to hear from interesting people. Highlighting content When curating links, Sam uses Arc browser and the Pocket extension to save links. It’s super simple and lightweight. He creates tags which trigger an automation that curates the link to Airtable. If you watch the video, here’s a shoutout to Alice, the AI interface I use which has recently featured on Product Hunt. It’s a fantastic tool with bags of potential to enhance a solopreneur’s life. Ranking and sorting content He sends the links indexed using Pocket to a basic Airtable base via Zapier. From there, he grades the content and sets aside some time to read it in more depth. Pocket pulls through the title, metadata, and URL link. Review Sam does this manually but has used a tool as a shortcut for digesting long form content — Bearly.ai. Bearly.ai was created by Trung Phan and linking back to raw content, Trung is 1/3 of the hosts on the Not Investment Advice podcast. Its irreverent style and thumbnail are an example of a successful podcast that doesn’t over polish. Writing it all up Being a huge Notion fan (check out the free templates on his site), Sam originally used Notion for writing and linked it into Revue. When Elon sunsetted Revue, he switched to Substack. He loves the Substack interface so drafts in Substack based on a duplication of last month’s edition. Before publishing, Sam runs through a 10-point Notion checklist, which he shared with me. Parting Advice Keep your tool stack as lean as possible. Avoid tool switching to the shiny new object. Getting launched quickly is key. Don’t think that you have to be everywhere for distribution, Sam sticks with what he knows on X and LinkedIn. Overall, he advises just keeping things simple and therefore minimising risk. Resources He says they’re cliche, but I don’t agree; they’re timeless. Paul Graham of Y Combinator is someone Sam recommends following. He doesn’t write much, which is great as Sam gets anxiety when someone good often writes and he can’t keep up with the writing. His content is well thought out and distills complex concepts in entrepreneurship and startups. In addition, Sam loves Naval Ravikant’s approach. He mentions checking out the Almanac of Naval Ravikant for collected wisdom. Follow Sam’s Journey Again, not going to link here but you can find Sam’s stuff easily enough if you want to. His personal website is beautiful and contains loads of free downloads. He has also curated personal websites he admires if you need some inspiration. Sam is a super nice guy so reach out to him, I did before I started my personal blog recently, and he gave me some great advice. Also, worth keeping an eye on Validation Co, where he aims to help early-stage makers and creators validate their ideas. He’s building super slow — trying to enjoy the process without unachievable deadlines. Maintaining his stamina and passion. Amazing, I hope he writes more about that soon! -- That’s my second shot at an interview, hope you enjoyed it and found something useful in it. I’m talking to a marketplace founder who spends 2–3 hours per month his project, a multiple job board owner with a 9-5 and a leading book designer next. As this is my side project, should I keep going?

[D] Why I'm Lukewarm on Graph Neural Networks
reddit
LLM Vibe Score0
Human Vibe Score0.6
VodkaHazeThis week

[D] Why I'm Lukewarm on Graph Neural Networks

TL;DR: GNNs can provide wins over simpler embedding methods, but we're at a point where other research directions matter more I also posted it on my blog here, has footnotes, a nicer layout with inlined images, etc. I'm only lukewarm on Graph Neural Networks (GNNs). There, I said it. It might sound crazy GNNs are one of the hottest fields in machine learning right now. [There][1] were at least [four][2] [review][3] [papers][4] just in the last few months. I think some progress can come of this research, but we're also focusing on some incorrect places. But first, let's take a step back and go over the basics. Models are about compression We say graphs are a "non-euclidean" data type, but that's not really true. A regular graph is just another way to think about a particular flavor of square matrix called the [adjacency matrix][5], like this. It's weird, we look at run-of-the-mill matrix full of real numbers and decide to call it "non-euclidean". This is for practical reasons. Most graphs are fairly sparse, so the matrix is full of zeros. At this point, where the non-zero numbers are matters most, which makes the problem closer to (computationally hard) discrete math rather than (easy) continuous, gradient-friendly math. If you had the full matrix, life would be easy If we step out of the pesky realm of physics for a minute, and assume carrying the full adjacency matrix around isn't a problem, we solve a bunch of problems. First, network node embeddings aren't a thing anymore. A node is a just row in the matrix, so it's already a vector of numbers. Second, all network prediction problems are solved. A powerful enough and well-tuned model will simply extract all information between the network and whichever target variable we're attaching to nodes. NLP is also just fancy matrix compression Let's take a tangent away from graphs to NLP. Most NLP we do can be [thought of in terms of graphs][6] as we'll see, so it's not a big digression. First, note that Ye Olde word embedding models like [Word2Vec][7] and [GloVe][8] are [just matrix factorization][9]. The GloVe algorithm works on a variation of the old [bag of words][10] matrix. It goes through the sentences and creates a (implicit) [co-occurence][11] graph where nodes are words and the edges are weighed by how often the words appear together in a sentence. Glove then does matrix factorization on the matrix representation of that co-occurence graph, Word2Vec is mathematically equivalent. You can read more on this in my [post on embeddings][12] and the one (with code) on [word embeddings][13]. Even language models are also just matrix compression Language models are all the rage. They dominate most of the [state of the art][14] in NLP. Let's take BERT as our main example. BERT predicts a word given the context of the rest of the sentence. This grows the matrix we're factoring from flat co-occurences on pairs of words to co-occurences conditional on the sentence's context, like this We're growing the "ideal matrix" we're factoring combinatorially. As noted by [Hanh & Futrell][15]: [...] human language—and language modelling—has infinite statistical complexity but that it can be approximated well at lower levels. This observation has two implications: 1) We can obtain good results with comparatively small models; and 2) there is a lot of potential for scaling up our models. Language models tackle such a large problem space that they probably approximate a compression of the entire language in the [Kolmogorov Complexity][16] sense. It's also possible that huge language models just [memorize a lot of it][17] rather than compress the information, for what it's worth. Can we upsample any graph like language models do? We're already doing it. Let's call a first-order embedding of a graph a method that works by directly factoring the graph's adjacency matrix or [Laplacian matrix][18]. If you embed a graph using [Laplacian Eigenmaps][19] or by taking the [principal components][20] of the Laplacian, that's first order. Similarly, GloVe is a first-order method on the graph of word co-occurences. One of my favorites first order methods for graphs is [ProNE][21], which works as well as most methods while being two orders of magnitude faster. A higher-order method embeds the original matrix plus connections of neighbours-of-neighbours (2nd degree) and deeper k-step connections. [GraRep][22], shows you can always generate higher-order representations from first order methods by augmenting the graph matrix. Higher order method are the "upsampling" we do on graphs. GNNs that sample on large neighborhoods and random-walk based methods like node2vec are doing higher-order embeddings. Where are the performance gain? Most GNN papers in the last 5 years present empirical numbers that are useless for practitioners to decide on what to use. As noted in the [OpenGraphsBenchmark][4] (OGB) paper, GNN papers do their empirical section on a handful of tiny graphs (Cora, CiteSeer, PubMed) with 2000-20,000 nodes. These datasets can't seriously differentiate between methods. Recent efforts are directly fixing this, but the reasons why researchers focused on tiny, useless datasets for so long are worth discussing. Performance matters by task One fact that surprises a lot of people is that even though language models have the best performance in a lot of NLP tasks, if all you're doing is cram sentence embeddings into a downstream model, there [isn't much gained][23] from language models embeddings over simple methods like summing the individual Word2Vec word embeddings (This makes sense, because the full context of the sentence is captured in the sentence co-occurence matrix that is generating the Word2Vec embeddings). Similarly, [I find][24] that for many graphs simple first-order methods perform just as well on graph clustering and node label prediction tasks than higher-order embedding methods. In fact higher-order methods are massively computationally wasteful for these usecases. Recommended first order embedding methods are ProNE and my [GGVec with order=1][25]. Higher order methods normally perform better on the link prediction tasks. I'm not the only one to find this. In the BioNEV paper, they find: "A large GraRep order value for link prediction tasks (e.g. 3, 4);a small value for node classification tasks (e.g.1, 2)" (p.9). Interestingly, the gap in link prediction performance is inexistant for artificially created graphs. This suggests higher order methods do learn some of the structure intrinsic to [real world graphs][26]. For visualization, first order methods are better. Visualizations of higher order methods tend to have artifacts of their sampling. For instance, Node2Vec visualizations tend to have elongated/filament-like structures which come from the embeddings coming from long single strand random walks. See the following visualizations by [Owen Cornec][27] created by first embedding the graph to 32-300 dimensions using a node embedding algorithm, then mapping this to 2d or 3d with the excellent UMAP algorithm, like this Lastly, sometimes simple methods soundly beat higher order methods (there's an instance of it in the OGB paper). The problem here is that we don't know when any method is better than another and we definitely don't know the reason. There's definitely a reason different graph types respond better/worse to being represented by various methods. This is currently an open question. A big part of why is that the research space is inundated under useless new algorithms because... Academic incentives work against progress Here's the cynic's view of how machine learning papers are made: Take an existing algorithm Add some new layer/hyperparameter, make a cute mathematical story for why it matters Gridsearch your hyperparameters until you beat baselines from the original paper you aped Absolutely don't gridsearch stuff you're comparing against in your results section Make a cute ACRONYM for your new method, put impossible to use python 2 code on github (Or no code at all!) and bask in the citations I'm [not][28] the [only one][29] with these views on the state reproducible research. At least it's gotten slightly better in the last 2 years. Sidebar: I hate Node2Vec A side project of mine is a [node embedding library][25] and the most popular method in it is by far Node2Vec. Don't use Node2Vec. [Node2Vec][30] with p=1; q=1 is the [Deepwalk][31] algorithm. Deepwalk is an actual innovation. The Node2Vec authors closely followed the steps 1-5 including bonus points on step 5 by getting word2vec name recognition. This is not academic fraud -- the hyperparameters [do help a tiny bit][32] if you gridsearch really hard. But it's the presentable-to-your-parents sister of where you make the ML community worse off to progress your academic career. And certainly Node2Vec doesn't deserve 7500 citations. Progress is all about practical issues We've known how to train neural networks for well over 40 years. Yet they only exploded in popularity with [AlexNet][33] in 2012. This is because implementations and hardware came to a point where deep learning was practical. Similarly, we've known about factoring word co-occurence matrices into Word embeddings for at least 20 years. But word embeddings only exploded in 2013 with Word2Vec. The breakthrough here was that the minibatch-based methods let you train a Wikipedia-scale embedding model on commodity hardware. It's hard for methods in a field to make progress if training on a small amount of data takes days or weeks. You're disincentivized to explore new methods. If you want progress, your stuff has to run in reasonable time on commodity hardware. Even Google's original search algorithm [initially ran on commodity hardware][34]. Efficiency is paramount to progress The reason deep learning research took off the way it did is because of improvements in [efficiency][35] as well as much better libraries and hardware support. Academic code is terrible Any amount of time you spend gridsearching Node2Vec on p and q is all put to better use gridsearching Deepwalk itself (on number of walks, length of walks, or word2vec hyperparameters). The problem is that people don't gridsearch over deepwalk because implementations are all terrible. I wrote the [Nodevectors library][36] to have a fast deepwalk implementation because it took 32 hours to embed a graph with a measly 150,000 nodes using the reference Node2Vec implementation (the same takes 3min with Nodevectors). It's no wonder people don't gridsearch on Deepwalk a gridsearch would take weeks with the terrible reference implementations. To give an example, in the original paper of [GraphSAGE][37] they their algorithm to DeepWalk with walk lengths of 5, which is horrid if you've ever hyperparameter tuned a deepwalk algorithm. From their paper: We did observe DeepWalk’s performance could improve with further training, and in some cases it could become competitive with the unsupervised GraphSAGE approaches (but not the supervised approaches) if we let it run for >1000× longer than the other approaches (in terms of wall clock time for prediction on the test set) I don't even think the GraphSAGE authors had bad intent -- deepwalk implementations are simply so awful that they're turned away from using it properly. It's like trying to do deep learning with 2002 deep learning libraries and hardware. Your architectures don't really matter One of the more important papers this year was [OpenAI's "Scaling laws"][38] paper, where the raw number of parameters in your model is the most predictive feature of overall performance. This was noted even in the original BERT paper and drives 2020's increase in absolutely massive language models. This is really just [Sutton' Bitter Lesson][39] in action: General methods that leverage computation are ultimately the most effective, and by a large margin Transformers might be [replacing convolution][40], too. As [Yannic Kilcher said][41], transformers are ruining everything. [They work on graphs][6], in fact it's one of the [recent approaches][42], and seems to be one of the more succesful [when benchmarked][1] Researchers seem to be putting so much effort into architecture, but it doesn't matter much in the end because you can approximate anything by stacking more layers. Efficiency wins are great -- but neural net architectures are just one way to achieve that, and by tremendously over-researching this area we're leaving a lot of huge gains elsewhere on the table. Current Graph Data Structure Implementations suck NetworkX is a bad library. I mean, it's good if you're working on tiny graphs for babies, but for anything serious it chokes and forces you to rewrite everything in... what library, really? At this point most people working on large graphs end up hand-rolling some data structure. This is tough because your computer's memory is a 1-dimensional array of 1's and 0's and a graph has no obvious 1-d mapping. This is even harder when we take updating the graph (adding/removing some nodes/edges) into account. Here's a few options: Disconnected networks of pointers NetworkX is the best example. Here, every node is an object with a list of pointers to other nodes (the node's edges). This layout is like a linked list. Linked lists are the [root of all performance evil][43]. Linked lists go completely against how modern computers are designed. Fetching things from memory is slow, and operating on memory is fast (by two orders of magnitude). Whenever you do anything in this layout, you make a roundtrip to RAM. It's slow by design, you can write this in Ruby or C or assembly and it'll be slow regardless, because memory fetches are slow in hardware. The main advantage of this layout is that adding a new node is O(1). So if you're maintaining a massive graph where adding and removing nodes happens as often as reading from the graph, it makes sense. Another advantage of this layout is that it "scales". Because everything is decoupled from each other you can put this data structure on a cluster. However, you're really creating a complex solution for a problem you created for yourself. Sparse Adjacency Matrix This layout great for read-only graphs. I use it as the backend in my [nodevectors][25] library, and many other library writers use the [Scipy CSR Matrix][44], you can see graph algorithms implemented on it [here][45]. The most popular layout for this use is the [CSR Format][46] where you have 3 arrays holding the graph. One for edge destinations, one for edge weights and an "index pointer" which says which edges come from which node. Because the CSR layout is simply 3 arrays, it scales on a single computer: a CSR matrix can be laid out on a disk instead of in-memory. You simply [memory map][47] the 3 arrays and use them on-disk from there. With modern NVMe drives random seeks aren't slow anymore, much faster than distributed network calls like you do when scaling the linked list-based graph. I haven't seen anyone actually implement this yet, but it's in the roadmap for my implementation at least. The problem with this representation is that adding a node or edge means rebuilding the whole data structure. Edgelist representations This representation is three arrays: one for the edge sources, one for the edge destinations, and one for edge weights. [DGL][48] uses this representation internally. This is a simple and compact layout which can be good for analysis. The problem compared to CSR Graphs is some seek operations are slower. Say you want all the edges for node #4243. You can't jump there without maintaining an index pointer array. So either you maintain sorted order and binary search your way there (O(log2n)) or unsorted order and linear search (O(n)). This data structure can also work on memory mapped disk array, and node append is fast on unsorted versions (it's slow in the sorted version). Global methods are a dead end Methods that work on the entire graph at once can't leverage computation, because they run out of RAM at a certain scale. So any method that want a chance of being the new standard need to be able to update piecemeal on parts of the graph. Sampling-based methods Sampling Efficiency will matter more in the future Edgewise local methods. The only algorithms I know of that do this are GloVe and GGVec, which they pass through an edge list and update embedding weights on each step. The problem with this approach is that it's hard to use them for higher-order methods. The advantage is that they easily scale even on one computer. Also, incrementally adding a new node is as simple as taking the existing embeddings, adding a new one, and doing another epoch over the data Random Walk sampling. This is used by deepwalk and its descendants, usually for node embeddings rather than GNN methods. This can be computationally expensive and make it hard to add new nodes. But this does scale, for instance [Instagram][49] use it to feed their recommendation system models Neighbourhood sampling. This is currently the most common one in GNNs, and can be low or higher order depending on the neighborhood size. It also scales well, though implementing efficiently can be challenging. It's currently used by [Pinterest][50]'s recommendation algorithms. Conclusion Here are a few interesting questions: What is the relation between graph types and methods? Consolidated benchmarking like OGB We're throwing random models at random benchmarks without understanding why or when they do better More fundamental research. Heree's one I'm curious about: can other representation types like [Poincarre Embeddings][51] effectively encode directed relationships? On the other hand, we should stop focusing on adding spicy new layers to test on the same tiny datasets. No one cares. [1]: https://arxiv.org/pdf/2003.00982.pdf [2]: https://arxiv.org/pdf/2002.11867.pdf [3]: https://arxiv.org/pdf/1812.08434.pdf [4]: https://arxiv.org/pdf/2005.00687.pdf [5]: https://en.wikipedia.org/wiki/Adjacency_matrix [6]: https://thegradient.pub/transformers-are-graph-neural-networks/ [7]: https://en.wikipedia.org/wiki/Word2vec [8]: https://nlp.stanford.edu/pubs/glove.pdf [9]: https://papers.nips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf [10]: https://en.wikipedia.org/wiki/Bag-of-words_model [11]: https://en.wikipedia.org/wiki/Co-occurrence [12]: https://www.singlelunch.com/2020/02/16/embeddings-from-the-ground-up/ [13]: https://www.singlelunch.com/2019/01/27/word-embeddings-from-the-ground-up/ [14]: https://nlpprogress.com/ [15]: http://socsci.uci.edu/~rfutrell/papers/hahn2019estimating.pdf [16]: https://en.wikipedia.org/wiki/Kolmogorov_complexity [17]: https://bair.berkeley.edu/blog/2020/12/20/lmmem/ [18]: https://en.wikipedia.org/wiki/Laplacian_matrix [19]: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1F03130B02DC485C78BF364266B6F0CA?doi=10.1.1.19.8100&rep=rep1&type=pdf [20]: https://en.wikipedia.org/wiki/Principalcomponentanalysis [21]: https://www.ijcai.org/Proceedings/2019/0594.pdf [22]: https://dl.acm.org/doi/10.1145/2806416.2806512 [23]: https://openreview.net/pdf?id=SyK00v5xx [24]: https://github.com/VHRanger/nodevectors/blob/master/examples/link%20prediction.ipynb [25]: https://github.com/VHRanger/nodevectors [26]: https://arxiv.org/pdf/1310.2636.pdf [27]: http://byowen.com/ [28]: https://arxiv.org/pdf/1807.03341.pdf [29]: https://www.youtube.com/watch?v=Kee4ch3miVA [30]: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf [31]: https://arxiv.org/pdf/1403.6652.pdf [32]: https://arxiv.org/pdf/1911.11726.pdf [33]: https://en.wikipedia.org/wiki/AlexNet [34]: https://en.wikipedia.org/wiki/Googledatacenters#Original_hardware [35]: https://openai.com/blog/ai-and-efficiency/ [36]: https://www.singlelunch.com/2019/08/01/700x-faster-node2vec-models-fastest-random-walks-on-a-graph/ [37]: https://arxiv.org/pdf/1706.02216.pdf [38]: https://arxiv.org/pdf/2001.08361.pdf [39]: http://incompleteideas.net/IncIdeas/BitterLesson.html [40]: https://arxiv.org/abs/2010.11929 [41]: https://www.youtube.com/watch?v=TrdevFK_am4 [42]: https://arxiv.org/pdf/1710.10903.pdf [43]: https://www.youtube.com/watch?v=fHNmRkzxHWs [44]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html [45]: https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html [46]: https://en.wikipedia.org/wiki/Sparsematrix#Compressedsparserow(CSR,CRSorYaleformat) [47]: https://en.wikipedia.org/wiki/Mmap [48]: https://github.com/dmlc/dgl [49]: https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/ [50]: https://medium.com/pinterest-engineering/pinsage-a-new-graph-convolutional-neural-network-for-web-scale-recommender-systems-88795a107f48 [51]: https://arxiv.org/pdf/1705.08039.pdf

[P] How I found & fixed 4 bugs in Microsoft's Phi-4 model
reddit
LLM Vibe Score0
Human Vibe Score1
danielhanchenThis week

[P] How I found & fixed 4 bugs in Microsoft's Phi-4 model

Hey r/MachineLearning! Last week, Microsoft released Phi-4, a 14B open-source model that rivals OpenAI's GPT-4-o-mini. I managed to find & fix 4 bugs impacting its output quality. You might remember me previously from fixing 8 bugs in Google's Gemma model! :) I'm going to walk you through how I found & fixed the bugs. Phi-4's benchmarks were amazing, however many users reported weird or just wrong outputs. Since I maintain the open-source project called 'Unsloth' (fine-tuning LLMs 2x faster with 70% less VRAM) with my brother, I firstly tested Phi-4 for inference and found many errors. Our GitHub repo: https://github.com/unslothai/unsloth This time, the model had no implementation issues (unlike Gemma 2) but did have problems in the model card. For my first inference run, I randomly found an extra token which is obviously incorrect (2 eos tokens is never a good idea). Also during more runs, I found there was an extra assistant prompt which is once again incorrect. And, lastly, from past experience with Unsloth's bug fixes, I already knew fine-tuning was wrong when I read the code. These bugs caused Phi-4 to have some drop in accuracy and also broke fine-tuning runs. Our fixes are now under review by Microsoft to be officially added to Hugging Face. We uploaded the fixed versions to https://huggingface.co/unsloth/phi-4-GGUF Here’s a breakdown of the bugs and their fixes: Tokenizer bug fixes The Phi-4 tokenizer interestingly uses as the BOS (beginning of sentence), EOS (end of sentence) and PAD (padding) tokens. The main issue is the EOS token is wrong - it should be . Otherwise, you will get in generations. Fine-tuning bug fixes The padding token should be a designated pad token like in Llama () or we can use an untrained token - for example we use , fixing infinite generations and outputs. Chat template issues The Phi-4 tokenizer always adds an assistant prompt - it should only do this if prompted by add\generation\prompt. Most LLM serving libraries expect non auto assistant additions, and this might cause issues during serving. We dive deeper into the bugs in our blog: https://unsloth.ai/blog/phi4 Do our Fixes Work? Yes! Our fixed Phi-4 uploads show clear performance gains, with even better scores than Microsoft's original uploads on the Open LLM Leaderboard. https://preview.redd.it/d8hew26e06ce1.png?width=2366&format=png&auto=webp&s=173c23feacc625566271470839fe7a5e25eb860e Some redditors even tested our fixes to show greatly improved results in: Example 1: Multiple-choice tasks https://preview.redd.it/qx50pkq706ce1.png?width=1579&format=png&auto=webp&s=437da2cabdbf98ef5a8b8cbdc5592907a20e2316 Example 2: ASCII art generation https://preview.redd.it/sw1o3a3yt4de1.png?width=2326&format=png&auto=webp&s=fc6bfc45d14134d45f332ba58bbd1de049f5776b We also made a Colab notebook fine-tune Phi-4 completely for free using Google's free Tesla T4 (16GB) GPUs: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi\4-Conversational.ipynb Thank you for reading this long post and hope you all found this insightful! If you have any questions, please feel free to ask! :) How I found the bugs: I first downloaded the original Phi-4 from https://huggingface.co/microsoft/phi-4, and tested inference out. Weirdly I found assistant to be appended at the even with addgenerationprompt = False in Hugging Face, so I theorized there was a chat template problem. Adding assistant prompts by default can break serving libraries. And yes, https://huggingface.co/microsoft/phi-4/blob/f957856cd926f9d681b14153374d755dd97e45ed/tokenizer\config.json#L774 had by default added the assistant prompt - I first fixed this! I then found ` to be used for the BOS, EOS and PAD tokens, which is a common issue amongst models - I ignored the BOS, since Phi-4 did not have one anyways, but changed the PAD token to `. You can select any of the tokens since they're empty and not trained. This counteracts issues of infinite generations during finetuning. For Llama-fication, I used torch.allclose to confirm all tensors are in fact equivalent. I also used some fake random data to check all activations are also mostly similar bitwise. I also uploaded the model to the HF Open LLM Leaderboard to confirm if the original Phi-4 arch and the new Llama-fied models are equivalent. Finally I verified all finetuning runs with Unsloth in a Colab Notebook to confirm all runs were correct.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[P] I Trained a Model to Generate Video Game Pages
reddit
LLM Vibe Score0
Human Vibe Score1
pcvisionThis week

[P] I Trained a Model to Generate Video Game Pages

These past two months I've been working on a project I've called THIS GAME DOES NOT EXIST. I've always wanted to try building something with generative A.I. so this project scratched that itch for me. Here's a video with a few of my favourites read by voice actors: https://www.youtube.com/watch?v=\mTWMLhpJoA ​ THIS GAME DOES NOT EXIST is an experiment in generative artificial intelligence. This site contains 130 video game pages that were generated using an implementation of OpenAI's Generative Pre-trained Transformer 2 (GPT-2) to generate text and a simple implementation of generative adversarial networks (GAN) to generate header images and "screenshots". To generate the names, descriptions, publishers, and developers of the games I finetuned the HuggingFace implementation of GPT-2. I used the Steam Store Games (Clean dataset) from Kaggle with slight modifications and preprocessing.Here is what one training sample looks like: Half-LifeValve ValveNamed Game of the Year by over 50 publications, Valve's debut title blends action and adventure with award-winning technology to create a frighteningly realistic world where players must think to survive. Also includes an exciting multiplayer mode that allows you to play against friends and enemies around the world. The model uses the tokens (e.g. and ) to prompt each class of data while keeping context during the entire generation. Image generation was done by training a custom GAN very similar to the architecture seen in the PyTorch DCGAN Tutorial which was built to generate faces. I created two models for this site: one for generating the header images and one for generating multiple screenshots for each game.To assemble the dataset I wrote a script that downloads the images from the URLs in the Steam Store Games (Clean dataset) dataset. Due to my lack of resources and time to put into this project, the image generation is less than ideal. You may notice though, that the header image model will generate artifacts in images that look like the titles of games, and the screenshot image model with generate what looks like levels of a 2D platformer.

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: ​ https://preview.redd.it/w4v4c7vcez291.png?width=1834&format=png&auto=webp&s=0687efb1fddb26e8e30cb844d398ec712b947f31 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: https://preview.redd.it/jfsl8hdfez291.png?width=1280&format=png&auto=webp&s=a858e2304a0c93e78ba5429612ca08cbee69b35a Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/0n5nuyvhez291.png?width=1280&format=png&auto=webp&s=1e9c054f541d53381674b8d6001b4bf524506bd2 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: https://preview.redd.it/rzc0qjyjez291.png?width=1280&format=png&auto=webp&s=d5bcc503ef0fb3360c7740e60e295cf372dcad47 Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: ​ https://preview.redd.it/c4b2q8olez291.png?width=1280&format=png&auto=webp&s=4f3817b0b9f07e1e68d1d4a8281702ba3834a00a The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore
reddit
LLM Vibe Score0
Human Vibe Score1
qazmkoppThis week

[P]MMML | Deploy HuggingFace training model rapidly based on MetaSpore

A few days ago, HuggingFace announced a $100 million Series C funding round, which was big news in open source machine learning and could be a sign of where the industry is headed. Two days before the HuggingFace funding announcement, open-source machine learning platform MetaSpore released a demo based on the HuggingFace Rapid deployment pre-training model. As deep learning technology makes innovative breakthroughs in computer vision, natural language processing, speech understanding, and other fields, more and more unstructured data are perceived, understood, and processed by machines. These advances are mainly due to the powerful learning ability of deep learning. Through pre-training of deep models on massive data, the models can capture the internal data patterns, thus helping many downstream tasks. With the industry and academia investing more and more energy in the research of pre-training technology, the distribution warehouses of pre-training models such as HuggingFace and Timm have emerged one after another. The open-source community release pre-training significant model dividends at an unprecedented speed. In recent years, the data form of machine modeling and understanding has gradually evolved from single-mode to multi-mode, and the semantic gap between different modes is being eliminated, making it possible to retrieve data across modes. Take CLIP, OpenAI’s open-source work, as an example, to pre-train the twin towers of images and texts on a dataset of 400 million pictures and texts and connect the semantics between pictures and texts. Many researchers in the academic world have been solving multimodal problems such as image generation and retrieval based on this technology. Although the frontier technology through the semantic gap between modal data, there is still a heavy and complicated model tuning, offline data processing, high performance online reasoning architecture design, heterogeneous computing, and online algorithm be born multiple processes and challenges, hindering the frontier multimodal retrieval technologies fall to the ground and pratt &whitney. DMetaSoul aims at the above technical pain points, abstracting and uniting many links such as model training optimization, online reasoning, and algorithm experiment, forming a set of solutions that can quickly apply offline pre-training model to online. This paper will introduce how to use the HuggingFace community pre-training model to conduct online reasoning and algorithm experiments based on MetaSpore technology ecology so that the benefits of the pre-training model can be fully released to the specific business or industry and small and medium-sized enterprises. And we will give the text search text and text search graph two multimodal retrieval demonstration examples for your reference. Multimodal semantic retrieval The sample architecture of multimodal retrieval is as follows: Our multimodal retrieval system supports both text search and text search application scenarios, including offline processing, model reasoning, online services, and other core modules: ​ https://preview.redd.it/w4v4c7vcez291.png?width=1834&format=png&auto=webp&s=0687efb1fddb26e8e30cb844d398ec712b947f31 Offline processing, including offline data processing processes for different application scenarios of text search and text search, including model tuning, model export, data index database construction, data push, etc. Model inference. After the offline model training, we deployed our NLP and CV large models based on the MetaSpore Serving framework. MetaSpore Serving helps us conveniently perform online inference, elastic scheduling, load balancing, and resource scheduling in heterogeneous environments. Online services. Based on MetaSpore’s online algorithm application framework, MetaSpore has a complete set of reusable online search services, including Front-end retrieval UI, multimodal data preprocessing, vector recall and sorting algorithm, AB experimental framework, etc. MetaSpore also supports text search by text and image scene search by text and can be migrated to other application scenarios at a low cost. The HuggingFace open source community has provided several excellent baseline models for similar multimodal retrieval problems, which are often the starting point for actual optimization in the industry. MetaSpore also uses the pre-training model of the HuggingFace community in its online services of searching words by words and images by words. Searching words by words is based on the semantic similarity model of the question and answer field optimized by MetaSpore, and searching images by words is based on the community pre-training model. These community open source pre-training models are exported to the general ONNX format and loaded into MetaSpore Serving for online reasoning. The following sections will provide a detailed description of the model export and online retrieval algorithm services. The reasoning part of the model is standardized SAAS services with low coupling with the business. Interested readers can refer to my previous post: The design concept of MetaSpore, a new generation of the one-stop machine learning platform. 1.1 Offline Processing Offline processing mainly involves the export and loading of online models and index building and pushing of the document library. You can follow the step-by-step instructions below to complete the offline processing of text search and image search and see how the offline pre-training model achieves reasoning at MetaSpore. 1.1.1 Search text by text Traditional text retrieval systems are based on literal matching algorithms such as BM25. Due to users’ diverse query words, a semantic gap between query words and documents is often encountered. For example, users misspell “iPhone” as “Phone,” and search terms are incredibly long, such as “1 \~ 3 months old baby autumn small size bag pants”. Traditional text retrieval systems will use spelling correction, synonym expansion, search terms rewriting, and other means to alleviate the semantic gap but fundamentally fail to solve this problem. Only when the retrieval system fully understands users’ query terms and documents can it meet users’ retrieval demands at the semantic level. With the continuous progress of pre-training and representational learning technology, some commercial search engines continue to integrate semantic vector retrieval methods based on symbolic learning into the retrieval ecology. Semantic retrieval model This paper introduces a set of semantic vector retrieval applications. MetaSpore built a set of semantic retrieval systems based on encyclopedia question and answer data. MetaSpore adopted the Sentence-Bert model as the semantic vector representation model, which fine-tunes the twin tower BERT in supervised or unsupervised ways to make the model more suitable for retrieval tasks. The model structure is as follows: The query-Doc symmetric two-tower model is used in text search and question and answer retrieval. The vector representation of online Query and offline DOC share the same vector representation model, so it is necessary to ensure the consistency of the offline DOC library building model and online Query inference model. The case uses MetaSpore’s text representation model Sbert-Chinese-QMC-domain-V1, optimized in the open-source semantically similar data set. This model will express the question and answer data as a vector in offline database construction. The user query will be expressed as a vector by this model in online retrieval, ensuring that query-doc in the same semantic space, users’ semantic retrieval demands can be guaranteed by vector similarity metric calculation. Since the text presentation model does vector encoding for Query online, we need to export the model for use by the online service. Go to the q&A data library code directory and export the model concerning the documentation. In the script, Pytorch Tracing is used to export the model. The models are exported to the “./export “directory. The exported models are mainly ONNX models used for wired reasoning, Tokenizer, and related configuration files. The exported models are loaded into MetaSpore Serving by the online Serving system described below for model reasoning. Since the exported model will be copied to the cloud storage, you need to configure related variables in env.sh. \Build library based on text search \ The retrieval database is built on the million-level encyclopedia question and answer data set. According to the description document, you need to download the data and complete the database construction. The question and answer data will be coded as a vector by the offline model, and then the database construction data will be pushed to the service component. The whole process of database construction is described as follows: Preprocessing, converting the original data into a more general JSonline format for database construction; Build index, use the same model as online “sbert-Chinese-qmc-domain-v1” to index documents (one document object per line); Push inverted (vector) and forward (document field) data to each component server. The following is an example of the database data format. After offline database construction is completed, various data are pushed to corresponding service components, such as Milvus storing vector representation of documents and MongoDB storing summary information of documents. Online retrieval algorithm services will use these service components to obtain relevant data. 1.1.2 Search by text Text and images are easy for humans to relate semantically but difficult for machines. First of all, from the perspective of data form, the text is the discrete ID type of one-dimensional data based on words and words. At the same time, images are continuous two-dimensional or three-dimensional data. Secondly, the text is a subjective creation of human beings, and its expressive ability is vibrant, including various turning points, metaphors, and other expressions, while images are machine representations of the objective world. In short, bridging the semantic gap between text and image data is much more complex than searching text by text. The traditional text search image retrieval technology generally relies on the external text description data of the image or the nearest neighbor retrieval technology and carries out the retrieval through the image associated text, which in essence degrades the problem to text search. However, it will also face many issues, such as obtaining the associated text of pictures and whether the accuracy of text search by text is high enough. The depth model has gradually evolved from single-mode to multi-mode in recent years. Taking the open-source project of OpenAI, CLIP, as an example, train the model through the massive image and text data of the Internet and map the text and image data into the same semantic space, making it possible to implement the text and image search technology based on semantic vector. CLIP graphic model The text search pictures introduced in this paper are implemented based on semantic vector retrieval, and the CLIP pre-training model is used as the two-tower retrieval architecture. Because the CLIP model has trained the semantic alignment of the twin towers’ text and image side models on the massive graphic and text data, it is particularly suitable for the text search graph scene. Due to the different image and text data forms, the Query-Doc asymmetric twin towers model is used for text search image retrieval. The image-side model of the twin towers is used for offline database construction, and the text-side model is used for the online return. In the final online retrieval, the database data of the image side model will be searched after the text side model encodes Query, and the CLIP pre-training model guarantees the semantic correlation between images and texts. The model can draw the graphic pairs closer in vector space by pre-training on a large amount of visual data. Here we need to export the text-side model for online MetaSpore Serving inference. Since the retrieval scene is based on Chinese, the CLIP model supporting Chinese understanding is selected. The exported content includes the ONNX model used for online reasoning and Tokenizer, similar to the text search. MetaSpore Serving can load model reasoning through the exported content. Build library on Image search You need to download the Unsplash Lite library data and complete the construction according to the instructions. The whole process of database construction is described as follows: Preprocessing, specify the image directory, and then generate a more general JSOnline file for library construction; Build index, use OpenAI/Clip-Vit-BASE-Patch32 pre-training model to index the gallery, and output one document object for each line of index data; Push inverted (vector) and forward (document field) data to each component server. Like text search, after offline database construction, relevant data will be pushed to service components, called by online retrieval algorithm services to obtain relevant data. 1.2 Online Services The overall online service architecture diagram is as follows: https://preview.redd.it/jfsl8hdfez291.png?width=1280&format=png&auto=webp&s=a858e2304a0c93e78ba5429612ca08cbee69b35a Multi-mode search online service system supports application scenarios such as text search and text search. The whole online service consists of the following parts: Query preprocessing service: encapsulate preprocessing logic (including text/image, etc.) of pre-training model, and provide services through gRPC interface; Retrieval algorithm service: the whole algorithm processing link includes AB experiment tangent flow configuration, MetaSpore Serving call, vector recall, sorting, document summary, etc.; User entry service: provides a Web UI interface for users to debug and track down problems in the retrieval service. From a user request perspective, these services form invocation dependencies from back to front, so to build up a multimodal sample, you need to run each service from front to back first. Before doing this, remember to export the offline model, put it online and build the library first. This article will introduce the various parts of the online service system and make the whole service system step by step according to the following guidance. See the ReadME at the end of this article for more details. 1.2.1 Query preprocessing service Deep learning models tend to be based on tensors, but NLP/CV models often have a preprocessing part that translates raw text and images into tensors that deep learning models can accept. For example, NLP class models often have a pre-tokenizer to transform text data of string type into discrete tensor data. CV class models also have similar processing logic to complete the cropping, scaling, transformation, and other processing of input images through preprocessing. On the one hand, considering that this part of preprocessing logic is decoupled from tensor reasoning of the depth model, on the other hand, the reason of the depth model has an independent technical system based on ONNX, so MetaSpore disassembled this part of preprocessing logic. NLP pretreatment Tokenizer has been integrated into the Query pretreatment service. MetaSpore dismantlement with a relatively general convention. Users only need to provide preprocessing logic files to realize the loading and prediction interface and export the necessary data and configuration files loaded into the preprocessing service. Subsequent CV preprocessing logic will also be integrated in this manner. The preprocessing service currently provides the gRPC interface invocation externally and is dependent on the Query preprocessing (QP) module in the retrieval algorithm service. After the user request reaches the retrieval algorithm service, it will be forwarded to the service to complete the data preprocessing and continue the subsequent processing. The ReadMe provides details on how the preprocessing service is started, how the preprocessing model exported offline to cloud storage enters the service, and how to debug the service. To further improve the efficiency and stability of model reasoning, MetaSpore Serving implements a Python preprocessing submodule. So MetaSpore can provide gRPC services through user-specified preprocessor.py, complete Tokenizer or CV-related preprocessing in NLP, and translate requests into a Tensor that deep models can handle. Finally, the model inference is carried out by MetaSpore, Serving subsequent sub-modules. Presented here on the lot code: https://github.com/meta-soul/MetaSpore/compare/add\python\preprocessor 1.2.2 Retrieval algorithm services Retrieval algorithm service is the core of the whole online service system, which is responsible for the triage of experiments, the assembly of algorithm chains such as preprocessing, recall, sorting, and the invocation of dependent component services. The whole retrieval algorithm service is developed based on the Java Spring framework and supports multi-mode retrieval scenarios of text search and text search graph. Due to good internal abstraction and modular design, it has high flexibility and can be migrated to similar application scenarios at a low cost. Here’s a quick guide to configuring the environment to set up the retrieval algorithm service. See ReadME for more details: Install dependent components. Use Maven to install the online-Serving component Search for service configurations. Copy the template configuration file and replace the MongoDB, Milvus, and other configurations based on the development/production environment. Install and configure Consul. Consul allows you to synchronize the search service configuration in real-time, including cutting the flow of experiments, recall parameters, and sorting parameters. The project’s configuration file shows the current configuration parameters of text search and text search. The parameter modelName in the stage of pretreatment and recall is the corresponding model exported in offline processing. Start the service. Once the above configuration is complete, the retrieval service can be started from the entry script. Once the service is started, you can test it! For example, for a user with userId=10 who wants to query “How to renew ID card,” access the text search service. 1.2.3 User Entry Service Considering that the retrieval algorithm service is in the form of the API interface, it is difficult to locate and trace the problem, especially for the text search image scene can intuitively display the retrieval results to facilitate the iterative optimization of the retrieval algorithm. This paper provides a lightweight Web UI interface for text search and image search, a search input box, and results in a display page for users. Developed by Flask, the service can be easily integrated with other retrieval applications. The service calls the retrieval algorithm service and displays the returned results on the page. It’s also easy to install and start the service. Once you’re done, go to http://127.0.0.1:8090 to see if the search UI service is working correctly. See the ReadME at the end of this article for details. Multimodal system demonstration The multimodal retrieval service can be started when offline processing and online service environment configuration have been completed following the above instructions. Examples of textual searches are shown below. Enter the entry of the text search map application, enter “cat” first, and you can see that the first three digits of the returned result are cats: https://preview.redd.it/0n5nuyvhez291.png?width=1280&format=png&auto=webp&s=1e9c054f541d53381674b8d6001b4bf524506bd2 If you add a color constraint to “cat” to retrieve “black cat,” you can see that it does return a black cat: https://preview.redd.it/rzc0qjyjez291.png?width=1280&format=png&auto=webp&s=d5bcc503ef0fb3360c7740e60e295cf372dcad47 Further, strengthen the constraint on the search term, change it to “black cat on the bed,” and return results containing pictures of a black cat climbing on the bed: ​ https://preview.redd.it/c4b2q8olez291.png?width=1280&format=png&auto=webp&s=4f3817b0b9f07e1e68d1d4a8281702ba3834a00a The cat can still be found through the text search system after the color and scene modification in the above example. Conclusion The cutting-edge pre-training technology can bridge the semantic gap between different modes, and the HuggingFace community can greatly reduce the cost for developers to use the pre-training model. Combined with the technological ecology of MetaSpore online reasoning and online microservices provided by DMetaSpore, the pre-training model is no longer mere offline dabbling. Instead, it can truly achieve end-to-end implementation from cutting-edge technology to industrial scenarios, fully releasing the dividends of the pre-training large model. In the future, DMetaSoul will continue to improve and optimize the MetaSpore technology ecosystem: More automated and wider access to HuggingFace community ecology. MetaSpore will soon release a common model rollout mechanism to make HuggingFace ecologically accessible and will later integrate preprocessing services into online services. Multi-mode retrieval offline algorithm optimization. For multimodal retrieval scenarios, MetaSpore will continuously iteratively optimize offline algorithm components, including text recall/sort model, graphic recall/sort model, etc., to improve the accuracy and efficiency of the retrieval algorithm. For related code and reference documentation in this article, please visit: https://github.com/meta-soul/MetaSpore/tree/main/demo/multimodal/online Some images source: https://github.com/openai/CLIP/raw/main/CLIP.png https://www.sbert.net/examples/training/sts/README.html

[P] I built an open SotA image tagging model to do what CLIP won't
reddit
LLM Vibe Score0
Human Vibe Score1
fpgaminerThis week

[P] I built an open SotA image tagging model to do what CLIP won't

I'm a hobbyist ML researcher and finally, after a year of work, built a state of the art machine vision model from scratch. It's ViT-B/16 based, 448x448x3 input, 91M parameters, trained for 660M samples, with multi-label classification as the target task, on over 5000 unique tags. All the big foundation vision models today were trained on heavily filtered datasets, greatly limiting the concepts they can represent, in line with arbitrary sets of rules for what is deemed "wholesome" by leading tech companies. Everything from innocuous to spicy is on the chopping block of those filters. And because CLIP pervades the industry, from StableDiffusion to LLaVA, so does OpenAI's sensibilities. My goal was to build a vision model for tagging images, mainly for labelling images for SD finetunes, but which wasn't as heavily filtered and handicapped as CLIP/BLIP/LLaVA. Something more inclusive, diverse, and sex positive. Starting from the wonderful work of SmilingWolf (https://github.com/SmilingWolf/SW-CV-ModelZoo) and the Danbooru2021 dataset, I iterated for a year on the model, training, and manually labeling a thousand images to help the model generalize beyond the danbooru domain. I'm releasing the first version of this model, dubbed JoyTag, today: https://github.com/fpgaminer/joytag It achieves a mean F1 score of 0.578 across all of its over 5000 tags and across both the anime/manga styled images of the original danbooru dataset, but also photographs and other mediums thanks to the auxiliary training data I provided to it. It was quite the struggle getting to this point, and I probably spent more time and money than any sane person should have. I learned a lot about dealing with datasets as large as danbooru2021, training models at scale, and how to keep yourself awake all night so your 8xA100 rental doesn't crash and blow all your money. In my manual testing outside of even the validation set, the model has generalized well to unseen images, so I'm quite happy with the results thus far. There's plenty more work to do expanding its dataset to improve that F1 score further, and roundout its weak points. With inclusivity and diversity being a major goal of this project, I'm disappointed by some of its remaining limitations (as documented in the GitHub README). But I'm already busy manually tagging more images using my model-augmented workflow. I'm happy to answer questions about the project, the training procedure, anything. All the training parameters are documented on GitHub, but there are so many little details that were hard won over the year. Like that damned loss multiplier. Ugh. Github: https://github.com/fpgaminer/joytag Model download: https://huggingface.co/fancyfeast/joytag/tree/main Demo: https://huggingface.co/spaces/fancyfeast/joytag

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup
reddit
LLM Vibe Score0
Human Vibe Score0.667
milaworldThis week

[N] How Stability AI’s Founder Tanked His Billion-Dollar Startup

forbes article: https://www.forbes.com/sites/kenrickcai/2024/03/29/how-stability-ais-founder-tanked-his-billion-dollar-startup/ archive no paywall: https://archive.is/snbeV How Stability AI’s Founder Tanked His Billion-Dollar Startup Mar 29, 2024 Stability AI founder Emad Mostaque took the stage last week at the Terranea Resort in Palos Verdes, California to roaring applause and an introduction from an AI-generated Aristotle who announced him as “a modern Prometheus” with “the astuteness of Athena and the vision of Daedalus.” “Under his stewardship, AI becomes the Herculean force poised to vanquish the twin serpents of illness and ailment and extend the olive branch of longevity,” the faux Aristotle proclaimed. “I think that’s the best intro I’ve ever had,” Mostaque said. But behind Mostaque's hagiographic introduction lay a grim and fast metastasizing truth. Stability, once one of AI’s buzziest startups, was floundering. It had been running out of money for months and Mostaque had been unable to secure enough additional funding. It had defaulted on payments to Amazon whose cloud service undergirded Stability’s core offerings. The star research team behind its flagship text-to-image generator Stable Diffusion had tendered their resignations just three days before — as Forbes would first report — and other senior leaders had issued him an ultimatum: resign, or we walk too. Still, onstage before a massive audience of peers and acolytes, Mostaque talked a big game. “AI is jet planes for the mind,” he opined. “AI is our collective intelligence. It's the human Colossus.” He claimed a new, faster version of the Stable Diffusion image generator released earlier this month could generate “200 cats with hats per second.” But later, when he was asked about Stability’s financial model, Mostaque fumbled. “I can’t say that publicly,” he replied. “But it’s going well. We’re ahead of forecast.” Four days later, Mostaque stepped down as CEO of Stability, as Forbes first reported. In a post to X, the service formerly known as Twitter, he claimed he’d voluntarily abdicated his role to decentralize “the concentration of power in AI.” But sources told Forbes that was hardly the case. Behind the scenes, Mostaque had fought to maintain his position and control despite mounting pressure externally and internally to step down. Company documents and interviews with 32 current and former employees, investors, collaborators and industry observers suggest his abrupt exit was the result of poor business judgment and wild overspending that undermined confidence in his vision and leadership, and ultimately kneecapped the company. Mostaque, through his attorneys, declined to comment on record on a detailed list of questions about the reporting in this story. But in an email to Forbes earlier this week he broadly disputed the allegations. “Nobody tells you how hard it is to be a CEO and there are better CEOs than me to scale a business,” he said in a statement. “I am not sure anyone else would have been able to build and grow the research team to build the best and most widely used models out there and I’m very proud of the team there. I look forward to moving onto the next problem to handle and hopefully move the needle.” In an emailed statement, Christian Laforte and Shan Shan Wong, the interim co-CEOs who replaced Mostaque, said, "the company remains focused on commercializing its world leading technology” and providing it “to partners across the creative industries." After starting Stability in 2019, Mostaque built the company into an early AI juggernaut by seizing upon a promising research project that would become Stable Diffusion and funding it into a business reality. The ease with which the software generated detailed images from the simplest text prompts immediately captivated the public: 10 million people used it on any given day, the company told Forbes in early 2023. For some true believers, Mostaque was a crucial advocate for open-source AI development in a space dominated by the closed systems of OpenAI, Google and Anthropic. But his startup’s rise to one of the buzziest in generative AI was in part built on a series of exaggerations and misleading claims, as Forbes first reported last year (Mostaque disputed some points at the time). And they continued after he raised $100 million at a $1 billion valuation just days after launching Stable Diffusion in 2022. His failure to deliver on an array of grand promises, like building bespoke AI models for nation states, and his decision to pour tens of millions into research without a sustainable business plan, eroded Stability’s foundations and jeopardized its future. "He was just giving shit away,” one former employee told Forbes. “That man legitimately wanted to transform the world. He actually wanted to train AI models for kids in Malawi. Was it practical? Absolutely not." By October 2023, Stability would have less than $4 million left in the bank, according to an internal memo prepared for a board meeting and reviewed by Forbes. And mounting debt, including months of overdue Amazon Web Services payments, had already left it in the red. To avoid legal penalties for skipping Americans staff’s payroll, the document explained, the London-based startup was considering delaying tax payments to the U.K. government. It was Stability’s armada of GPUs, the wildly powerful and equally expensive chips undergirding AI, that were so taxing the company’s finances. Hosted by AWS, they had long been one of Mostaque’s bragging points; he often touted them as one of the world’s 10 largest supercomputers. They were responsible for helping Stability’s researchers build and maintain one of the top AI image generators, as well as break important new ground on generative audio, video and 3D models. “Undeniably, Stability has continued to ship a lot of models,” said one former employee. “They may not have profited off of it, but the broader ecosystem benefitted in a huge, huge way.” But the costs associated with so much compute were now threatening to sink the company. According to an internal October financial forecast seen by Forbes, Stability was on track to spend $99 million on compute in 2023. It noted as well that Stability was “underpaying AWS bills for July (by $1M)” and “not planning to pay AWS at the end of October for August usage ($7M).” Then there were the September and October bills, plus $1 million owed to Google Cloud and $600,000 to GPU cloud data center CoreWeave. (Amazon, Google and CoreWeave declined to comment.) With an additional $54 million allocated to wages and operating expenses, Stability’s total projected costs for 2023 were $153 million. But according to its October financial report, its projected revenue for the calendar year was just $11 million. Stability was on track to lose more money per month than it made in an entire year. The company’s dire financial position had thoroughly soured Stability’s current investors, including Coatue, which had invested tens of millions in the company during its $101 million funding round in 2022. In the middle of 2023, Mostaque agreed to an independent audit after Coatue raised a series of concerns, according to a source with direct knowledge of the matter. The outcome of the investigation is unclear. Coatue declined to comment. Within a week of an early October board meeting where Mostaque shared that financial forecast, Lightspeed Venture Partners, another major investor, sent a letter to the board urging them to sell the company. The distressing numbers had “severely undermined” the firm’s confidence in Mostaque’s ability to lead the company. “In particular, we are surprised and deeply concerned by a cash position just now disclosed to us that is inconsistent with prior discussions on this topic,” Lightspeed’s general counsel Brett Nissenberg wrote in the letter, a copy of which was viewed by Forbes. “Lightspeed believes that the company is not likely financeable on terms that would assure the company’s long term sound financial position.” (Lightspeed declined a request for comment.) The calls for a sale led Stability to quietly begin looking for a buyer. Bloomberg reported in November that Stability approached AI startups Cohere and Jasper to gauge their interest. Stability denied this, and Jasper CEO Timothy Young did the same when reached for comment by Forbes. A Cohere representative declined to comment. But one prominent AI company confirmed that Mostaque’s representatives had reached out to them to test the waters. Those talks did not advance because “the numbers didn’t add up,” this person, who declined to be named due to the confidential nature of the talks, told Forbes. Stability also tried to court Samsung as a buyer, going so far as to redecorate its office in advance of a planned meeting with the Korean electronics giant. (Samsung said that it invested in Stability in 2023 and that it does not comment on M&A discussions.) Coatue had been calling for Mostaque’s resignation for months, according to a source with direct knowledge. But it and other investors were unable to oust him because he was the company’s majority shareholder. When they tried a different tact by rallying other investors to offer him a juicy equity package to resign, Mostaque refused, said two sources. By October, Coatue and Lightspeed had had enough. Coatue left the board and Lightspeed resigned its observer seat. “Emad infuriated our initial investors so much it’s just making it impossible for us to raise more money under acceptable terms,” one current Stability executive told Forbes. The early months of 2024 saw Stability’s already precarious position eroding further still. Employees were quietly laid off. Three people in a position to know estimated that at least 10% of staff were cut. And cash reserves continued to dwindle. Mostaque mentioned a lifeline at the October board meeting: $95 million in tentative funding from new investors, pending due diligence. But in the end, only a fraction of it was wired, two sources say, much of it from Intel, which Forbes has learned invested $20 million, a fraction of what was reported. (Intel did not return a request for comment by publication time.) Two hours after Forbes broke the news of Mostaque’s plans to step down as CEO, Stability issued a press release confirming his resignation. Chief operating officer Wong and chief technology officer Laforte have taken over in the interim. Mostaque, who said on X that he still owns a majority of the company, also stepped down from the board, which has now initiated a search for a permanent CEO. There is a lot of work to be done to turn things around, and very little time in which to do it. Said the current Stability executive, “There’s still a possibility of a turnaround story, but the odds drop by the day.” In July of 2023, Mostaque still thought he could pull it off. Halfway through the month, he shared a fundraising plan with his lieutenants. It was wildly optimistic, detailing the raise of $500 million in cash and another $750 million in computing facilities from marquee investors like Nvidia, Google, Intel and the World Bank (Nvidia and Google declined comment. Intel did not respond. The World Bank said it did not invest in Stability). In a Slack message reviewed by Forbes, Mostaque said Google was “willing to move fast” and the round was “likely to be oversubscribed.” It wasn’t. Three people with direct knowledge of these fundraising efforts told Forbes that while there was some interest in Stability, talks often stalled when it came time to disclose financials. Two of them noted that earlier in the year, Mostaque had simply stopped engaging with VCs who asked for numbers. Only one firm invested around that time: actor Ashton Kutcher’s Sound Ventures, which invested $35 million in the form of a convertible SAFE note during the second quarter, according to an internal document. (Sound Ventures did not respond to a request for comment.) And though he’d managed to score a meeting with Nvidia and its CEO Jensen Huang, it ended in disaster, according to two sources. “Under Jensen's microscopic questions, Emad just fell apart,” a source in position to know told Forbes. Huang quickly concluded Stability wasn’t ready for an investment from Nvidia, the sources said. Mostaque told Forbes in an email that he had not met with Huang since 2022, except to say “hello and what’s up a few times after.” His July 2023 message references a plan to raise $150 million from Nvidia. (Nvidia declined to comment.) After a June Forbes investigation citing more than 30 sources revealed Mostaque’s history of misleading claims, Mostaque struggled to raise funding, a Stability investor told Forbes. (Mostaque disputed the story at the time and called it "coordinated lies" in his email this week to Forbes). Increasingly, investors scrutinized his assertions and pressed for data. And Young, now the CEO of Jasper, turned down a verbal offer to be Stability’s president after reading the article, according to a source with direct knowledge of the matter. The collapse of the talks aggravated the board and other executives, who had hoped Young would compensate for the sales and business management skills that Mostaque lacked, according to four people in a position to know. (Young declined to comment.) When Stability’s senior leadership convened in London for the CogX conference in September, the financing had still not closed. There, a group of executives confronted Mostaque asking questions about the company’s cash position and runway, according to three people with direct knowledge of the incident. They did not get the clarity they’d hoped for. By October, Mostaque had reduced his fundraising target by more than 80%. The months that followed saw a steady drumbeat of departures — general counsel Adam Avrunin, vice presidents Mike Melnicki, Ed Newton-Rex and Joe Penna, chief people officer Ozden Onder — culminating in the demoralizing March exit of Stable Diffusion’s primary developers Robin Rombach, Andreas Blattmann, Patrick Esser and Dominik Lorenz. Rombach, who led the team, had been angling to leave for months, two sources said, first threatening to resign last summer because of the fundraising failures. Others left over concerns about cash flow, as well as liabilities — including what four people described as Mostaque’s lax approach to ensuring that Stability products could not be used to produce child sexual abuse imagery. “Stability AI is committed to preventing the misuse of AI and prohibits the use of our image models and services for unlawful activity, including attempts to edit or create CSAM,” Ella Irwin, senior vice president of integrity, said in a statement. Newton-Rex told Forbes he resigned because he disagreed with Stability’s position that training AI on copyrighted work without consent is fair use. Melnicki and Penna declined to comment. Avrunin and Onder could not be reached for comment. None of the researchers responded to requests for comment. The Stable Diffusion researchers’ departure as a cohort says a lot about the state of Stability AI. The company’s researchers were widely viewed as its crown jewels, their work subsidized with a firehose of pricey compute power that was even extended to people outside the company. Martino Russi, an artificial intelligence researcher, told Forbes that though he was never formally employed by Stability, the company provided him a “staggering” amount of compute between January and April 2023 to play around with developing an AI video generator that Stability might someday use. “It was Candy Land or Coney Island,” said Russi, who estimates that his experiment, which was ultimately shelved, cost the company $2.5 million. Stable Diffusion was simultaneously Stability’s marquee product and its existential cash crisis. One current employee described it to Forbes as “a giant vacuum that absorbed everything: money, compute, people.” While the software was widely used, with Mostaque claiming downloads reaching into the hundreds of millions, Stability struggled to translate that wild success into revenue. Mostaque knew it could be done — peers at Databricks, Elastic and MongoDB had all turned a free product into a lucrative business — he just couldn’t figure out how. His first attempt was Stability’s API, which allowed paying customers to integrate Stable Diffusion into their own products. In early 2023, a handful of small companies, like art generator app NightCafe and presentation software startup Tome, signed on, according to four people with knowledge of the deals. But Stability’s poor account management services soured many, and in a matter of months NightCafe and Tome canceled their contracts, three people said. NightCafe founder Angus Russell told Forbes that his company switched to a competitor which “offered much cheaper inference costs and a broader service.” Tome did not respond to a request for comment. Meanwhile, Mostaque’s efforts to court larger companies like Samsung and Snapchat were failing, according to five people familiar with the effort. Canva, which was already one of the heaviest users of open-sourced Stable Diffusion, had multiple discussions with Stability, which was angling for a contract it hoped would generate several millions in annual revenue. But the deal never materialized, four sources said. “These three companies wanted and needed us,” one former employee told Forbes. “They would have been the perfect customers.” (Samsung, Snap and Canva declined to comment.) “It’s not that there was not an appetite to pay Stability — there were tons of companies that would have that wanted to,” the former employee said. “There was a huge opportunity and demand, but just a resistance to execution.” Mostaque’s other big idea was to provide governments with bespoke national AI models that would invigorate their economies and citizenry. “Emad envisions a world where AI through 100 national models serves not as a tool of the few, but as a benefactor to all promising to confront great adversaries, cancer, autism, and the sands of time itself,” the AI avatar of Aristotle said in his intro at the conference. Mostaque told several prospective customers that he could deliver such models within 60 days — an untenable timeline, according to two people in position to know. Stability attempted to develop a model for the Singaporean government over the protestation of employees who questioned its technical feasibility, three sources familiar with the effort told Forbes. But it couldn’t pull it off and Singapore never became a customer. (The government of Singapore confirmed it did not enter into a deal with Stability, but declined to answer additional questions.) As Stability careened from one new business idea to another, resources were abruptly reallocated and researchers reassigned. The whiplash shifts in a largely siloed organization demoralized and infuriated employees. “There were ‘urgent’ things, ‘urgent urgent’ things and ‘most urgent,’” one former employee complained. “None of these things seem important if everything is important.” Another former Stability executive was far more pointed in their assessment. “Emad is the most disorganized leader I have ever worked with in my career,” this person told Forbes. “He has no vision, and changes directions every week, often based on what he sees on Twitter.” In a video interview posted shortly before this story was published, Mostaque explained his leadership style: “I'm particularly great at taking creatives, developers, researchers, others, and achieving their full potential in designing systems. But I should not be dealing with, you know, HR and operations and business development and other elements. There are far better people than me to do that.” By December 2023, Stability had partially abandoned its open-source roots and announced that any commercial use of Stable Diffusion would cost customers at least $20 per month (non-commercial and research use of Stable Diffusion would remain free). But privately, Stability was considering a potentially more lucrative source of revenue: reselling the compute it was leasing from providers like AWS, according to six people familiar with the effort. Though it was essentially GPU arbitrage, Stability framed the strategy to investors as a “managed services” offering. Its damning October financial report projected optimistically that such an offering would bring in $139 million in 2024 — 98% of its revenue. Multiple employees at the time told Forbes they feared reselling compute, even if the company called it “managed services,” would violate the terms of Stability’s contract with AWS. Amazon declined to comment. “The line internally was that we are not reselling compute,” one former employee said. “This was some of the dirtiest feeling stuff.” Stability also discussed reselling a cluster of Nvidia A100 chips, leased via CoreWeave, to the venture capital firm Andreessen Horowitz, three sources said. “It was under the guise of managed services, but there wasn’t any management happening,” one of these people told Forbes. Andreessen Horowitz and CoreWeave declined to comment. Stability did not respond to questions about if it plans to continue this strategy now that Mostaque is out of the picture. Regardless, interim co-CEOs Wong and Laforte are on a tight timeline to clean up his mess. Board chairman Jim O’Shaughnessy said in a statement that he was confident the pair “will adeptly steer the company forward in developing and commercializing industry-leading generative AI products.” But burn continues to far outpace revenue. The Financial Times reported Friday that the company made $5.4 million of revenue in February, against $8 million in costs. Several sources said there are ongoing concerns about making payroll for the roughly 150 remaining employees. Leadership roles have gone vacant for months amid the disarray, leaving the company increasingly directionless. Meanwhile, a potentially catastrophic legal threat looms over the company: A trio of copyright infringement lawsuits brought by Getty Images and a group of artists in the U.S. and U.K., who claim Stability illegally used their art and photography to train the AI models powering Stable Diffusion. A London-based court has already rejected the company’s bid to throw out one of the lawsuits on the basis that none of its researchers were based in the U.K. And Stability’s claim that Getty’s Delaware lawsuit should be blocked because it's a U.K.-based company was rejected. (Stability did not respond to questions about the litigation.) AI-related copyright litigation “could go on for years,” according to Eric Goldman, a law professor at Santa Clara University. He told Forbes that though plaintiffs suing AI firms face an uphill battle overcoming the existing legal precedent on copyright infringement, the quantity of arguments available to make are virtually inexhaustible. “Like in military theory, if there’s a gap in your lines, that’s where the enemy pours through — if any one of those arguments succeeds, it could completely change the generative AI environment,” he said. “In some sense, generative AI as an industry has to win everything.” Stability, which had more than $100 million in the bank just a year and a half ago, is in a deep hole. Not only does it need more funding, it needs a viable business model — or a buyer with the vision and chops to make it successful in a fast-moving and highly competitive sector. At an all hands meeting this past Monday, Stability’s new leaders detailed a path forward. One point of emphasis: a plan to better manage resources and expenses, according to one person in attendance. It’s a start, but Mostaque’s meddling has left them with little runway to execute. His resignation, though, has given some employees hope. “A few people are 100% going to reconsider leaving after today,” said one current employee. “And the weird gloomy aura of hearing Emad talking nonsense for an hour is gone.” Shortly before Mostaque resigned, one current Stability executive told Forbes that they were optimistic his departure could make Stability appealing enough to receive a small investment or sale to a friendly party. “There are companies that have raised hundreds of millions of dollars that have much less intrinsic value than Stability,” the person said. “A white knight may still appear.”

How I Reduced 🔽Product Development time by 50% & increased 🔼Revenue multi-folds by incorporating No-Code, Low Code & AI tools in our software development workflow
reddit
LLM Vibe Score0
Human Vibe Score1
nikhil_webfostersThis week

How I Reduced 🔽Product Development time by 50% & increased 🔼Revenue multi-folds by incorporating No-Code, Low Code & AI tools in our software development workflow

I run a web development agency, providing SaaS & bespoke Management systems development. Over the years we almost 🔽reduced the software development time by 50% ... ...and increased our revenue. Simultaneously clients are much happier as they get the product quicker. Here is how we achieved it: 1/ Using Low-Code: ➡️ Provide a visual way to software development. ➡️ I just need to build the logic using the interface, check the preview multiple times to refine features, and then download or push the code to GitHub. The benefits are obvious: ⚡ Much faster compared to writing codes 🔄 Iteration & improvements done quickly. 🚀 Idea to basic tiny MVP within few hours. 🧩 Non-developers can build the initial prototype ✅We use https://quickadminpanel.com/ to quickly build admin panel. It provides CRUD, Authentication, Authorisation, API, Model, View, and Controller in PHP Laravel frameworks. ​ 2/ Using AI: Once adminpanel is ready, customers get to see something tangible from his idea. It also uncovers many unseen features, benefits, and roadblocks for us & customers. No-code tools already did a lot of work for us, now we improve the logic where required, build new interfaces, and do integrations. With chatGPT as a development companion, it makes the entire development and design superfast. by helping to build logic quickly, automate mundane tasks, and overcome any roadblocks. ​ Some of our common use cases are: ➡️ Writing PRD ➡️ Brand Guidelines - Color pallet selection, Fonts, images, etc based on targetted niche. ➡️ Designing new component ➡️ Logic building & solving ➡️ Automated Recurring tasks ✅ We use a combination of chatGPT & Github Copilot for AI Assistance. ​ 3/ Using No-Code: ➡️ Allows to quickly build without writing code. ➡️ Provides complete end-to-end solution (application hosting, database hosting, API integrations, etc) ➡️ Unlike Low-code it doesn't provide an option to download code. ✅ Once the MVP is done, we use FormNX to quickly build various types of forms required, like contact forms, Survey forms, initial waiting list forms, Churn Survey forms, Webinar registration & much more. With this customers can build/change forms, embed them in cms, or share them on social media without relying on developers. \\\\\* Doing these 3 has truly helped our agency, leading to substantial time savings, revenue growth, and improved client satisfaction. If you’re an agency owner, i highly recommend doing it to supercharge your agency's growth. If any questions feel free to comment below, happy to help.

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || ​ Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| ​ What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites ​ Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. ​ Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

10 Side Projects in 10 Years: Lessons from Failures and a $700 Exit
reddit
LLM Vibe Score0
Human Vibe Score1
TheValueProviderThis week

10 Side Projects in 10 Years: Lessons from Failures and a $700 Exit

Hey folks, I'm sharing my journey so far in case it can help others. Entrepreneurship can sometimes be demotivating. In my case, I've always been involved in side projects and what I've realized is that every time you crash a project, the next one makes it a bit further. So this is a long-term game and consistency ends up paying off The $1 Android Game (2015, age 18) What Happened: 500 downloads, 1€ in ad revenue Ugly UI, performance issues Key Lessons: Don’t be afraid of launching. Delaying for “perfection” is often a sign that you fear being ignored. I was trying to perfect every aspect of the game. In reality, I was delaying the launch because I feared no one would download the app. Commit to the project or kill it. At some point, this project was no longer fun (it was just about fixing device responsiveness). Most importantly, I wasn't learning anything new so I moved to smth else. The Forex Bot Regret (2016, age 19) What Happened: Lost months identifying inexistent chart patterns Created a Trading bot that was never profitable Key Lessons: Day trading’s real winners are usually brokers. There are plenty of guys selling a bot or systems that are not making money trading, why would they sell a “money-printing machine” otherwise... Develop an unfair advantage. With these projects, I developed a strong coding foundation that gave me an edge when dealing with non-technical business people. Invest countless hours to create a skills gap between you and others, one that becomes increasingly difficult for them to close (coding, public speaking, networking, etc.) The $700 Instagram Exit (2018, age 21) What Happened: Grew a motivational account to 60k followers Sold it for $700 90% of followers were in low-income countries (hard to monetize) Key Lessons: Follower quality > quantity. I focused on growth and ended up with an audience I couldn’t truly define. If brands don’t see value, you won’t generate revenue. Also, if you do not know who you are creating content for, you'll end up demotivated and stop posting. Great 3rd party product + domain authority = Affiliate marketing works. In this case, I could easily promote an IG growing service because my 50k+ followers conveyed trust. Most importantly, the service I was promoting worked amazingly. The Illegal Amazon Review Marketplace (2020, age 23) What Happened: Sellers were reimbursing buyers for positive reviews Built a WordPress marketplace to facilitate “free products for reviews” Realized it violated Amazon’s terms Key Lessons: Check for “red flags” when doing idea assessment. There will always be red and orange flags. It’s about learning to differentiate between them (e.g. illegality, 100% dependence on a platform, etc.) If there’s competition, it’s good, if they are making money it’s even better. I was thrilled when I saw no competition for my “unique idea”. Later, I discovered the obvious reason. Copying a “Proven” Business Model (2020, age 23) What Happened: Tried recreating an Instagram “comment for comment” growth tool Instagram changed the algorithm and killed the growth strategy that the product used. Key Lessons: Do not build a business that depends 100% on another business, it is too risky. Mr. Musk can increase Twitter on API pricing to $42,000 monthly without notice and Tik Tok can be banned in the US. Due to the IG algorithm change, we had built a product that was not useful, and worse, now we had no idea how to grow an IG account. Consider future project synergies before selling. I regret having sold the 60k follower IG account since it could have saved me a lot of time when convincing users to try the service. NFT Marathon Medals (2021, age 24) What Happened: Created NFT race medals Sold 20 for 5€ each, but spent 95% of meetings explaining “what is an NFT?” Key Lessons: Market timing is crucial. As with every new technology, it is only useful as long as society is ready to adopt it. No matter how promising the tech is in the eyes of SV, society will end up dictating its success (blockchain, AI, etc). In this case, the runner community was not ready to adopt blockchain (it is not even prepared today). Race organizers did not know what they were selling, and runners did not know what they were buying. The 30-day rule in Fanatical Prospecting. Do not stop prospecting. I did prospecting and closed deals 3 months after the outbound efforts. Then I was busy executing the projects and had no clients once the projects were finished. AI Portal & Co-Founder Misalignment (2023, age 26) What Happened: Built a portal for SMEs to find AI use cases Co-founders disagreed on vision and execution Platform still gets \~1 new user/day Key Lessons: Define roles and equity clearly. Our biggest strength ended up killing us. Both founders had strong strategic skills and we were constantly arguing about decisions. NextJS + Vercel + Supabase: Great stack to create a SaaS MVP. (but do not use AI with frameworks unless you know how they work conceptually) SEO is king. One of our users creates a use case on “Changing Song Lyrics with AI.” Not being our target use case, it brings 90% of our traffic. Building an AI Tool & Getting Ghosted (2024, age 27) What Happened: SEO agency wanted to automate rewriting product descriptions Built it in 3 weeks, but the client vanished Key Lessons: Validate manually first. Don’t code a full-blown solution for a problem you haven’t tested in real-world workflows. I kept rewriting code only to throw it away. Jumping straight into building a solution ended up costing more time than it saved. Use templates, no-code, and open-source for prototyping. In my case, using a Next.js template saved me about four weeks of development only to hit the same dead end, but much faster. Fall in love with your ICP or walk away. I realized I didn’t enjoy working with SEO agencies. Looking back, I should have been honest with myself and admitted that I wasn’t motivated enough by this type of customer. Ignoring Code Perfection Doubled Traffic (2025, age 28) What Happened: Partnered with an ex-colleague to build an AI agents directory Focused on content & marketing, not endless bug fixes Traffic soared organically Key Lessons: Measure the impact of your actions and double down on what works. We set up an analytics system with PostHog and found wild imbalances (e.g. 1 post about frameworks outperformed 20 promotional posts). You have to start somewhere. For us, the AI agents directory is much more than just a standalone site, it's a strategic project that will allow us to discover new products, gain domain authority, and boost other projects. It builds the path for bigger opportunities. Less coding, more traction. Every day I have to fight against myself not to code “indispensable features”. Surprisingly, the directory keeps gaining consistent traffic despite being far from perfect Quitting My Job & Looking Ahead (2025, age 28) What Happened: Left full-time work to go all-in Plan to build vertical AI agents that handle entire business workflows (support, marketing, sales) Key Lessons: Bet on yourself. The opportunity cost of staying in my full-time job outweighed the benefits. It might be your case too I hope this post helps anyone struggling with their project and inspires those considering quitting their full-time job to take the leap with confidence.

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.
reddit
LLM Vibe Score0
Human Vibe Score1
dams96This week

Made $19.2k this month, and just surpassed $1000 the last 24 hours. What I did and what's next.

It's the first time I hit $1000+ in 24 hours and I had no one to share it with (except you guys). I'm quite proud of my journey, and I would have thought that making $1000 in a day would make me ecstatic, but actually it's not the case. Not sure if it's because my revenue has grown by increment step so I had time to "prepare" myself to achieve this at one point, or just that I'm nowhere near my goal of 100k/month so that I'm not that affected by it. But it's crazy to think that my goal was to make 100$ daily at the end of 2024. So for those who don't know me (I guess most of you), I build mobile apps and ship them as fast as I can. Most of them are in the AI space. I already made a post here on how I become a mobile app developer so you can check it for more details, but essentially here's what I did : Always loved creating my own things and solve problems Built multiple YouTube channels since I was 15 (mobile gaming actually) that all worked great (but it was too niche so not that scalable, didn't like that) Did a few businesses here and there (drop shopping, selling merch to school, etc) Finished my master's degree in engineering about 2 years ago Worked a moment in a famous watch industry company and saw my potential. The combo of health issues, fixed salary (although it was quite a lot), and me wanting to be an entrepreneur made me leave the company. Created a TikTok account in mobile tech (got 10+ million views the 1st 3 days), manage to grow it to 200k subs in about 3 months Got plenty of collabs for promoting mobile apps (between $500 - $2000 for a collab) Said fuck it I should do my own apps and market them on my TikTok instead of doing collabs Me wanting to build my own apps happened around May-June 2023. Started my TikTok in Feb 2023. At this point I had already 150k+ subs on TikTok. You guys need to know that I suck at coding big time. During my studies I tried to limit as much as I could coding because I was a lazy bast*rd, even though I knew it would come to bite me in the ass one day. But an angel appeared to me in broad daylight, that angel was called GPT-4. I subscribed for 20$/month to get access, and instantly I saw the potential of AI and how much it could help me. Last year GPT-4 was ahead of its time and could already code me basic apps. I had already a mac so I just downloaded Xcode and that was it. My 1st app was a wallpaper app, and I kid you not 90% of it was made by AI. Yes sometimes I had to try again and again with different prompts but it was still so much faster compared to if I had to learn coding from scratch and write code with my own hands. The only thing I didn't do was implement the in app purchase, from which I find a guy on Fiverr to do it for me for 50$. After about 2 months of on-off coding, my first app was ready to be launched. So it was launched, had a great successful launch without doing any videos at that point (iOS 17 was released and my app was the first one alongside another one to offer live wallpapers for iOS 17. I knew that there was a huge app potential there when iOS 17 was released in beta as Apple changed their live wallpaper feature). I Then made a video a few weeks after on my mobile tiktok channel, made about 1 million views in 48 hours, brought me around 40k additional users. Was top 1 chart in graphism and design category for a few weeks (in France, as I'm French so my TikTok videos are in French). And was top 100 in that same category in 120+ countries. Made about 500$ ? Okay that was trash, but I had no idea to monetize the app correctly at that point. It was still a huge W to me and proved me that I could successfully launch apps. Then I learned ASO (App Store Optimization) in depth, searched on internet, followed mobile app developers on Twitter, checked YouTube videos, you name it. I was eager to learn more. I needed more. Then I just iterated, build my 2nd app in less than a month, my 3rd in 3 weeks and so on. I just build my 14th app in 3 days and is now in review. Everytime I manage to reuse some of my other app's code in my new one, which is why I can build them so much faster now. I know how to monetize my app better by checking out my competitors. I learn so much by just "spying" other apps. Funnily enough, I only made this one Tiktok video on my main account to promote my app. For all my other apps, I didn't do a single video where I showcase it, the downloads has only been thanks to ASO. I still use AI everyday. I'm still not good at coding (a bit better than when I started). I use AI to create my app icons (midjourney or the new AI model Flux which is great). I use figma + midjourney to create my App Store screenshots (and they actually look quite good). I use GPT-4o and Claude 3.5 Sonnet to code most of my apps features. I use gpt-4o to localize my app (if you want to optimize the number of downloads I strongly suggest localizing your app, it takes me about 10 minutes thanks to AI). Now what are my next goals ? To achieve the 100k/month I need to change my strategy a little. Right now the $20k/month comes from purely organic downloads, I didn't do any paid advertising. It will be hard for me to keep on launching new apps and rely on ASO to reach the 100k mark. The best bet to reach 100k is to collab with content creators and they create a viral video showcasing your app. Depending on the app it's not that easy, luckily some of my apps can be viral so I will need to find the right content creators. Second way is to try tiktok/meta ads, I can check (have checked) all the ads that have been made by my competitors (thank you EU), so what I would do is copy their ad concept and create similar ads than them. Some of them have millions in ad budget so I know they create high converting ads, so you don't need to try to create an ad creative from scratch. My only big fear is to get banned by Apple (for no reason of mine). In just a snap of a finger they can just ban you from the platform, that shit scares me. And you pretty much can't do anything. So that's about it for me. I'm quite proud of myself not going to lie. Have been battling so many health issues these past years where I just stay in bed all day I'm surprised to be able to make it work. Anyways feel free to ask questions. I hope it was interesting for some of you at least. PS: My new app was just approved by app review, let the app gods favor me and bring me many downloads ! Also forgot to talk about a potential $100k+ acquisition of one of my apps, but if that ever happens I'll make a post on it.

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || ​ Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| ​ What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites ​ Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. ​ Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

boring passive site... now 42k monthly visitors and $2540 MRR
reddit
LLM Vibe Score0
Human Vibe Score1
TasAdamsThis week

boring passive site... now 42k monthly visitors and $2540 MRR

people underestimate SEO... It is evergreen... passive... digital real estate. it can do magic... if you are consistent. Especially now with AI you can 2X your traffic growth and automate 85% of the work. For the past 6 months... we've been building an online directory. we just reached $2540 MRR... with SEO only... from a complete zero. I did share this on other subreddits. Maybe this gives ideas to someone. \+ This can be easily replicated if you have a website lol Current metrics: $2540 MRR - businesses pay us to list on the directory + display ads + pay to be featured. 43k monthly visitors - in the past couple of weeks our SEO growth is a hockey stick. DR (Domain Rating) 35 - it took us 2.5 months to get to that. 51 okay-ish quality referring domains (90% of them are do-follow) and 1.6k backlinks. There are probably 3 main pillars I try to focus on: keywords --> which then is the basis for ALL the content pieces we do blogs, landing pages, about us pages, competitor comparisons etc --> we use a DIY excel file to automate content production at scale. backlinks --> boost DR --> one of the main things to boost ranking on google. website health --> this is technical stuff like internal and external linking, schemas, canonical tags, alt texts, load speeds, compressed images, meta descriptions, titles etc --> do this once... and do it GOOD. $0.07 per SEO optimised blog at scale with AI Yep... we've literally built our own SEO blog tool... and it is a Spreadsheet with bunch of app scripts :D NOTE that we add a little bit of human touch to those blogs that are picked up by Google rank top in 25 How it works... is that we paste in bunch of links (other websites, blogs, news articles) and with a click of a button we can get up to 2000 SEO optimised content pieces... from an Excel file... $0.07 per blog. The spreadsheet is integrated with Chat gpt (obviously). We use GPT-4 for meta descriptions, titles, transforming the content from text to html code since it is more powerful, and GPT-4o for content itself because it is cheaper and faster for "general text". The spreadsheet repurposes content. The spreadsheet generates: Meta descriptions and titles FAQs sections - DON'T skip FAQ sections! They are a must for SEO. On Ahrefs... there is a section of questions people are searching about your keyword... that's your FAQs It can find contextual youtube videos (links to those videos) - to show google that our content is not "just text" thus higher quality. Screenshots and images of the original source (the website link we inputed) I then download a csv version of the excel and import it into our Webflow. The csv file column names match our webflow CMS field names. tbh... we didn't even know that it can be done with a spreadsheet. We "tried" building it because every other tool we were using is (1) expensive from $0.59 per SEO content piece (2) they didn't provide the scale we wanted (3) we wanted more control over the output. Focus on DR 35+ backlinks... easier We bought backlinks only once... rest of the backlinks was a manual work from us. Bunch of free listing databases (about 65% of our backlinks) You can comment on open forums with your link to get a backlink (be careful tho) Post a blog on Medium com --> DR 94 backlink (takes time to Index) If you pay for Notion you can get a DR 94 backlink from Notion If you use Beehiiv you can get a DR 86 backlink from Beehiiv Google product stacking (Google sites, Google notes etc) --> backlink from almighty Google itself A lot of work goes into backlinks because they are THAT important. I have tried bunch of "black hat" strategies as well... but note that all of these strategies won't work if you don't index the primary source from where your backlink is coming from. BIG search volume and low KD Key things I'm looking for in keywords: I use Ahrefs Keyword research tool... it is literally free BIG search volume - 2k+ is oaky-ish for a single keyword EASY to rank - KD (keyword difficulty) below 15 Look for long tail keywords (these are golden nuggets since they have a VERY clear search intent) - "how to edit..." "how to change..." "how to delete..." "how to paint..." I hope you got the idea. on Ahrefs you can use "\" to get BIG volume long tail keywords... like this "my keyword\". Ahrefs then populates the "\" with the tail. Check SERP (Search Engine Result Page) for your keywords - it shows current top 10 pages for those KWs. Check their content. Can you improve it? Have they missed anything? Keyword gap from your competitors - shows EASY keywords that your competitors have missed and also shows what keywords overlap with you. Also one cool thing... if you don't type any keywords on Ahrefs and press "Enter"... you can browse all the keywords out there... it is magical. Once we have the keywords, we run our spreadsheet. And that's pretty much it. I hope that you can get some ideas from this little silly project. Also... if you have any questions about this... I might share the SEO blog automation excel file/help if people are interested...

Only 2 months of cash in the Bank for my business but was able to save it with the help of AI.
reddit
LLM Vibe Score0
Human Vibe Score1
CALLIRDAN90This week

Only 2 months of cash in the Bank for my business but was able to save it with the help of AI.

Hi there! I’m excited to share something very personal with you. We needed to book at least 2 appointments per day in the next 60 days, or my business would fail. We were already trying two acquisition channels, LinkedIn and email. The problem with these channels was that the positive response rate was very low in both. So I decided to focus on LinkedIn and get the attention of the lead by sending videos directly to them via LinkedIn messages. (You can send videos to your connections on LinkedIn if you use your cell phone.) This wasn’t new, but I added a small twist to get the lead’s attention. All the covers of the videos had a picture of me holding a sign with the person’s name and an interesting phrase. This showed some okay results, but the rest of the video was not personalized. Only the picture on the cover was. I even developed a Chrome extension for this because I thought this would be the answer and that I would book tons of appointments.  But after more trial and outreach, my leads responded, telling me that because the video itself wasn’t personalized for them, they felt like I didn’t put enough effort in, so they would not book a call with me. So after investing time and effort into my “new bright idea” and getting developers to make the Chrome extension, I was back to square one with no results. A few weeks went by, and after researching online, I found an online course from a guy who promised to teach me how to book 30+ appointments per month, guaranteed (at the time, I was making 2 or 3 appointments per week, maximum). He promised that I would only pay if he actually booked appointments for me and even offered to give me money if his course didn’t work for me. I never paid attention to internet gurus, but the offer was actually not bad, so I looked into this guy’s website. I found out he had hundreds of reviews from people who had taken his course and were talking amazing things about it. The more I read, the more excited I got. I booked a call that day and talked to a salesperson. The call was very short, and he promised I would get at least 2 appointments per day, easily. He seemed a bit cocky and told me that I just needed to trust him and the 100+ reviews from people who had taken the course. He didn’t share details, a proposal, or anything. I asked the price, and he told me it was close to $10k. (Not kidding, this was the price.) Then he told me that I would make the money back in no time with the clients I would get following his course, and that if it didn’t work, he would give me the money back. But I needed to follow everything the course said for at least 6 months. I had never paid $10k for anything in my life; it was extremely expensive for me. Also, my salary from my business was not in dollars but in a currency that was worth much less than the dollar. I continued to research more and more, but no other course was close to the number of reviews and promises that this guy had. I got desperate and told myself that I would bet everything on this course. If it worked for so many others, surely it would work for me. I got a loan from the bank and paid for the course. You might read this and think it was the most stupid thing ever, but the reality is that after 2 months in the course (I did the course as fast as I could), I learned a lot. The course was not bad; it was very extensive—probably more than 200 hours or so—and they taught a lot of things. I don’t think it was worth $10k for me, but I can see how for other people it might be worth that. Now, to the question you’re all thinking: did it get me the 2 appointments I needed per day? The answer is no. Here’s the thing: most of the techniques they taught were innovative and disruptive, but the focus was always on personalization, and they didn’t teach any way to automate the personalization. (I think, at the time they made the course, the tools didn’t exist yet.) So they taught how to do everything manually, and it took a lot—a lot of time and effort. And most annoyingly: an incredible amount of time doing operational things. I did get 2 appointments on some days, but it wasn’t consistent, and I didn’t have the time to spend 14 hours a day doing everything manually or the money to hire someone to do this for me. (I needed to also spend time delivering our service to our current clients; otherwise, they would leave.) I told them this, and they were very reasonable. After some negotiation, they gave me part of the money back. (To be fair, there was a lot of value in the course, so asking for the full $10k back would have been excessive because, in the end, it really taught me a lot of things I didn’t know.) So in the end, I spent $10k and 200+ hours on an online course, spent time and effort developing a Chrome extension, and was still not able to hit the meetings I needed. Money in the business was running out, and I needed to do something fast, or I was doomed. After investing time and effort in tools, research, and spending $10k and over 200 hours on a course that didn’t deliver the consistent results I needed, I was at a crossroads. My businesses were running out of money, and I knew I needed to find a solution quickly, or everything I had worked for would collapse. It was during this time of desperation that I started exploring other options. One night, while scrolling through the internet, I stumbled upon a 2024 article about how AI was being used to revolutionize various industries. It wasn’t directly related to appointment booking, but it sparked an idea in my mind. What if I could use AI to automate the personalization process that I had learned in the course? It seemed like a long shot, but I had nothing to lose. I started researching AI tools and technologies—YouTube videos, podcasts, pretty much everything related to AI—desperate to find something that could help me scale my outreach without investing too much time, while still maintaining the personalization that was so important. After a lot of trial and error, I found a few tools that showed promise. All of these tools were extremely new. Some of them had just launched the versions I needed just weeks ago. I can say I researched and tested more than 50 AI startups, experimenting with them, testing different approaches, checking prices (the problem was that most of them were cheap but became very expensive when applying the volume I needed to get results), and gradually refining my process. It wasn’t an overnight success, but for the first time, I felt like I was onto something that could truly work. The idea of combining AI personalization with volume was something new, and it gave me hope that I could finally book the meetings I needed without burning out. One day, I sent a video of myself talking—completely AI-generated—to my family chat group and waited for their response. None of them noticed it wasn’t actually me. At that moment, I said to myself: “Okay, I am ready to test this in the real world and see if it works.” Like everything in life, focus is key. As I mentioned earlier, we were already trying outbound strategies on LinkedIn and email, but I decided to narrow my focus to LinkedIn and specifically to video outreach. My goal was to stand out from the crowd, where most people were using text or sending generic videos. I knew that if my videos were 100% personalized, it would make a strong impression on my leads. I focused on two key metrics during my tests: Time spent on manual personalized outreach vs. AI-generated personalized outreach. Positive reply rate for non-personalized manual outreach vs. AI-generated personalized outreach. I ran a test using a sample of 50 one-minute videos sent to 50 leads, and here are the results: Time Spent to Make the Videos: Manual Process: It took me up to 10 hours to create and send 50 personalized videos. This included looking good on camera, brushing my hair, choosing appropriate clothing, ensuring proper lighting, not messing up the script, using a camera holder, recharging the phone, pausing to drink water, avoiding external sounds, being in an appropriate room, downloading the videos, deleting the videos that were not good, and sending the final ones. On average, it took me at least 12.5 minutes per one-minute video. AI Process: With AI, it took me just 32 seconds to create the exact same one-minute personalized video—without saying a word or recording a second of footage. In total, I could make and send the same 50 personalized videos in just 27 minutes. Result: The AI process was 24 times faster. Completely crazy! Positive Reply Rate: Non-Personalized Script (Manual): Using a good script without personalization (no name, job title, city, company, etc.) resulted in a positive reply rate of 4-6% on LinkedIn, including follow-ups. Personalized Script (AI): Using the same script but adding personalized details like the lead's name, company, city, and job title resulted in a positive reply rate of 15-20%, including follow-ups. Result: AI personalization led to 3x (three times) more replies. The best part was the responses. Almost everyone who replied thanked me for taking the time to research them, congratulated me on my speech, and appreciated the personalization and eloquence of my message.  These metrics were a complete breakthrough for me. I researched online to see if anyone else had done something similar, but I couldn’t find anything close. After achieving these metrics, booking the two appointments I desperately needed became easy. In fact, in the last 10 weeks, I’ve been able to consistently book 3-4 appointments per day. This success allowed me to train someone in my company to handle the process, freeing me up to focus on other aspects of the business and ultimately saving it. With the AI appointment machine we built, I even have free time now—time that I’ve been using to develop a methodology and tech tools that I now teach to others. I named the methodology Clip2Lead as a reference to the first Chrome extension I developed that didn’t work but ended up being the first step toward everything that followed. I’ve condensed everything I learned and throughout my experiences into a simple and short FREE training where I cover the entire AI appointment booking process. This includes how to find leads, create scripts, set up follow-up sequences, generate AI videos, clone your voice, compare non-AI metrics with AI metrics, and even navigate AI safety controls. I also offer Chrome extensions that helped me automate the process even further, so you can spend your time closing deals or focusing on other acquisition channels, while your AI machine for booking appointments runs with minimal effort from you. If you’re interested please get in touch with me and thank you for taking the time to read my personal story.

Looking for Social Media Marketing Partner(s) for High-Potential AI App Business
reddit
LLM Vibe Score0
Human Vibe Score1
Altruistic-Flan-8222This week

Looking for Social Media Marketing Partner(s) for High-Potential AI App Business

Hello everyone! I am Mak, and I'm a software engineer and AI developer with a few years of experience. I'm pretty young like the most of you and have an amazing idea. I'm sure that some of you have heard of Rizz, Plug, Wigman and similar apps. Those are simple AI apps that generate pickup lines for people, and I worked as an AI developer for one of the above. I got this business idea after analyzing more about this industry and realizing that these apps make TONS of money—like the one I worked for, which is making about $50k per WEEK using my AI solutions. That's crazy. The point is that I took a pause from working as a software engineer for clients and researched how to do the same thing. It took me a few months to actually understand everything about this business model, and Rizz apps are just one example of this type of business. There is one 17 yo guy I found who made "Cal AI" I guess, basically a simple AI app that analyzes your meal and provides info like calories, etc. I also created AI solutions for a guy who made an AI app that analyzes your face, provides Sigma analytics, and suggests how to improve your face, etc. So the point is that there are tons of AI app ideas that you can create for this industry. And the important fact is that the AI market is growing. Some important AI analytics say that in 2024, there were 1.5B AI app downloads, and mobile AI app consumer spending was $1.8B. That's huge. So, what am I looking for? I need someone, hopefully from the US, or someone who knows how to post social media content for US users, to help me out with my business idea. I'm self-funded and have already spent a lot on important requirements and equipment, which is why I need someone interested in revenue sharing. We can come up with a deal such as capped/tiered revenue share, profit share, deferred model, etc. We could discuss this privately since everyone has different experience levels and thoughts about this. Also, since I'm talking about experience, you don't need huge experience at all. You can be 16-25 years old just like me and only have marketing skills. However, to make it easier for those who don't have marketing skills, I am planning to create code that will automatically generate content for you, and all you need to do is post the content. But this is only for posting content without creating it and is for interested people from the US since I need US customers. However, if you have marketing skills and an idea for getting organic US views, please let's talk. Short info about my app: It is an AI app like the previous examples, which doesn’t yet exist. There is pretty big potential for app growth (60% of Americans could use this app), and it should be pretty easy to market. Good niche, good idea and overall solid market for this app idea. TL;DR I need someone interested in marketing my AI app in exchange for revenue share. No huge experience is needed. I would prefer someone from the US. If you are interested, feel free to contact me here on Reddit via private messages or below. We can talk here, on Discord, LinkedIn, or anywhere you prefer. Thanks once again!

AI SaaS: A website to fine-tune LLM model according to your requirements
reddit
LLM Vibe Score0
Human Vibe Score1
Dangerous_Ferret3362This week

AI SaaS: A website to fine-tune LLM model according to your requirements

Hey fellow entrepreneurs and AI enthusiasts! I'm exploring a business idea and would love your thoughts and feedback. The concept is a SaaS platform that allows users to easily fine-tune large language models (LLMs) on their own datasets without needing deep technical expertise. Here's the gist: The Problem: Many businesses and researchers want to leverage LLMs for specific use cases, but fine-tuning these models requires significant technical knowledge and resources. The Solution: A user-friendly web platform where users can: Choose from popular LLM architectures Upload their own dataset or input text Configure fine-tuning parameters through an intuitive interface Automatically fine-tune the model on our GPU infrastructure Download the fine-tuned model or use it via API Key Features: No coding required Scalable cloud infrastructure Support for various fine-tuning techniques (prompt tuning, adapter tuning, full fine-tuning) Job monitoring and results visualization API access for integrated use in applications Target Market: Researchers without extensive ML engineering resources Startups building AI-powered products Enterprises looking to customize LLMs for internal use Monetization: Tiered subscription model based on usage (compute time, model size, etc.) + potential enterprise contracts for high-volume users. I'd really appreciate your thoughts on: Is this solving a real pain point? Would you use a service like this? Why or why not? What features would make this a must-have for you? Any foreseeable obstacles or considerations I'm missing? Suggestions for go-to-market strategy? Thank you!

AI SaaS: A website to fine-tune LLM model according to your requirements
reddit
LLM Vibe Score0
Human Vibe Score1
Dangerous_Ferret3362This week

AI SaaS: A website to fine-tune LLM model according to your requirements

Hey fellow entrepreneurs and AI enthusiasts! I'm exploring a business idea and would love your thoughts and feedback. The concept is a SaaS platform that allows users to easily fine-tune large language models (LLMs) on their own datasets without needing deep technical expertise. Here's the gist: The Problem: Many businesses and researchers want to leverage LLMs for specific use cases, but fine-tuning these models requires significant technical knowledge and resources. The Solution: A user-friendly web platform where users can: Choose from popular LLM architectures Upload their own dataset or input text Configure fine-tuning parameters through an intuitive interface Automatically fine-tune the model on our GPU infrastructure Download the fine-tuned model or use it via API Key Features: No coding required Scalable cloud infrastructure Support for various fine-tuning techniques (prompt tuning, adapter tuning, full fine-tuning) Job monitoring and results visualization API access for integrated use in applications Target Market: Researchers without extensive ML engineering resources Startups building AI-powered products Enterprises looking to customize LLMs for internal use Monetization: Tiered subscription model based on usage (compute time, model size, etc.) + potential enterprise contracts for high-volume users. I'd really appreciate your thoughts on: Is this solving a real pain point? Would you use a service like this? Why or why not? What features would make this a must-have for you? Any foreseeable obstacles or considerations I'm missing? Suggestions for go-to-market strategy? Thank you!

AI SaaS: A website to fine-tune LLM model according to your requirements
reddit
LLM Vibe Score0
Human Vibe Score1
Dangerous_Ferret3362This week

AI SaaS: A website to fine-tune LLM model according to your requirements

Hey fellow entrepreneurs and AI enthusiasts! I'm exploring a business idea and would love your thoughts and feedback. The concept is a SaaS platform that allows users to easily fine-tune large language models (LLMs) on their own datasets without needing deep technical expertise. Here's the gist: The Problem: Many businesses and researchers want to leverage LLMs for specific use cases, but fine-tuning these models requires significant technical knowledge and resources. The Solution: A user-friendly web platform where users can: Choose from popular LLM architectures Upload their own dataset or input text Configure fine-tuning parameters through an intuitive interface Automatically fine-tune the model on our GPU infrastructure Download the fine-tuned model or use it via API Key Features: No coding required Scalable cloud infrastructure Support for various fine-tuning techniques (prompt tuning, adapter tuning, full fine-tuning) Job monitoring and results visualization API access for integrated use in applications Target Market: Researchers without extensive ML engineering resources Startups building AI-powered products Enterprises looking to customize LLMs for internal use Monetization: Tiered subscription model based on usage (compute time, model size, etc.) + potential enterprise contracts for high-volume users. I'd really appreciate your thoughts on: Is this solving a real pain point? Would you use a service like this? Why or why not? What features would make this a must-have for you? Any foreseeable obstacles or considerations I'm missing? Suggestions for go-to-market strategy? Thank you!

better-genshin-impact
github
LLM Vibe Score0.58
Human Vibe Score0.5281045668197327
babalaeMar 28, 2025

better-genshin-impact

BetterGI 🌟 点一下右上角的 Star,Github 主页就能收到软件更新通知了哦~ BetterGI · 更好的原神, 一个基于计算机视觉技术,意图让原神变的更好的项目。 功能 实时任务 自动拾取:遇到可交互/拾取内容时自动按 F,支持黑白名单配置 自动剧情:快速点击过剧情、自动选择选项、自动提交物品、关闭弹出书页等 与凯瑟琳对话时有橙色选项会 自动领取「每日委托」奖励、自动重新派遣 自动邀约:自动剧情开启的情况下此功能才会生效,自动选择邀约选项 快速传送:在地图上点击传送点,或者点击后出现的列表中存在传送点,会自动点击传送点并传送 半自动钓鱼:AI 识别自动抛竿,鱼上钩时自动收杆,并自动完成钓鱼进度 自动烹饪:自动在完美区域完成食物烹饪,暂不支持“仙跳墙” 独立任务 全自动七圣召唤:帮助你轻松完成七圣召唤角色邀请、每周来客挑战等 PVE 内容 自动伐木:自动 Z 键使用「王树瑞佑」,利用上下线可以刷新木材的原理,挂机刷满一背包的木材 自动秘境:全自动秘境挂机刷体力,自动循环进入秘境开启钥匙、战斗、走到古树并领取奖励 自动音游:一键自动完成千音雅集的专辑,快速获取成就 全自动钓鱼:在出现钓鱼F按钮的位置面向鱼塘,然后启动全自动钓鱼,启动后程序会自动完成钓鱼,并切换白天和晚上 全自动 一条龙:一键完成日常(使用历练点),并领取奖励 自动采集/挖矿/锄地:通过左上角小地图的识别,完成自动采集、挖矿、锄地等功能 键鼠录制:可以录制回放当前的键鼠操作,建议配合调度器使用 操控辅助 那维莱特转圈:设置快捷键后,长按可以不断水平旋转视角(当然你也可以用来转草神) 快速圣遗物强化:通过快速切换“详情”、“强化”页跳过圣遗物强化结果展示,快速+20 商店一键购买:可以快速以满数量购买商店中的物品,适合快速清空活动兑换,尘歌壶商店兑换等 …… 自带一个遮罩窗口覆盖在游戏界面上,用于显示日志和图像识别结果 截图 !0 39 1 下载 [!NOTE] 下载地址:⚡Github 下载 不知道下载哪个?第一次使用?请看:快速上手 , 遇到问题请先看:常见问题 最新编译版本可以从自动构建中获取: 使用方法 由于图像识别比较吃性能,低配置电脑可能无法正常使用部分功能。 推荐的电脑配置至少能够中画质60帧流畅游玩原神,否则部分功能的使用体验会较差。 你的系统需要满足以下条件: Windows 10 或更高版本的64位系统 .NET 8 运行时 (没有的话,启动程序,系统会提示下载安装) ⚠️注意: 窗口大小变化、切换游戏分辨率、切换显示器的时候请重启本软件。 不支持任何画面滤镜(HDR、N卡滤镜等)。游戏亮度请保持默认。 当前只支持 16:9 的分辨率,推荐在 1920x1080 窗口化游戏下使用。 模拟操作部分可能被部分安全软件拦截,请加入白名单。已知360或者自定义规则WD会拦截部分类型的模拟点击 打开软件以后,在“启动”页选择好截图方式,点击启动按钮就可以享受 BetterGI 带来的便利了! 详细使用指南请看:快速上手 具体功能效果与使用方式见:文档 FAQ 为什么需要管理员权限? 因为游戏是以管理员权限启动的,软件不以管理员权限启动的话没有权限模拟鼠标点击。 会不会封号? 理论上不会被封。 BetterGI 不会做出任何修改游戏文件、读写游戏内存等任何危害游戏本体的行为,单纯依靠视觉算法和模拟操作实现。 但是mhy是自由的,用户条款上明确说明第三方软件/模拟操作是封号理由之一。当前方案还是存在被检测的可能。只能说请低调使用,请不要跳脸官方。 更多常见问题... 致谢 本项目的完成离不开以下项目: Yap genshin-woodmen Fischless MicaSetup cvAutoTrack genshinimpactassistant HutaoFisher minimap kachina-installer 另外特别感谢 @Lightczx 和 @emako 对本项目的指导与贡献 开发者 格式化:CodeMaid.config、Settings.XamlStyler; 如何编译项目? 许可证 !GPL-v3 问题反馈 提 Issue 或 QQ群1029539994

SUPIR
github
LLM Vibe Score0.599
Human Vibe Score0.8316614420062696
Fanghua-YuMar 28, 2025

SUPIR

(CVPR2024) Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild [Paper]   [Project Page]   [[Online App]](https://supir.suppixel.ai/home) Fanghua, Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, Chao Dong Shenzhen Institute of Advanced Technology; Shanghai AI Laboratory; University of Sydney; The Hong Kong Polytechnic University; ARC Lab, Tencent PCG; The Chinese University of Hong Kong 🚀 We're thrilled to announce the official launch of SupPixel AI! Experience the next level of image processing and upscaling with our cutting-edge AI technology based on SUPIR. Explore now at suppixel.ai. 🔧 Dependencies and Installation Clone repo Install dependent packages Download Checkpoints For users who can connect to huggingface, please setting LLAVACLIPPATH, SDXLCLIP1PATH, SDXLCLIP2CKPTPTH in CKPTPTH.py as None. These CLIPs will be downloaded automatically. Dependent Models SDXL CLIP Encoder-1 SDXL CLIP Encoder-2 SDXL base 1.00.9vae LLaVA CLIP LLaVA v1.5 13B (optional) Juggernaut-XLv9RunDiffusionPhotov2 Replacement of SDXL base 1.0_0.9vae for Photo Realistic (optional) JuggernautRunDiffusionPhoto2Lightning4Steps Distilling model used in SUPIRv0Juggernautv9_lightning.yaml Models we provided: SUPIR-v0Q: Baidu Netdisk, Google Drive Default training settings with paper. High generalization and high image quality in most cases. SUPIR-v0F: Baidu Netdisk, Google Drive Training with light degradation settings. Stage1 encoder of SUPIR-v0F remains more details when facing light degradations. Edit Custom Path for Checkpoints ⚡ Quick Inference Val Dataset RealPhoto60: Baidu Netdisk, Google Drive Usage of SUPIR Python Script Gradio Demo Online App We've just launched SupPixel AI, an easy-to-use tool designed to help with high-quality image processing and upscaling. It builds on SUPIR. Whether you’re into photography, digital art, or just love playing around with image enhancement, we’d love for you to check it out.~ BibTeX @misc{yu2024scaling, title={Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild}, author={Fanghua Yu and Jinjin Gu and Zheyuan Li and Jinfan Hu and Xiangtao Kong and Xintao Wang and Jingwen He and Yu Qiao and Chao Dong}, year={2024}, eprint={2401.13627}, archivePrefix={arXiv}, primaryClass={cs.CV} } 📧 Contact If you have any question, please email fanghuayu96@gmail.com or jinjin.gu@suppixel.ai. Non-Commercial Use Only Declaration The SUPIR ("Software") is made available for use, reproduction, and distribution strictly for non-commercial purposes. For the purposes of this declaration, "non-commercial" is defined as not primarily intended for or directed towards commercial advantage or monetary compensation. By using, reproducing, or distributing the Software, you agree to abide by this restriction and not to use the Software for any commercial purposes without obtaining prior written permission from Dr. Jinjin Gu. This declaration does not in any way limit the rights under any open source license that may apply to the Software; it solely adds a condition that the Software shall not be used for commercial purposes. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For inquiries or to obtain permission for commercial use, please contact Dr. Jinjin Gu (jinjin.gu@suppixel.ai).

anything-llm
github
LLM Vibe Score0.572
Human Vibe Score0.4703504093656464
Mintplex-LabsMar 28, 2025

anything-llm

AnythingLLM: The all-in-one AI app you were looking for. Chat with your docs, use AI Agents, hyper-configurable, multi-user, & no frustrating set up required. | | Docs | Hosted Instance English · 简体中文 · 日本語 👉 AnythingLLM for desktop (Mac, Windows, & Linux)! Download Now A full-stack application that enables you to turn any document, resource, or piece of content into context that any LLM can use as references during chatting. This application allows you to pick and choose which LLM or Vector Database you want to use as well as supporting multi-user management and permissions. !Chatting Watch the demo! Product Overview AnythingLLM is a full-stack application where you can use commercial off-the-shelf LLMs or popular open source LLMs and vectorDB solutions to build a private ChatGPT with no compromises that you can run locally as well as host remotely and be able to chat intelligently with any documents you provide it. AnythingLLM divides your documents into objects called workspaces. A Workspace functions a lot like a thread, but with the addition of containerization of your documents. Workspaces can share documents, but they do not talk to each other so you can keep your context for each workspace clean. Cool features of AnythingLLM 🆕 Custom AI Agents 🆕 No-code AI Agent builder 🖼️ Multi-modal support (both closed and open-source LLMs!) 👤 Multi-user instance support and permissioning Docker version only 🦾 Agents inside your workspace (browse the web, etc) 💬 Custom Embeddable Chat widget for your website Docker version only 📖 Multiple document type support (PDF, TXT, DOCX, etc) Simple chat UI with Drag-n-Drop funcitonality and clear citations. 100% Cloud deployment ready. Works with all popular closed and open-source LLM providers. Built-in cost & time-saving measures for managing very large documents compared to any other chat UI. Full Developer API for custom integrations! Much more...install and find out! Supported LLMs, Embedder Models, Speech models, and Vector Databases Large Language Models (LLMs): Any open-source llama.cpp compatible model OpenAI OpenAI (Generic) Azure OpenAI AWS Bedrock Anthropic NVIDIA NIM (chat models) Google Gemini Pro Hugging Face (chat models) Ollama (chat models) LM Studio (all models) LocalAi (all models) Together AI (chat models) Fireworks AI (chat models) Perplexity (chat models) OpenRouter (chat models) DeepSeek (chat models) Mistral Groq Cohere KoboldCPP LiteLLM Text Generation Web UI Apipie xAI Novita AI (chat models) PPIO Embedder models: AnythingLLM Native Embedder (default) OpenAI Azure OpenAI LocalAi (all) Ollama (all) LM Studio (all) Cohere Audio Transcription models: AnythingLLM Built-in (default) OpenAI TTS (text-to-speech) support: Native Browser Built-in (default) PiperTTSLocal - runs in browser OpenAI TTS ElevenLabs Any OpenAI Compatible TTS service. STT (speech-to-text) support: Native Browser Built-in (default) Vector Databases: LanceDB (default) Astra DB Pinecone Chroma Weaviate Qdrant Milvus Zilliz Technical Overview This monorepo consists of three main sections: frontend: A viteJS + React frontend that you can run to easily create and manage all your content the LLM can use. server: A NodeJS express server to handle all the interactions and do all the vectorDB management and LLM interactions. collector: NodeJS express server that process and parses documents from the UI. docker: Docker instructions and build process + information for building from source. embed: Submodule for generation & creation of the web embed widget. browser-extension: Submodule for the chrome browser extension. 🛳 Self Hosting Mintplex Labs & the community maintain a number of deployment methods, scripts, and templates that you can use to run AnythingLLM locally. Refer to the table below to read how to deploy on your preferred environment or to automatically deploy. | Docker | AWS | GCP | Digital Ocean | Render.com | |----------------------------------------|----|-----|---------------|------------| | [![Deploy on Docker][docker-btn]][docker-deploy] | [![Deploy on AWS][aws-btn]][aws-deploy] | [![Deploy on GCP][gcp-btn]][gcp-deploy] | [![Deploy on DigitalOcean][do-btn]][do-deploy] | [![Deploy on Render.com][render-btn]][render-deploy] | | Railway | RepoCloud | Elestio | | --- | --- | --- | | [![Deploy on Railway][railway-btn]][railway-deploy] | [![Deploy on RepoCloud][repocloud-btn]][repocloud-deploy] | [![Deploy on Elestio][elestio-btn]][elestio-deploy] | or set up a production AnythingLLM instance without Docker → How to setup for development yarn setup To fill in the required .env files you'll need in each of the application sections (from root of repo). Go fill those out before proceeding. Ensure server/.env.development is filled or else things won't work right. yarn dev:server To boot the server locally (from root of repo). yarn dev:frontend To boot the frontend locally (from root of repo). yarn dev:collector To then run the document collector (from root of repo). Learn about documents Learn about vector caching External Apps & Integrations These are apps that are not maintained by Mintplex Labs, but are compatible with AnythingLLM. A listing here is not an endorsement. Midori AI Subsystem Manager - A streamlined and efficient way to deploy AI systems using Docker container technology. Coolify - Deploy AnythingLLM with a single click. GPTLocalhost for Microsoft Word - A local Word Add-in for you to use AnythingLLM in Microsoft Word. Telemetry & Privacy AnythingLLM by Mintplex Labs Inc contains a telemetry feature that collects anonymous usage information. More about Telemetry & Privacy for AnythingLLM Why? We use this information to help us understand how AnythingLLM is used, to help us prioritize work on new features and bug fixes, and to help us improve AnythingLLM's performance and stability. Opting out Set DISABLE_TELEMETRY in your server or docker .env settings to "true" to opt out of telemetry. You can also do this in-app by going to the sidebar > Privacy and disabling telemetry. What do you explicitly track? We will only track usage details that help us make product and roadmap decisions, specifically: Type of your installation (Docker or Desktop) When a document is added or removed. No information about the document. Just that the event occurred. This gives us an idea of use. Type of vector database in use. Let's us know which vector database provider is the most used to prioritize changes when updates arrive for that provider. Type of LLM in use. Let's us know the most popular choice and prioritize changes when updates arrive for that provider. Chat is sent. This is the most regular "event" and gives us an idea of the daily-activity of this project across all installations. Again, only the event is sent - we have no information on the nature or content of the chat itself. You can verify these claims by finding all locations Telemetry.sendTelemetry is called. Additionally these events are written to the output log so you can also see the specific data which was sent - if enabled. No IP or other identifying information is collected. The Telemetry provider is PostHog - an open-source telemetry collection service. View all telemetry events in source code 👋 Contributing create issue create PR with branch name format of - LGTM from core-team 🌟 Contributors 🔗 More Products [VectorAdmin][vector-admin]: An all-in-one GUI & tool-suite for managing vector databases. [OpenAI Assistant Swarm][assistant-swarm]: Turn your entire library of OpenAI assistants into one single army commanded from a single agent. [![][back-to-top]](#readme-top) Copyright © 2025 [Mintplex Labs][profile-link]. This project is MIT licensed. [back-to-top]: https://img.shields.io/badge/-BACKTOTOP-222628?style=flat-square [profile-link]: https://github.com/mintplex-labs [vector-admin]: https://github.com/mintplex-labs/vector-admin [assistant-swarm]: https://github.com/Mintplex-Labs/openai-assistant-swarm [docker-btn]: ./images/deployBtns/docker.png [docker-deploy]: ./docker/HOWTOUSE_DOCKER.md [aws-btn]: ./images/deployBtns/aws.png [aws-deploy]: ./cloud-deployments/aws/cloudformation/DEPLOY.md [gcp-btn]: https://deploy.cloud.run/button.svg [gcp-deploy]: ./cloud-deployments/gcp/deployment/DEPLOY.md [do-btn]: https://www.deploytodo.com/do-btn-blue.svg [do-deploy]: ./cloud-deployments/digitalocean/terraform/DEPLOY.md [render-btn]: https://render.com/images/deploy-to-render-button.svg [render-deploy]: https://render.com/deploy?repo=https://github.com/Mintplex-Labs/anything-llm&branch=render [render-btn]: https://render.com/images/deploy-to-render-button.svg [render-deploy]: https://render.com/deploy?repo=https://github.com/Mintplex-Labs/anything-llm&branch=render [railway-btn]: https://railway.app/button.svg [railway-deploy]: https://railway.app/template/HNSCS1?referralCode=WFgJkn [repocloud-btn]: https://d16t0pc4846x52.cloudfront.net/deploylobe.svg [repocloud-deploy]: https://repocloud.io/details/?app_id=276 [elestio-btn]: https://elest.io/images/logos/deploy-to-elestio-btn.png [elestio-deploy]: https://elest.io/open-source/anythingllm

xpert
github
LLM Vibe Score0.457
Human Vibe Score0.0831216059433162
xpert-aiMar 28, 2025

xpert

English | 中文 [uri_license]: https://www.gnu.org/licenses/agpl-3.0.html [urilicenseimage]: https://img.shields.io/badge/License-AGPL%20v3-blue.svg Xpert Cloud · Self-hosting · Documentation · Enterprise inquiry Open-Source AI Platform for Enterprise Data Analysis, Indicator Management and Agents Orchestration Xpert AI is an open-source enterprise-level AI system that perfectly integrates two major platforms: agent orchestration and data analysis. 💡 What's New Agent and Workflow Hybrid Architecture In today's rapidly evolving AI landscape, enterprises face a critical dilemma: how to balance the creativity of LLMs with the stability of processes? While purely agent-based architectures offer flexibility, they are difficult to control; traditional workflows, though reliable, lack adaptability. The Agent and Workflow Hybrid Architecture of the Xpert AI platform is designed to resolve this conflict — it allows AI to possess "free will" while adhering to "rules and order." !agent-workflow-hybrid-architecture Blog - Agent and Workflow Hybrid Architecture Agent Orchestration Platform By coordinating the collaboration of multiple agents, Xpert completes complex tasks. Xpert integrates different types of AI agents through an efficient management mechanism, utilizing their capabilities to solve multidimensional problems. Xpert Agents Data Analysis Platform An agile data analysis platform based on cloud computing for multidimensional modeling, indicator management, and BI display. It supports connecting to various data sources, achieving efficient and flexible data analysis and visualization, and provides multiple intelligent analysis functions and tools to help enterprises quickly and accurately discover business value and make operational decisions. ChatBI ChatBI is an innovative feature we are introducing, combining chat functionality with business intelligence (BI) analysis capabilities. It offers users a more intuitive and convenient data analysis experience through natural language interaction. ChatBI_Demo.mp4 🚀 Quick Start Before installing Xpert, make sure your machine meets the following minimum system requirements: CPU >= 2 Core RAM >= 4 GiB Node.js (ESM and CommonJS) - 18.x, 19.x, 20.x, 22.x The easiest way to start the Xpert server is through docker compose. Before running Xpert with the following commands, make sure that Docker and Docker Compose are installed on your machine: After running, you can access the Xpert dashboard in your browser at http://localhost/onboarding and start the initialization process. Please check our Wiki - Development to get started quickly. 🎯 Mission Empowering enterprises with intelligent collaboration and data-driven insights through innovative AI orchestration and agile analytics. 🌼 Screenshots Show / Hide Screenshots Pareto analysis open in new tab !Pareto analysis Screenshot Product profit analysis open in new tab !Product profit analysis Screenshot Reseller analysis open in new tab !Reseller analysis Screenshot Bigview dashboard open in new tab !Bigview dashboard Screenshot Indicator application open in new tab !Indicator application Screenshot Indicator mobile app open in new tab !Indicator mobile app Screenshot 💻 Demo, Downloads, Testing and Production Demo Xpert AI Platform Demo at . Notes: You can generate samples data in the home dashbaord page. Production (SaaS) Xpert AI Platform SaaS is available at . Note: it's currently in Alpha version / in testing mode, please use it with caution! 🧱 Technology Stack and Requirements TypeScript language NodeJs / NestJs Nx Angular RxJS TypeORM Langchain ECharts Java Mondrian For Production, we recommend: PostgreSQL PM2 See also README.md and CREDITS.md files in relevant folders for lists of libraries and software included in the Platform, information about licenses, and other details 📄 Documentation Please refer to our official Platform Documentation and to our Wiki (WIP). 💌 Contact Us For business inquiries: Xpert AI Platform @ Twitter 🛡️ License We support the open-source community. This software is available under the following licenses: Xpert AI Platform Community Edition Xpert AI Platform Small Business Xpert AI Platform Enterprise Please see LICENSE for more information on licenses. 💪 Thanks to our Contributors Contributors Please give us :star: on Github, it helps! You are more than welcome to submit feature requests in the Xpert AI repo Pull requests are always welcome! Please base pull requests against the develop branch and follow the contributing guide.

GenAI_Agents
github
LLM Vibe Score0.563
Human Vibe Score0.24210481455988786
NirDiamantMar 28, 2025

GenAI_Agents

🌟 Support This Project: Your sponsorship fuels innovation in GenAI agent development. Become a sponsor to help maintain and expand this valuable resource! GenAI Agents: Comprehensive Repository for Development and Implementation 🚀 Welcome to one of the most extensive and dynamic collections of Generative AI (GenAI) agent tutorials and implementations available today. This repository serves as a comprehensive resource for learning, building, and sharing GenAI agents, ranging from simple conversational bots to complex, multi-agent systems. 📫 Stay Updated! 🚀Cutting-edgeUpdates 💡ExpertInsights 🎯Top 0.1%Content Join over 15,000 of AI enthusiasts getting unique cutting-edge insights and free tutorials! Plus, subscribers get exclusive early access and special 33% discounts to my book and the upcoming RAG Techniques course! Introduction Generative AI agents are at the forefront of artificial intelligence, revolutionizing the way we interact with and leverage AI technologies. This repository is designed to guide you through the development journey, from basic agent implementations to advanced, cutting-edge systems. 📚 Learn to Build Your First AI Agent Your First AI Agent: Simpler Than You Think This detailed blog post complements the repository by providing a complete A-Z walkthrough with in-depth explanations of core concepts, step-by-step implementation, and the theory behind AI agents. It's designed to be incredibly simple to follow while covering everything you need to know to build your first working agent from scratch. 💡 Plus: Subscribe to the newsletter for exclusive early access to tutorials and special discounts on upcoming courses and books! Our goal is to provide a valuable resource for everyone - from beginners taking their first steps in AI to seasoned practitioners pushing the boundaries of what's possible. By offering a range of examples from foundational to complex, we aim to facilitate learning, experimentation, and innovation in the rapidly evolving field of GenAI agents. Furthermore, this repository serves as a platform for showcasing innovative agent creations. Whether you've developed a novel agent architecture or found an innovative application for existing techniques, we encourage you to share your work with the community. Related Projects 📚 Dive into my comprehensive guide on RAG techniques to learn about integrating external knowledge into AI systems, enhancing their capabilities with up-to-date and relevant information retrieval. 🖋️ Explore my Prompt Engineering Techniques guide for an extensive collection of prompting strategies, from fundamental concepts to advanced methods, improving your ability to communicate effectively with AI language models. A Community-Driven Knowledge Hub This repository grows stronger with your contributions! Join our vibrant Discord community — the central hub for shaping and advancing this project together 🤝 GenAI Agents Discord Community Whether you're a novice eager to learn or an expert ready to share your knowledge, your insights can shape the future of GenAI agents. Join us to propose ideas, get feedback, and collaborate on innovative implementations. For contribution guidelines, please refer to our CONTRIBUTING.md file. Let's advance GenAI agent technology together! 🔗 For discussions on GenAI, agents, or to explore knowledge-sharing opportunities, feel free to connect on LinkedIn. Key Features 🎓 Learn to build GenAI agents from beginner to advanced levels 🧠 Explore a wide range of agent architectures and applications 📚 Step-by-step tutorials and comprehensive documentation 🛠️ Practical, ready-to-use agent implementations 🌟 Regular updates with the latest advancements in GenAI 🤝 Share your own agent creations with the community GenAI Agent Implementations Explore our extensive list of GenAI agent implementations, sorted by categories: 🌱 Beginner-Friendly Agents Simple Conversational Agent LangChain PydanticAI Overview 🔎 A context-aware conversational AI maintains information across interactions, enabling more natural dialogues. Implementation 🛠️ Integrates a language model, prompt template, and history manager to generate contextual responses and track conversation sessions. Simple Question Answering Agent Overview 🔎 Answering (QA) agent using LangChain and OpenAI's language model understands user queries and provides relevant, concise answers. Implementation 🛠️ Combines OpenAI's GPT model, a prompt template, and an LLMChain to process user questions and generate AI-driven responses in a streamlined manner. Simple Data Analysis Agent LangChain PydanticAI Overview 🔎 An AI-powered data analysis agent interprets and answers questions about datasets using natural language, combining language models with data manipulation tools for intuitive data exploration. Implementation 🛠️ Integrates a language model, data manipulation framework, and agent framework to process natural language queries and perform data analysis on a synthetic dataset, enabling accessible insights for non-technical users. 🔧 Framework Tutorial: LangGraph Introduction to LangGraph: Building Modular AI Workflows Overview 🔎 This tutorial introduces LangGraph, a powerful framework for creating modular, graph-based AI workflows. Learn how to leverage LangGraph to build more complex and flexible AI agents that can handle multi-step processes efficiently. Implementation 🛠️ Step-by-step guide on using LangGraph to create a StateGraph workflow. The tutorial covers key concepts such as state management, node creation, and graph compilation. It demonstrates these principles by constructing a simple text analysis pipeline, serving as a foundation for more advanced agent architectures. Additional Resources 📚 Blog Post 🎓 Educational and Research Agents ATLAS: Academic Task and Learning Agent System Overview 🔎 ATLAS demonstrates how to build an intelligent multi-agent system that transforms academic support through AI-powered assistance. The system leverages LangGraph's workflow framework to coordinate multiple specialized agents that provide personalized academic planning, note-taking, and advisory support. Implementation 🛠️ Implements a state-managed multi-agent architecture using four specialized agents (Coordinator, Planner, Notewriter, and Advisor) working in concert through LangGraph's workflow framework. The system features sophisticated workflows for profile analysis and academic support, with continuous adaptation based on student performance and feedback. Additional Resources 📚 YouTube Explanation Blog Post Scientific Paper Agent - Literature Review Overview 🔎 An intelligent research assistant that helps users navigate, understand, and analyze scientific literature through an orchestrated workflow. The system combines academic APIs with sophisticated paper processing techniques to automate literature review tasks, enabling researchers to efficiently extract insights from academic papers while maintaining research rigor and quality control. Implementation 🛠️ Leverages LangGraph to create a five-node workflow system including decision making, planning, tool execution, and quality validation nodes. The system integrates the CORE API for paper access, PDFplumber for document processing, and advanced language models for analysis. Key features include a retry mechanism for robust paper downloads, structured data handling through Pydantic models, and quality-focused improvement cycles with human-in-the-loop validation options. Additional Resources 📚 YouTube Explanation Blog Post Chiron - A Feynman-Enhanced Learning Agent Overview 🔎 An adaptive learning agent that guides users through educational content using a structured checkpoint system and Feynman-style teaching. The system processes learning materials (either user-provided or web-retrieved), verifies understanding through interactive checkpoints, and provides simplified explanations when needed, creating a personalized learning experience that mimics one-on-one tutoring. Implementation 🛠️ Uses LangGraph to orchestrate a learning workflow that includes checkpoint definition, context building, understanding verification, and Feynman teaching nodes. The system integrates web search for dynamic content retrieval, employs semantic chunking for context processing, and manages embeddings for relevant information retrieval. Key features include a 70% understanding threshold for progression, interactive human-in-the-loop validation, and structured output through Pydantic models for consistent data handling. Additional Resources 📚 YouTube Explanation 💼 Business and Professional Agents Customer Support Agent (LangGraph) Overview 🔎 An intelligent customer support agent using LangGraph categorizes queries, analyzes sentiment, and provides appropriate responses or escalates issues. Implementation 🛠️ Utilizes LangGraph to create a workflow combining state management, query categorization, sentiment analysis, and response generation. Essay Grading Agent (LangGraph) Overview 🔎 An automated essay grading system using LangGraph and an LLM model evaluates essays based on relevance, grammar, structure, and depth of analysis. Implementation 🛠️ Utilizes a state graph to define the grading workflow, incorporating separate grading functions for each criterion. Travel Planning Agent (LangGraph) Overview 🔎 A Travel Planner using LangGraph demonstrates how to build a stateful, multi-step conversational AI application that collects user input and generates personalized travel itineraries. Implementation 🛠️ Utilizes StateGraph to define the application flow, incorporates custom PlannerState for process management. GenAI Career Assistant Agent Overview 🔎 The GenAI Career Assistant demonstrates how to create a multi-agent system that provides personalized guidance for careers in Generative AI. Using LangGraph and Gemini LLM, the system delivers customized learning paths, resume assistance, interview preparation, and job search support. Implementation 🛠️ Leverages a multi-agent architecture using LangGraph to coordinate specialized agents (Learning, Resume, Interview, Job Search) through TypedDict-based state management. The system employs sophisticated query categorization and routing while integrating with external tools like DuckDuckGo for job searches and dynamic content generation. Additional Resources 📚 YouTube Explanation Project Manager Assistant Agent Overview 🔎 An AI agent designed to assist in project management tasks by automating the process of creating actionable tasks from project descriptions, identifying dependencies, scheduling work, and assigning tasks to team members based on expertise. The system includes risk assessment and self-reflection capabilities to optimize project plans through multiple iterations, aiming to minimize overall project risk. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized nodes including task generation, dependency mapping, scheduling, allocation, and risk assessment. Each node uses GPT-4o-mini for structured outputs following Pydantic models. The system implements a feedback loop for self-improvement, where risk scores trigger reflection cycles that generate insights to optimize the project plan. Visualization tools display Gantt charts of the generated schedules across iterations. Additional Resources 📚 YouTube Explanation Contract Analysis Assistant (ClauseAI) Overview 🔎 ClauseAI demonstrates how to build an AI-powered contract analysis system using a multi-agent approach. The system employs specialized AI agents for different aspects of contract review, from clause analysis to compliance checking, and leverages LangGraph for workflow orchestration and Pinecone for efficient clause retrieval and comparison. Implementation 🛠️ Implements a sophisticated state-based workflow using LangGraph to coordinate multiple AI agents through contract analysis stages. The system features Pydantic models for data validation, vector storage with Pinecone for clause comparison, and LLM-based analysis for generating comprehensive contract reports. The implementation includes parallel processing capabilities and customizable report generation based on user requirements. Additional Resources 📚 YouTube Explanation E2E Testing Agent Overview 🔎 The E2E Testing Agent demonstrates how to build an AI-powered system that converts natural language test instructions into executable end-to-end web tests. Using LangGraph for workflow orchestration and Playwright for browser automation, the system enables users to specify test cases in plain English while handling the complexity of test generation and execution. Implementation 🛠️ Implements a structured workflow using LangGraph to coordinate test generation, validation, and execution. The system features TypedDict state management, integration with Playwright for browser automation, and LLM-based code generation for converting natural language instructions into executable test scripts. The implementation includes DOM state analysis, error handling, and comprehensive test reporting. Additional Resources 📚 YouTube Explanation 🎨 Creative and Content Generation Agents GIF Animation Generator Agent (LangGraph) Overview 🔎 A GIF animation generator that integrates LangGraph for workflow management, GPT-4 for text generation, and DALL-E for image creation, producing custom animations from user prompts. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that generates character descriptions, plots, and image prompts using GPT-4, creates images with DALL-E 3, and assembles them into GIFs using PIL. Employs asynchronous programming for efficient parallel processing. TTS Poem Generator Agent (LangGraph) Overview 🔎 An advanced text-to-speech (TTS) agent using LangGraph and OpenAI's APIs classifies input text, processes it based on content type, and generates corresponding speech output. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that classifies input text using GPT models, applies content-specific processing, and converts the processed text to speech using OpenAI's TTS API. The system adapts its output based on the identified content type (general, poem, news, or joke). Music Compositor Agent (LangGraph) Overview 🔎 An AI Music Compositor using LangGraph and OpenAI's language models generates custom musical compositions based on user input. The system processes the input through specialized components, each contributing to the final musical piece, which is then converted to a playable MIDI file. Implementation 🛠️ LangGraph orchestrates a workflow that transforms user input into a musical composition, using ChatOpenAI (GPT-4) to generate melody, harmony, and rhythm, which are then style-adapted. The final AI-generated composition is converted to a MIDI file using music21 and can be played back using pygame. Content Intelligence: Multi-Platform Content Generation Agent Overview 🔎 Content Intelligence demonstrates how to build an advanced content generation system that transforms input text into platform-optimized content across multiple social media channels. The system employs LangGraph for workflow orchestration to analyze content, conduct research, and generate tailored content while maintaining brand consistency across different platforms. Implementation 🛠️ Implements a sophisticated workflow using LangGraph to coordinate multiple specialized nodes (Summary, Research, Platform-Specific) through the content generation process. The system features TypedDict and Pydantic models for state management, integration with Tavily Search for research enhancement, and platform-specific content generation using GPT-4. The implementation includes parallel processing for multiple platforms and customizable content templates. Additional Resources 📚 YouTube Explanation Business Meme Generator Using LangGraph and Memegen.link Overview 🔎 The Business Meme Generator demonstrates how to create an AI-powered system that generates contextually relevant memes based on company website analysis. Using LangGraph for workflow orchestration, the system combines Groq's Llama model for text analysis and the Memegen.link API to automatically produce brand-aligned memes for digital marketing. Implementation 🛠️ Implements a state-managed workflow using LangGraph to coordinate website content analysis, meme concept generation, and image creation. The system features Pydantic models for data validation, asynchronous processing with aiohttp, and integration with external APIs (Groq, Memegen.link) to create a complete meme generation pipeline with customizable templates. Additional Resources 📚 YouTube Explanation Murder Mystery Game with LLM Agents Overview 🔎 A text-based detective game that utilizes autonomous LLM agents as interactive characters in a procedurally generated murder mystery. Drawing inspiration from the UNBOUNDED paper, the system creates unique scenarios each time, with players taking on the role of Sherlock Holmes to solve the case through character interviews and deductive reasoning. Implementation 🛠️ Leverages two LangGraph workflows - a main game loop for story/character generation and game progression, and a conversation sub-graph for character interactions. The system uses a combination of LLM-powered narrative generation, character AI, and structured game mechanics to create an immersive investigative experience with replayable storylines. Additional Resources 📚 YouTube Explanation 📊 Analysis and Information Processing Agents Memory-Enhanced Conversational Agent Overview 🔎 A memory-enhanced conversational AI agent incorporates short-term and long-term memory systems to maintain context within conversations and across multiple sessions, improving interaction quality and personalization. Implementation 🛠️ Integrates a language model with separate short-term and long-term memory stores, utilizes a prompt template incorporating both memory types, and employs a memory manager for storage and retrieval. The system includes an interaction loop that updates and utilizes memories for each response. Multi-Agent Collaboration System Overview 🔎 A multi-agent collaboration system combining historical research with data analysis, leveraging large language models to simulate specialized agents working together to answer complex historical questions. Implementation 🛠️ Utilizes a base Agent class to create specialized HistoryResearchAgent and DataAnalysisAgent, orchestrated by a HistoryDataCollaborationSystem. The system follows a five-step process: historical context provision, data needs identification, historical data provision, data analysis, and final synthesis. Self-Improving Agent Overview 🔎 A Self-Improving Agent using LangChain engages in conversations, learns from interactions, and continuously improves its performance over time through reflection and adaptation. Implementation 🛠️ Integrates a language model with chat history management, response generation, and a reflection mechanism. The system employs a learning system that incorporates insights from reflection to enhance future performance, creating a continuous improvement loop. Task-Oriented Agent Overview 🔎 A language model application using LangChain that summarizes text and translates the summary to Spanish, combining custom functions, structured tools, and an agent for efficient text processing. Implementation 🛠️ Utilizes custom functions for summarization and translation, wrapped as structured tools. Employs a prompt template to guide the agent, which orchestrates the use of tools. An agent executor manages the process, taking input text and producing both an English summary and its Spanish translation. Internet Search and Summarize Agent Overview 🔎 An intelligent web research assistant that combines web search capabilities with AI-powered summarization, automating the process of gathering information from the internet and distilling it into concise, relevant summaries. Implementation 🛠️ Integrates a web search module using DuckDuckGo's API, a result parser, and a text summarization engine leveraging OpenAI's language models. The system performs site-specific or general searches, extracts relevant content, generates concise summaries, and compiles attributed results for efficient information retrieval and synthesis. Multi agent research team - Autogen Overview 🔎 This technique explores a multi-agent system for collaborative research using the AutoGen library. It employs agents to solve tasks collaboratively, focusing on efficient execution and quality assurance. The system enhances research by distributing tasks among specialized agents. Implementation 🛠️ Agents are configured with specific roles using the GPT-4 model, including admin, developer, planner, executor, and quality assurance. Interaction management ensures orderly communication with defined transitions. Task execution involves collaborative planning, coding, execution, and quality checking, demonstrating a scalable framework for various domains. Additional Resources 📚 comprehensive solution with UI Blogpost Sales Call Analyzer Overview 🔎 An intelligent system that automates the analysis of sales call recordings by combining audio transcription with advanced natural language processing. The analyzer transcribes audio using OpenAI's Whisper, processes the text using NLP techniques, and generates comprehensive reports including sentiment analysis, key phrases, pain points, and actionable recommendations to improve sales performance. Implementation 🛠️ Utilizes multiple components in a structured workflow: OpenAI Whisper for audio transcription, CrewAI for task automation and agent management, and LangChain for orchestrating the analysis pipeline. The system processes audio through a series of steps from transcription to detailed analysis, leveraging custom agents and tasks to generate structured JSON reports containing insights about customer sentiment, sales opportunities, and recommended improvements. Additional Resources 📚 YouTube Explanation Weather Emergency & Response System Overview 🔎 A comprehensive system demonstrating two agent graph implementations for weather emergency response: a real-time graph processing live weather data, and a hybrid graph combining real and simulated data for testing high-severity scenarios. The system handles complete workflow from data gathering through emergency plan generation, with automated notifications and human verification steps. Implementation 🛠️ Utilizes LangGraph for orchestrating complex workflows with state management, integrating OpenWeatherMap API for real-time data, and Gemini for analysis and response generation. The system incorporates email notifications, social media monitoring simulation, and severity-based routing with configurable human verification for low/medium severity events. Additional Resources 📚 YouTube Explanation Self-Healing Codebase System Overview 🔎 An intelligent system that automatically detects, diagnoses, and fixes runtime code errors using LangGraph workflow orchestration and ChromaDB vector storage. The system maintains a memory of encountered bugs and their fixes through vector embeddings, enabling pattern recognition for similar errors across the codebase. Implementation 🛠️ Utilizes a state-based graph workflow that processes function definitions and runtime arguments through specialized nodes for error detection, code analysis, and fix generation. Incorporates ChromaDB for vector-based storage of bug patterns and fixes, with automated search and retrieval capabilities for similar error patterns, while maintaining code execution safety through structured validation steps. Additional Resources 📚 YouTube Explanation DataScribe: AI-Powered Schema Explorer Overview 🔎 An intelligent agent system that enables intuitive exploration and querying of relational databases through natural language interactions. The system utilizes a fleet of specialized agents, coordinated by a stateful Supervisor, to handle schema discovery, query planning, and data analysis tasks while maintaining contextual understanding through vector-based relationship graphs. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-agent workflow including discovery, inference, and planning agents, with NetworkX for relationship graph visualization and management. The system incorporates dynamic state management through TypedDict classes, maintains database context between sessions using a db_graph attribute, and includes safety measures to prevent unauthorized database modifications. Memory-Enhanced Email Agent (LangGraph & LangMem) Overview 🔎 An intelligent email assistant that combines three types of memory (semantic, episodic, and procedural) to create a system that improves over time. The agent can triage incoming emails, draft contextually appropriate responses using stored knowledge, and enhance its performance based on user feedback. Implementation 🛠️ Leverages LangGraph for workflow orchestration and LangMem for sophisticated memory management across multiple memory types. The system implements a triage workflow with memory-enhanced decision making, specialized tools for email composition and calendar management, and a self-improvement mechanism that updates its own prompts based on feedback and past performance. Additional Resources 📚 Blog Post 📰 News and Information Agents News TL;DR using LangGraph Overview 🔎 A news summarization system that generates concise TL;DR summaries of current events based on user queries. The system leverages large language models for decision making and summarization while integrating with news APIs to access up-to-date content, allowing users to quickly catch up on topics of interest through generated bullet-point summaries. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow combining multiple components: GPT-4o-mini for generating search terms and article summaries, NewsAPI for retrieving article metadata, BeautifulSoup for web scraping article content, and Asyncio for concurrent processing. The system follows a structured pipeline from query processing through article selection and summarization, managing the flow between components to produce relevant TL;DRs of current news articles. Additional Resources 📚 YouTube Explanation Blog Post AInsight: AI/ML Weekly News Reporter Overview 🔎 AInsight demonstrates how to build an intelligent news aggregation and summarization system using a multi-agent architecture. The system employs three specialized agents (NewsSearcher, Summarizer, Publisher) to automatically collect, process and summarize AI/ML news for general audiences through LangGraph-based workflow orchestration. Implementation 🛠️ Implements a state-managed multi-agent system using LangGraph to coordinate the news collection (Tavily API), technical content summarization (GPT-4), and report generation processes. The system features modular architecture with TypedDict-based state management, external API integration, and markdown report generation with customizable templates. Additional Resources 📚 YouTube Explanation Journalism-Focused AI Assistant Overview 🔎 A specialized AI assistant that helps journalists tackle modern journalistic challenges like misinformation, bias, and information overload. The system integrates fact-checking, tone analysis, summarization, and grammar review tools to enhance the accuracy and efficiency of journalistic work while maintaining ethical reporting standards. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized components including language models for analysis and generation, web search integration via DuckDuckGo's API, document parsing tools like PyMuPDFLoader and WebBaseLoader, text splitting with RecursiveCharacterTextSplitter, and structured JSON outputs. Each component works together through a unified workflow to analyze content, verify facts, detect bias, extract quotes, and generate comprehensive reports. Blog Writer (Open AI Swarm) Overview 🔎 A multi-agent system for collaborative blog post creation using OpenAI's Swarm package. It leverages specialized agents to perform research, planning, writing, and editing tasks efficiently. Implementation 🛠️ Utilizes OpenAI's Swarm Package to manage agent interactions. Includes an admin, researcher, planner, writer, and editor, each with specific roles. The system follows a structured workflow: topic setting, outlining, research, drafting, and editing. This approach enhances content creation through task distribution, specialization, and collaborative problem-solving. Additional Resources 📚 Swarm Repo Podcast Internet Search and Generate Agent 🎙️ Overview 🔎 A two step agent that first searches the internet for a given topic and then generates a podcast on the topic found. The search step uses a search agent and search function to find the most relevant information. The second step uses a podcast generation agent and generation function to create a podcast on the topic found. Implementation 🛠️ Utilizes LangGraph to orchestrate a two-step workflow. The first step involves a search agent and function to gather information from the internet. The second step uses a podcast generation agent and function to create a podcast based on the gathered information. 🛍️ Shopping and Product Analysis Agents ShopGenie - Redefining Online Shopping Customer Experience Overview 🔎 An AI-powered shopping assistant that helps customers make informed purchasing decisions even without domain expertise. The system analyzes product information from multiple sources, compares specifications and reviews, identifies the best option based on user needs, and delivers recommendations through email with supporting video reviews, creating a comprehensive shopping experience. Implementation 🛠️ Uses LangGraph to orchestrate a workflow combining Tavily for web search, Llama-3.1-70B for structured data analysis and product comparison, and YouTube API for review video retrieval. The system processes search results through multiple nodes including schema mapping, product comparison, review identification, and email generation. Key features include structured Pydantic models for consistent data handling, retry mechanisms for robust API interactions, and email delivery through SMTP for sharing recommendations. Additional Resources 📚 YouTube Explanation Car Buyer AI Agent Overview 🔎 The Smart Product Buyer AI Agent demonstrates how to build an intelligent system that assists users in making informed purchasing decisions. Using LangGraph and LLM-based intelligence, the system processes user requirements, scrapes product listings from websites like AutoTrader, and provides detailed analysis and recommendations for car purchases. Implementation 🛠️ Implements a state-based workflow using LangGraph to coordinate user interaction, web scraping, and decision support. The system features TypedDict state management, async web scraping with Playwright, and integrates with external APIs for comprehensive product analysis. The implementation includes a Gradio interface for real-time chat interaction and modular scraper architecture for easy extension to additional product categories. Additional Resources 📚 YouTube Explanation 🎯 Task Management and Productivity Agents Taskifier - Intelligent Task Allocation & Management Overview 🔎 An intelligent task management system that analyzes user work styles and creates personalized task breakdown strategies, born from the observation that procrastination often stems from task ambiguity among students and early-career professionals. The system evaluates historical work patterns, gathers relevant task information through web search, and generates customized step-by-step approaches to optimize productivity and reduce workflow paralysis. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-step workflow including work style analysis, information gathering via Tavily API, and customized plan generation. The system maintains state through the process, integrating historical work pattern data with fresh task research to output detailed, personalized task execution plans aligned with the user's natural working style. Additional Resources 📚 YouTube Explanation Grocery Management Agents System Overview 🔎 A multi-agent system built with CrewAI that automates grocery management tasks including receipt interpretation, expiration date tracking, inventory management, and recipe recommendations. The system uses specialized agents to extract data from receipts, estimate product shelf life, track consumption, and suggest recipes to minimize food waste. Implementation 🛠️ Implements four specialized agents using CrewAI - a Receipt Interpreter that extracts item details from receipts, an Expiration Date Estimator that determines shelf life using online sources, a Grocery Tracker that maintains inventory based on consumption, and a Recipe Recommender that suggests meals using available ingredients. Each agent has specific tools and tasks orchestrated through a crew workflow. Additional Resources 📚 YouTube Explanation 🔍 Quality Assurance and Testing Agents LangGraph-Based Systems Inspector Overview 🔎 A comprehensive testing and validation tool for LangGraph-based applications that automatically analyzes system architecture, generates test cases, and identifies potential vulnerabilities through multi-agent inspection. The inspector employs specialized AI testers to evaluate different aspects of the system, from basic functionality to security concerns and edge cases. Implementation 🛠️ Integrates LangGraph for workflow orchestration, multiple LLM-powered testing agents, and a structured evaluation pipeline that includes static analysis, test case generation, and results verification. The system uses Pydantic for data validation, NetworkX for graph representation, and implements a modular architecture that allows for parallel test execution and comprehensive result analysis. Additional Resources 📚 YouTube Explanation Blog Post EU Green Deal FAQ Bot Overview 🔎 The EU Green Deal FAQ Bot demonstrates how to build a RAG-based AI agent that helps businesses understand EU green deal policies. The system processes complex regulatory documents into manageable chunks and provides instant, accurate answers to common questions about environmental compliance, emissions reporting, and waste management requirements. Implementation 🛠️ Implements a sophisticated RAG pipeline using FAISS vectorstore for document storage, semantic chunking for preprocessing, and multiple specialized agents (Retriever, Summarizer, Evaluator) for query processing. The system features query rephrasing for improved accuracy, cross-reference with gold Q&A datasets for answer validation, and comprehensive evaluation metrics to ensure response quality and relevance. Additional Resources 📚 YouTube Explanation Systematic Review Automation System + Paper Draft Creation Overview 🔎 A comprehensive system for automating academic systematic reviews using a directed graph architecture and LangChain components. The system generates complete, publication-ready systematic review papers, automatically processing everything from literature search through final draft generation with multiple revision cycles. Implementation 🛠️ Utilizes a state-based graph workflow that handles paper search and selection (up to 3 papers), PDF processing, and generates a complete academic paper with all standard sections (abstract, introduction, methods, results, conclusions, references). The system incorporates multiple revision cycles with automated critique and improvement phases, all orchestrated through LangGraph state management. Additional Resources 📚 YouTube Explanation 🌟 Special Advanced Technique 🌟 Sophisticated Controllable Agent for Complex RAG Tasks 🤖 Overview 🔎 An advanced RAG solution designed to tackle complex questions that simple semantic similarity-based retrieval cannot solve. This approach uses a sophisticated deterministic graph as the "brain" 🧠 of a highly controllable autonomous agent, capable of answering non-trivial questions from your own data. Implementation 🛠️ • Implement a multi-step process involving question anonymization, high-level planning, task breakdown, adaptive information retrieval and question answering, continuous re-planning, and rigorous answer verification to ensure grounded and accurate responses. Getting Started To begin exploring and building GenAI agents: Clone this repository: Navigate to the technique you're interested in: Follow the detailed implementation guide in each technique's notebook. Contributing We welcome contributions from the community! If you have a new technique or improvement to suggest: Fork the repository Create your feature branch: git checkout -b feature/AmazingFeature Commit your changes: git commit -m 'Add some AmazingFeature' Push to the branch: git push origin feature/AmazingFeature Open a pull request Contributors License This project is licensed under a custom non-commercial license - see the LICENSE file for details. ⭐️ If you find this repository helpful, please consider giving it a star! Keywords: GenAI, Generative AI, Agents, NLP, AI, Machine Learning, Natural Language Processing, LLM, Conversational AI, Task-Oriented AI

LLMs-from-scratch
github
LLM Vibe Score0.62
Human Vibe Score1
rasbtMar 28, 2025

LLMs-from-scratch

Build a Large Language Model (From Scratch) This repository contains the code for developing, pretraining, and finetuning a GPT-like LLM and is the official code repository for the book Build a Large Language Model (From Scratch). In Build a Large Language Model (From Scratch), you'll learn and understand how large language models (LLMs) work from the inside out by coding them from the ground up, step by step. In this book, I'll guide you through creating your own LLM, explaining each stage with clear text, diagrams, and examples. The method described in this book for training and developing your own small-but-functional model for educational purposes mirrors the approach used in creating large-scale foundational models such as those behind ChatGPT. In addition, this book includes code for loading the weights of larger pretrained models for finetuning. Link to the official source code repository Link to the book at Manning (the publisher's website) Link to the book page on Amazon.com ISBN 9781633437166 To download a copy of this repository, click on the Download ZIP button or execute the following command in your terminal: (If you downloaded the code bundle from the Manning website, please consider visiting the official code repository on GitHub at https://github.com/rasbt/LLMs-from-scratch for the latest updates.) Table of Contents Please note that this README.md file is a Markdown (.md) file. If you have downloaded this code bundle from the Manning website and are viewing it on your local computer, I recommend using a Markdown editor or previewer for proper viewing. If you haven't installed a Markdown editor yet, MarkText is a good free option. You can alternatively view this and other files on GitHub at https://github.com/rasbt/LLMs-from-scratch in your browser, which renders Markdown automatically. Tip: If you're seeking guidance on installing Python and Python packages and setting up your code environment, I suggest reading the README.md file located in the setup directory. | Chapter Title | Main Code (for Quick Access) | All Code + Supplementary | |------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------| | Setup recommendations | - | - | | Ch 1: Understanding Large Language Models | No code | - | | Ch 2: Working with Text Data | - ch02.ipynb- dataloader.ipynb (summary)- exercise-solutions.ipynb | ./ch02 | | Ch 3: Coding Attention Mechanisms | - ch03.ipynb- multihead-attention.ipynb (summary) - exercise-solutions.ipynb| ./ch03 | | Ch 4: Implementing a GPT Model from Scratch | - ch04.ipynb- gpt.py (summary)- exercise-solutions.ipynb | ./ch04 | | Ch 5: Pretraining on Unlabeled Data | - ch05.ipynb- gpttrain.py (summary) - gptgenerate.py (summary) - exercise-solutions.ipynb | ./ch05 | | Ch 6: Finetuning for Text Classification | - ch06.ipynb - gptclassfinetune.py - exercise-solutions.ipynb | ./ch06 | | Ch 7: Finetuning to Follow Instructions | - ch07.ipynb- gptinstructionfinetuning.py (summary)- ollamaevaluate.py (summary)- exercise-solutions.ipynb | ./ch07 | | Appendix A: Introduction to PyTorch | - code-part1.ipynb- code-part2.ipynb- DDP-script.py- exercise-solutions.ipynb | ./appendix-A | | Appendix B: References and Further Reading | No code | - | | Appendix C: Exercise Solutions | No code | - | | Appendix D: Adding Bells and Whistles to the Training Loop | - appendix-D.ipynb | ./appendix-D | | Appendix E: Parameter-efficient Finetuning with LoRA | - appendix-E.ipynb | ./appendix-E | The mental model below summarizes the contents covered in this book. Hardware Requirements The code in the main chapters of this book is designed to run on conventional laptops within a reasonable timeframe and does not require specialized hardware. This approach ensures that a wide audience can engage with the material. Additionally, the code automatically utilizes GPUs if they are available. (Please see the setup doc for additional recommendations.) Bonus Material Several folders contain optional materials as a bonus for interested readers: Setup Python Setup Tips Installing Python Packages and Libraries Used In This Book Docker Environment Setup Guide Chapter 2: Working with text data Byte Pair Encoding (BPE) Tokenizer From Scratch Comparing Various Byte Pair Encoding (BPE) Implementations Understanding the Difference Between Embedding Layers and Linear Layers Dataloader Intuition with Simple Numbers Chapter 3: Coding attention mechanisms Comparing Efficient Multi-Head Attention Implementations Understanding PyTorch Buffers Chapter 4: Implementing a GPT model from scratch FLOPS Analysis Chapter 5: Pretraining on unlabeled data: Alternative Weight Loading Methods Pretraining GPT on the Project Gutenberg Dataset Adding Bells and Whistles to the Training Loop Optimizing Hyperparameters for Pretraining Building a User Interface to Interact With the Pretrained LLM Converting GPT to Llama Llama 3.2 From Scratch Memory-efficient Model Weight Loading Extending the Tiktoken BPE Tokenizer with New Tokens PyTorch Performance Tips for Faster LLM Training Chapter 6: Finetuning for classification Additional experiments finetuning different layers and using larger models Finetuning different models on 50k IMDB movie review dataset Building a User Interface to Interact With the GPT-based Spam Classifier Chapter 7: Finetuning to follow instructions Dataset Utilities for Finding Near Duplicates and Creating Passive Voice Entries Evaluating Instruction Responses Using the OpenAI API and Ollama Generating a Dataset for Instruction Finetuning Improving a Dataset for Instruction Finetuning Generating a Preference Dataset with Llama 3.1 70B and Ollama Direct Preference Optimization (DPO) for LLM Alignment Building a User Interface to Interact With the Instruction Finetuned GPT Model Questions, Feedback, and Contributing to This Repository I welcome all sorts of feedback, best shared via the Manning Forum or GitHub Discussions. Likewise, if you have any questions or just want to bounce ideas off others, please don't hesitate to post these in the forum as well. Please note that since this repository contains the code corresponding to a print book, I currently cannot accept contributions that would extend the contents of the main chapter code, as it would introduce deviations from the physical book. Keeping it consistent helps ensure a smooth experience for everyone. Citation If you find this book or code useful for your research, please consider citing it. Chicago-style citation: Raschka, Sebastian. Build A Large Language Model (From Scratch). Manning, 2024. ISBN: 978-1633437166. BibTeX entry:

openkore
github
LLM Vibe Score0.567
Human Vibe Score0.2670720058425842
OpenKoreMar 28, 2025

openkore

!logo !Language !Stars !Fork !Watch !Issues !Pull Requests !Contributors !GithubWorkflowstatus !GithubWorkflowCI OpenKore is a custom client and intelligent automated assistant for Ragnarok Online. It is a free, open source and cross-platform program (Linux, Windows and MacOS are supported). Prerequisites To run OpenKore you will need: Read the Requirements page on our wiki Quickstart Download OpenKore and extract it. Alternatively, you could press the Windows Key + R, type in `cmd` & enter. Run the following command in the cmd to clone. Note: Git required. Configure OpenKore: documentation. Run openkore.pl (You can run start.exe or wxstart.exe if you use Windows). F.A.Q. (Frequently Asked Questions) Have a problem? Update your openkore or download a new one. Still having problems? Search in Wiki. Search in Forum. Search in Github issues. Cant find what you need? / Do not understand? Ask in IRC Channel. Is it a problem in Openkore? Read things to know before reporting. Things to know Make sure you've read FAQ especially to run latest commit on master branch & checking existed issue for your request. Please post in English. Please use the issue template. Please include informations about your server & any changes you did in your configuration. Briefly explain what happened, take a screenhot & include the error message (If available). Please be advised any developers here are doing this on their free time. Please give some time for anyone to respond. Status of botting on Official Servers | Server | Description | Protection | Status | Supporter | | --- | --- | --- | --- | --- | | aRO | Asia RO | CheatDefender | Not working | N/A | | bRO | Brazil RO | EAC | Not working | N/A | | cRO | China RO | nProtect | Botable | N/A | | euRO | Europe RO | Frost Security | Not working | N/A | | euRO-Prime | Europe RO (Prime) | Frost Security | Not working | N/A | | iRO Renewal | International RO | EAC | Not working | N/A | | idRO | Indonesia RO | EAC | Not Working | N/A | | idRO-Retro | Indonesia RO (Retro) | Delphine | Not Working | N/A | | jRO | Japan RO | nProtect | Need Verification | N/A | | kRO | Korea RO | nProtect | Botable | N/A | | kRO-Zero | Korea RO (Zero) | nProtect | Botable | N/A | | ruRO-Prime | Russia RO (Prime) | Frost Security | Not Working | ya4ept | | tRO | Thailand RO | EAC | Not Working | N/A | | tRO-Classic | Thailand RO (Classic) | EAC | Not Working | N/A | | twRO | Taiwan RO | CheatDefender | Not Working | N/A | | vRO | Vietnam RO | nProtect | Not Working | N/A | Contributing OpenKore is developed by a team located around the world. Check out the documentation and if necessary, submit a pull request. Contacts OpenKore Wiki OpenKore forum IRC Channel Connect IRC with Kiwiirc Brazilian Community Russian Community Warning Other communities or websites are not affiliated to openkore.com Other Links Openkore History Legacy Changelog Openkore RoadMap Feature Requests and TODO Wiki and Feature Requests GitHub License This software is open source, licensed under the GNU General Public License, version 2. Basically, this means that you're free to use and allowed to modify and distribute this software. However, if you distribute modified versions, you MUST also distribute the source code. See http://www.gnu.org/licenses/gpl.html for the full license.

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

h2o-llmstudio
github
LLM Vibe Score0.499
Human Vibe Score0.04822694170894296
h2oaiMar 28, 2025

h2o-llmstudio

Welcome to H2O LLM Studio, a framework and no-code GUI designed for fine-tuning state-of-the-art large language models (LLMs). Jump to With H2O LLM Studio, you can Quickstart What's New Setup Recommended Install Virtual Environments Run H2O LLM Studio GUI Run H2O LLM Studio GUI using Docker Run H2O LLM Studio with command line interface (CLI) Troubleshooting Data format and example data Training your model Example: Run on OASST data via CLI Model checkpoints Documentation Contributing License With H2O LLM Studio, you can easily and effectively fine-tune LLMs without the need for any coding experience. use a graphic user interface (GUI) specially designed for large language models. finetune any LLM using a large variety of hyperparameters. use recent finetuning techniques such as Low-Rank Adaptation (LoRA) and 8-bit model training with a low memory footprint. use Reinforcement Learning (RL) to finetune your model (experimental) use advanced evaluation metrics to judge generated answers by the model. track and compare your model performance visually. In addition, Neptune and W&B integration can be used. chat with your model and get instant feedback on your model performance. easily export your model to the Hugging Face Hub and share it with the community. Quickstart For questions, discussing, or just hanging out, come and join our Discord! Use cloud-based runpod.io instance to run the H2O LLM Studio GUI. Using CLI for fine-tuning LLMs: What's New PR 788 New problem type for Causal Regression Modeling allows to train single target regression data using LLMs. PR 747 Fully removed RLHF in favor of DPO/IPO/KTO optimization. PR 741 Removing separate max length settings for prompt and answer in favor of a single maxlength settings better resembling chattemplate functionality from transformers. PR 592 Added KTOPairLoss for DPO modeling allowing to train models with simple preference data. Data currently needs to be manually prepared by randomly matching positive and negative examples as pairs. PR 592 Starting to deprecate RLHF in favor of DPO/IPO optimization. Training is disabled, but old experiments are still viewable. RLHF will be fully removed in a future release. PR 530 Introduced a new problem type for DPO/IPO optimization. This optimization technique can be used as an alternative to RLHF. PR 288 Introduced Deepspeed for sharded training allowing to train larger models on machines with multiple GPUs. Requires NVLink. This feature replaces FSDP and offers more flexibility. Deepspeed requires a system installation of cudatoolkit and we recommend using version 12.1. See Recommended Install. PR 449 New problem type for Causal Classification Modeling allows to train binary and multiclass models using LLMs. PR 364 User secrets are now handled more securely and flexible. Support for handling secrets using the 'keyring' library was added. User settings are tried to be migrated automatically. Please note that due to current rapid development we cannot guarantee full backwards compatibility of new functionality. We thus recommend to pin the version of the framework to the one you used for your experiments. For resetting, please delete/backup your data and output folders. Setup H2O LLM Studio requires a machine with Ubuntu 16.04+ and at least one recent Nvidia GPU with Nvidia drivers version >= 470.57.02. For larger models, we recommend at least 24GB of GPU memory. For more information about installation prerequisites, see the Set up H2O LLM Studio guide in the documentation. For a performance comparison of different GPUs, see the H2O LLM Studio performance guide in the documentation. Recommended Install The recommended way to install H2O LLM Studio is using pipenv with Python 3.10. To install Python 3.10 on Ubuntu 16.04+, execute the following commands: System installs (Python 3.10) Installing NVIDIA Drivers (if required) If deploying on a 'bare metal' machine running Ubuntu, one may need to install the required Nvidia drivers and CUDA. The following commands show how to retrieve the latest drivers for a machine running Ubuntu 20.04 as an example. One can update the following based on their OS. alternatively, one can install cudatoolkits in a conda environment: Virtual environments We offer various ways of setting up the necessary python environment. Pipenv virtual environment The following command will create a virtual environment using pipenv and will install the dependencies using pipenv: If you are having troubles installing the flash_attn package, consider running instead. This will install the dependencies without the flash_attn package. Note that this will disable the use of Flash Attention 2 and model training will be slower and consume more memory. Nightly Conda virtual environment You can also setup a conda virtual environment that can also deviate from the recommended setup. The contains a command that installs a fresh conda environment with CUDA 12.4 and current nightly PyTorch. Using requirements.txt If you wish to use another virtual environment, you can also install the dependencies using the requirements.txt file: Run H2O LLM Studio GUI You can start H2O LLM Studio using the following command: This command will start the H2O wave server and app. Navigate to (we recommend using Chrome) to access H2O LLM Studio and start fine-tuning your models! If you are running H2O LLM Studio with a custom environment other than Pipenv, you need to start the app as follows: If you are using the nightly conda environment, you can run . Run H2O LLM Studio GUI using Docker Install Docker first by following instructions from NVIDIA Containers. Make sure to have nvidia-container-toolkit installed on your machine as outlined in the instructions. H2O LLM Studio images are stored in the h2oai dockerhub container repository. Navigate to (we recommend using Chrome) to access H2O LLM Studio and start fine-tuning your models! (Note other helpful docker commands are docker ps and docker kill.) If you prefer to build your own Docker image from source, follow the instructions below. Run H2O LLM Studio with command line interface (CLI) You can also use H2O LLM Studio with the command line interface (CLI) and specify the configuration .yaml file that contains all the experiment parameters. To finetune using H2O LLM Studio with CLI, activate the pipenv environment by running make shell, and then use the following command: To run on multiple GPUs in DDP mode, run the following command: By default, the framework will run on the first k GPUs. If you want to specify specific GPUs to run on, use the CUDAVISIBLEDEVICES environment variable before the command. To start an interactive chat with your trained model, use the following command: where experiment_name is the output folder of the experiment you want to chat with (see configuration). The interactive chat will also work with model that were finetuned using the UI. To publish the model to Hugging Face, use the following command: pathtoexperiment is the output folder of the experiment. device is the target device for running the model, either 'cpu' or 'cuda:0'. Default is 'cuda:0'. api_key is the Hugging Face API Key. If user logged in, it can be omitted. user_id is the Hugging Face user ID. If user logged in, it can be omitted. model_name is the name of the model to be published on Hugging Face. It can be omitted. safe_serialization is a flag indicating whether safe serialization should be used. Default is True. Troubleshooting If running on cloud based machines such as runpod, you may need to set the following environment variable to allow the H2O Wave server to accept connections from the proxy: If you are experiencing timeouts when running the H2O Wave server remotely, you can increase the timeout by setting the following environment variables: All default to 5 (seconds). Increase them if you are experiencing timeouts. Use -1 to disable the timeout. Data format and example data For details on the data format required when importing your data or example data that you can use to try out H2O LLM Studio, see Data format in the H2O LLM Studio documentation. Training your model With H2O LLM Studio, training your large language model is easy and intuitive. First, upload your dataset and then start training your model. Start by creating an experiment. You can then monitor and manage your experiment, compare experiments, or push the model to Hugging Face to share it with the community. Example: Run on OASST data via CLI As an example, you can run an experiment on the OASST data via CLI. For instructions, see Run an experiment on the OASST data guide in the H2O LLM Studio documentation. Model checkpoints All open-source datasets and models are posted on H2O.ai's Hugging Face page and our H2OGPT repository. Documentation Detailed documentation and frequently asked questions (FAQs) for H2O LLM Studio can be found at . If you wish to contribute to the docs, navigate to the /documentation folder of this repo and refer to the README.md for more information. Contributing We are happy to accept contributions to the H2O LLM Studio project. Please refer to the CONTRIBUTING.md file for more information. License H2O LLM Studio is licensed under the Apache 2.0 license. Please see the LICENSE file for more information.

vector-vein
github
LLM Vibe Score0.532
Human Vibe Score0.010966292738059526
AndersonBYMar 28, 2025

vector-vein

English | 简体中文 | 日本語 🔀 VectorVein Build your automation workflow with the power of AI and your personal knowledge base. Create powerful workflows with just drag and drop, without any programming. VectorVein is a no-code AI workflow software inspired by LangChain and langflow, designed to combine the powerful capabilities of large language models and enable users to easily achieve intelligent and automated workflows for various daily tasks. 🌐 Online Experience You can experience VectorVein's online version here, with no need to download or install. Official website Online Documentation 📦 Installation and Configuration Installation After downloading VectorVein from Release, the program will create a "data" folder in the installation directory to store the database and static file resources. VectorVein is built using pywebview, based on the webview2 kernel, so you need to install the webview2 runtime. If the software cannot be opened, you may need to download the webview2 runtime manually from https://developer.microsoft.com/en-us/microsoft-edge/webview2/ [!IMPORTANT] If the software cannot be opened after decompression, please check if the downloaded compressed package .zip file is locked. You can solve this problem by right-clicking the compressed package and selecting "Unblock". Configuration Most workflows and agents in the software involve the use of AI large language models, so you should at least provide a usable configuration for a large language model. For workflows, you can see which large language models are being used in the interface, as shown in the image below. !LLM used in workflow API Endpoint Configuration Starting from v0.2.10, VectorVein separates API endpoints and large language model configurations, allowing multiple API endpoints for the same large language model. !API Endpoint Configuration After the software opens normally, click the open settings button, and you can configure the information for each API endpoint as needed, or add custom API endpoints. Currently, the API endpoints support OpenAI-compatible interfaces, which can be connected to locally running services such as LM-Studio, Ollama, vLLM, etc. The API Base for LM-Studio is typically http://localhost:1234/v1/ The API Base for Ollama is typically http://localhost:11434/v1/ Remote Large Language Model Interface Configuration Please configure the specific information for each model in the Remote LLMs tab. !LLM Settings Click on any model to set its specific configuration, as shown below. !LLM Settings The Model Key is the standard name of the large model and generally does not need to be adjusted. The Model ID is the name used during actual deployment, which usually matches the Model Key. However, in deployments like Azure OpenAI, the Model ID is user-defined and therefore needs to be adjusted according to the actual situation. Since the model IDs from different providers for the same model may vary, you can click the Edit button to configure the specific model ID under this endpoint, as shown in the figure below. !Endpoint Model ID Configuration Custom Large Language Model Interface Configuration If using a custom large language model, fill in the custom model configuration information on the Custom LLMs tab. Currently, interfaces compatible with OpenAI are supported, such as LM-Studio, Ollama, vLLM, etc. !Custom LLM Settings First, add a custom model family, then add a custom model. Don't forget to click the Save Settings button. Speech Recognition Configuration Currently, the speech recognition services of OpenAI/Deepgram are supported. For OpenAI services, you can use the same configuration as the large language model or set up a speech recognition service compatible with the OpenAI API (such as Groq). !Speech Recognition Configuration Embedding Configuration When you need to perform vector searches using vector data, you have the option to use embedding services provided by OpenAI or configure local embedding services in the Embedding Model settings. Currently, supported local embedding services require you to set up text-embeddings-inference yourself. !Local Embedding Settings Shortcut Settings For ease of daily use, you can configure shortcuts to quickly initiate voice conversations with the Agent. By launching through the shortcut, you can directly interact with the Agent via speech recognition. It is important to ensure that the speech recognition service is correctly configured beforehand. Include Screenshot means that while starting the conversation, a screenshot of the screen will be taken and uploaded as an attachment to the conversation. !Shortcut Settings Notes About the local Stable Diffusion API To use your own local Stable Diffusion API, you need to add the parameter --api to the startup item of webui-user.bat, that is 💻 Usage 📖 Basic Concepts A workflow represents a work task process, including input, output, and how input is processed to reach the output result. Examples: Translation Workflow: The input is an English Word document, and the output is also a Word document. You can design a workflow to translate the input Chinese document and generate a Chinese document output. Mind Map Workflow: If the output of the translation workflow is changed to a mind map, you can get a workflow that reads an English Word document and summarizes it into a Chinese mind map. Web Article Summary Workflow: If the input of the mind map workflow is changed to a URL of a web article, you can get a workflow that reads a web article and summarizes it into a Chinese mind map. Automatic Classification of Customer Complaints Workflow: The input is a table containing complaint content, and you can customize the keywords that need to be classified, so that the complaints can be automatically classified. The output is an automatically generated Excel table containing the classification results. 🔎 User Interface Each workflow has a User Interface and an Editor Interface. The user interface is used for daily workflow operations, and the editor interface is used for workflow editing. Usually, after designing a workflow, you only need to run it in the user interface and do not need to modify it in the editor interface. !User Interface The user interface is shown above and is divided into three parts: input, output, and trigger (usually a run button). You can directly enter content for daily use, click the run button to see the output result. To view the executed workflow, click Workflow Run Records, as shown in the following figure. !Workflow Run Records ✏️ Creating a Workflow You can add our official templates to your workflow or create a new one. It is recommended to familiarize yourself with the use of workflows using official templates at the beginning. !Workflow Editor Interface The workflow editor interface is shown above. You can edit the name, tags, and detailed description at the top. The left side is the node list of the workflow, and the right is the canvas of the workflow. You can drag the desired node from the left side to the canvas, and then connect the node through the wire to form a workflow. You can view a tutorial on creating a simple crawler + AI summary mind map workflow here. You can also try this online interactive tutorial. 🛠️ Development and Deployment Environment Requirements Backend Python 3.8 ~ Python 3.11 PDM installed Frontend Vue3 Vite Project Development Copy and modify backend/.env.example to .env file, this is the basic environment variable information, which will be used during development and packaging. Run the following command in the backend directory to install dependencies: Windows Mac Normally, PDM will automatically find the system's Python and create a virtual environment and install dependencies. After installation, run the following command to start the backend development server and see the running effect: If you need to modify the frontend code, you need to run the following command in the frontend directory to install dependencies: When pulling the project code for the first time, you also need to run pnpm install to install the front-end dependencies. If you don't need to develop any front-end code at all, you can directly copy the web folder from the release version into the backend folder. After the frontend dependencies are installed, you need to compile the frontend code into the static file directory of the backend. A shortcut instruction has been provided in the project. Run the following command in the backend directory to pack and copy the frontend resources: Database Structure Changes [!WARNING] Before making changes to the database structure, please back up your database (located at my_database.db in your configured data directory), otherwise you may lose data. If you have modified the model structure in backend/models, you need to run the following commands in the backend directory to update the database structure: First, enter the Python environment: After the operation, a new migration file will be generated in the backend/migrations directory, with the filename format xxxmigrationname.py. It is recommended to check the content of the migration file first to ensure it is correct, and then restart the main program. The main program will automatically execute the migration. Software Packaging The project uses pyinstaller for packaging. Run the following command in the backend directory to package it into an executable file: After packaging, the executable file will be generated in thebackend/dist directory. 📄 License VectorVein is an open-source software that supports personal non-commercial use. Please refer to LICENSE for specific agreements.

aima-python
github
LLM Vibe Score0.575
Human Vibe Score0.33114909407186394
aimacodeMar 28, 2025

aima-python

aima-python Python code for the book Artificial Intelligence: A Modern Approach. You can use this in conjunction with a course on AI, or for study on your own. We're looking for solid contributors to help. Updates for 4th Edition The 4th edition of the book as out now in 2020, and thus we are updating the code. All code here will reflect the 4th edition. Changes include: Move from Python 3.5 to 3.7. More emphasis on Jupyter (Ipython) notebooks. More projects using external packages (tensorflow, etc.). Structure of the Project When complete, this project will have Python implementations for all the pseudocode algorithms in the book, as well as tests and examples of use. For each major topic, such as search, we provide the following files: search.ipynb and search.py: Implementations of all the pseudocode algorithms, and necessary support functions/classes/data. The .py file is generated automatically from the .ipynb file; the idea is that it is easier to read the documentation in the .ipynb file. search_XX.ipynb: Notebooks that show how to use the code, broken out into various topics (the XX). tests/test_search.py: A lightweight test suite, using assert statements, designed for use with py.test, but also usable on their own. Python 3.7 and up The code for the 3rd edition was in Python 3.5; the current 4th edition code is in Python 3.7. It should also run in later versions, but does not run in Python 2. You can install Python or use a browser-based Python interpreter such as repl.it. You can run the code in an IDE, or from the command line with python -i filename.py where the -i option puts you in an interactive loop where you can run Python functions. All notebooks are available in a binder environment. Alternatively, visit jupyter.org for instructions on setting up your own Jupyter notebook environment. Features from Python 3.6 and 3.7 that we will be using for this version of the code: f-strings: all string formatting should be done with f'var = {var}', not with 'var = {}'.format(var) nor 'var = %s' % var. typing module: declare functions with type hints: def successors(state) -> List[State]:; that is, give type declarations, but omit them when it is obvious. I don't need to say state: State, but in another context it would make sense to say s: State. Underscores in numerics: write a million as 1000000 not as 1000000. dataclasses module: replace namedtuple with dataclass. [//]: (There is a sibling [aima-docker]https://github.com/rajatjain1997/aima-docker project that shows you how to use docker containers to run more complex problems in more complex software environments.) Installation Guide To download the repository: git clone https://github.com/aimacode/aima-python.git Then you need to install the basic dependencies to run the project on your system: You also need to fetch the datasets from the aima-data repository: Wait for the datasets to download, it may take a while. Once they are downloaded, you need to install pytest, so that you can run the test suite: pip install pytest Then to run the tests: py.test And you are good to go! Index of Algorithms Here is a table of algorithms, the figure, name of the algorithm in the book and in the repository, and the file where they are implemented in the repository. This chart was made for the third edition of the book and is being updated for the upcoming fourth edition. Empty implementations are a good place for contributors to look for an issue. The aima-pseudocode project describes all the algorithms from the book. An asterisk next to the file name denotes the algorithm is not fully implemented. Another great place for contributors to start is by adding tests and writing on the notebooks. You can see which algorithms have tests and notebook sections below. If the algorithm you want to work on is covered, don't worry! You can still add more tests and provide some examples of use in the notebook! | Figure | Name (in 3rd edition) | Name (in repository) | File | Tests | Notebook |:-------|:----------------------------------|:------------------------------|:--------------------------------|:-----|:---------| | 2 | Random-Vacuum-Agent | RandomVacuumAgent | [agents.py][agents] | Done | Included | | 2 | Model-Based-Vacuum-Agent | ModelBasedVacuumAgent | [agents.py][agents] | Done | Included | | 2.1 | Environment | Environment | [agents.py][agents] | Done | Included | | 2.1 | Agent | Agent | [agents.py][agents] | Done | Included | | 2.3 | Table-Driven-Vacuum-Agent | TableDrivenVacuumAgent | [agents.py][agents] | Done | Included | | 2.7 | Table-Driven-Agent | TableDrivenAgent | [agents.py][agents] | Done | Included | | 2.8 | Reflex-Vacuum-Agent | ReflexVacuumAgent | [agents.py][agents] | Done | Included | | 2.10 | Simple-Reflex-Agent | SimpleReflexAgent | [agents.py][agents] | Done | Included | | 2.12 | Model-Based-Reflex-Agent | ReflexAgentWithState | [agents.py][agents] | Done | Included | | 3 | Problem | Problem | [search.py][search] | Done | Included | | 3 | Node | Node | [search.py][search] | Done | Included | | 3 | Queue | Queue | [utils.py][utils] | Done | No Need | | 3.1 | Simple-Problem-Solving-Agent | SimpleProblemSolvingAgent | [search.py][search] | Done | Included | | 3.2 | Romania | romania | [search.py][search] | Done | Included | | 3.7 | Tree-Search | depth/breadthfirsttree_search | [search.py][search] | Done | Included | | 3.7 | Graph-Search | depth/breadthfirstgraph_search | [search.py][search] | Done | Included | | 3.11 | Breadth-First-Search | breadthfirstgraph_search | [search.py][search] | Done | Included | | 3.14 | Uniform-Cost-Search | uniformcostsearch | [search.py][search] | Done | Included | | 3.17 | Depth-Limited-Search | depthlimitedsearch | [search.py][search] | Done | Included | | 3.18 | Iterative-Deepening-Search | iterativedeepeningsearch | [search.py][search] | Done | Included | | 3.22 | Best-First-Search | bestfirstgraph_search | [search.py][search] | Done | Included | | 3.24 | A\*-Search | astar_search | [search.py][search] | Done | Included | | 3.26 | Recursive-Best-First-Search | recursivebestfirst_search | [search.py][search] | Done | Included | | 4.2 | Hill-Climbing | hill_climbing | [search.py][search] | Done | Included | | 4.5 | Simulated-Annealing | simulated_annealing | [search.py][search] | Done | Included | | 4.8 | Genetic-Algorithm | genetic_algorithm | [search.py][search] | Done | Included | | 4.11 | And-Or-Graph-Search | andorgraph_search | [search.py][search] | Done | Included | | 4.21 | Online-DFS-Agent | onlinedfsagent | [search.py][search] | Done | Included | | 4.24 | LRTA\*-Agent | LRTAStarAgent | [search.py][search] | Done | Included | | 5.3 | Minimax-Decision | minimax_decision | [games.py][games] | Done | Included | | 5.7 | Alpha-Beta-Search | alphabeta_search | [games.py][games] | Done | Included | | 6 | CSP | CSP | [csp.py][csp] | Done | Included | | 6.3 | AC-3 | AC3 | [csp.py][csp] | Done | Included | | 6.5 | Backtracking-Search | backtracking_search | [csp.py][csp] | Done | Included | | 6.8 | Min-Conflicts | min_conflicts | [csp.py][csp] | Done | Included | | 6.11 | Tree-CSP-Solver | treecspsolver | [csp.py][csp] | Done | Included | | 7 | KB | KB | [logic.py][logic] | Done | Included | | 7.1 | KB-Agent | KB_AgentProgram | [logic.py][logic] | Done | Included | | 7.7 | Propositional Logic Sentence | Expr | [utils.py][utils] | Done | Included | | 7.10 | TT-Entails | tt_entails | [logic.py][logic] | Done | Included | | 7.12 | PL-Resolution | pl_resolution | [logic.py][logic] | Done | Included | | 7.14 | Convert to CNF | to_cnf | [logic.py][logic] | Done | Included | | 7.15 | PL-FC-Entails? | plfcentails | [logic.py][logic] | Done | Included | | 7.17 | DPLL-Satisfiable? | dpll_satisfiable | [logic.py][logic] | Done | Included | | 7.18 | WalkSAT | WalkSAT | [logic.py][logic] | Done | Included | | 7.20 | Hybrid-Wumpus-Agent | HybridWumpusAgent | | | | | 7.22 | SATPlan | SAT_plan | [logic.py][logic] | Done | Included | | 9 | Subst | subst | [logic.py][logic] | Done | Included | | 9.1 | Unify | unify | [logic.py][logic] | Done | Included | | 9.3 | FOL-FC-Ask | folfcask | [logic.py][logic] | Done | Included | | 9.6 | FOL-BC-Ask | folbcask | [logic.py][logic] | Done | Included | | 10.1 | Air-Cargo-problem | air_cargo | [planning.py][planning] | Done | Included | | 10.2 | Spare-Tire-Problem | spare_tire | [planning.py][planning] | Done | Included | | 10.3 | Three-Block-Tower | threeblocktower | [planning.py][planning] | Done | Included | | 10.7 | Cake-Problem | havecakeandeatcake_too | [planning.py][planning] | Done | Included | | 10.9 | Graphplan | GraphPlan | [planning.py][planning] | Done | Included | | 10.13 | Partial-Order-Planner | PartialOrderPlanner | [planning.py][planning] | Done | Included | | 11.1 | Job-Shop-Problem-With-Resources | jobshopproblem | [planning.py][planning] | Done | Included | | 11.5 | Hierarchical-Search | hierarchical_search | [planning.py][planning] | Done | Included | | 11.8 | Angelic-Search | angelic_search | [planning.py][planning] | Done | Included | | 11.10 | Doubles-tennis | doubletennisproblem | [planning.py][planning] | Done | Included | | 13 | Discrete Probability Distribution | ProbDist | [probability.py][probability] | Done | Included | | 13.1 | DT-Agent | DTAgent | [probability.py][probability] | Done | Included | | 14.9 | Enumeration-Ask | enumeration_ask | [probability.py][probability] | Done | Included | | 14.11 | Elimination-Ask | elimination_ask | [probability.py][probability] | Done | Included | | 14.13 | Prior-Sample | prior_sample | [probability.py][probability] | Done | Included | | 14.14 | Rejection-Sampling | rejection_sampling | [probability.py][probability] | Done | Included | | 14.15 | Likelihood-Weighting | likelihood_weighting | [probability.py][probability] | Done | Included | | 14.16 | Gibbs-Ask | gibbs_ask | [probability.py][probability] | Done | Included | | 15.4 | Forward-Backward | forward_backward | [probability.py][probability] | Done | Included | | 15.6 | Fixed-Lag-Smoothing | fixedlagsmoothing | [probability.py][probability] | Done | Included | | 15.17 | Particle-Filtering | particle_filtering | [probability.py][probability] | Done | Included | | 16.9 | Information-Gathering-Agent | InformationGatheringAgent | [probability.py][probability] | Done | Included | | 17.4 | Value-Iteration | value_iteration | [mdp.py][mdp] | Done | Included | | 17.7 | Policy-Iteration | policy_iteration | [mdp.py][mdp] | Done | Included | | 17.9 | POMDP-Value-Iteration | pomdpvalueiteration | [mdp.py][mdp] | Done | Included | | 18.5 | Decision-Tree-Learning | DecisionTreeLearner | [learning.py][learning] | Done | Included | | 18.8 | Cross-Validation | cross_validation | [learning.py][learning]\* | | | | 18.11 | Decision-List-Learning | DecisionListLearner | [learning.py][learning]\* | | | | 18.24 | Back-Prop-Learning | BackPropagationLearner | [learning.py][learning] | Done | Included | | 18.34 | AdaBoost | AdaBoost | [learning.py][learning] | Done | Included | | 19.2 | Current-Best-Learning | currentbestlearning | knowledge.py | Done | Included | | 19.3 | Version-Space-Learning | versionspacelearning | knowledge.py | Done | Included | | 19.8 | Minimal-Consistent-Det | minimalconsistentdet | knowledge.py | Done | Included | | 19.12 | FOIL | FOIL_container | knowledge.py | Done | Included | | 21.2 | Passive-ADP-Agent | PassiveADPAgent | [rl.py][rl] | Done | Included | | 21.4 | Passive-TD-Agent | PassiveTDAgent | [rl.py][rl] | Done | Included | | 21.8 | Q-Learning-Agent | QLearningAgent | [rl.py][rl] | Done | Included | | 22.1 | HITS | HITS | [nlp.py][nlp] | Done | Included | | 23 | Chart-Parse | Chart | [nlp.py][nlp] | Done | Included | | 23.5 | CYK-Parse | CYK_parse | [nlp.py][nlp] | Done | Included | | 25.9 | Monte-Carlo-Localization | montecarlolocalization | [probability.py][probability] | Done | Included | Index of data structures Here is a table of the implemented data structures, the figure, name of the implementation in the repository, and the file where they are implemented. | Figure | Name (in repository) | File | |:-------|:--------------------------------|:--------------------------| | 3.2 | romania_map | [search.py][search] | | 4.9 | vacumm_world | [search.py][search] | | 4.23 | onedimstate_space | [search.py][search] | | 6.1 | australia_map | [search.py][search] | | 7.13 | wumpusworldinference | [logic.py][logic] | | 7.16 | hornclausesKB | [logic.py][logic] | | 17.1 | sequentialdecisionenvironment | [mdp.py][mdp] | | 18.2 | waitingdecisiontree | [learning.py][learning] | Acknowledgements Many thanks for contributions over the years. I got bug reports, corrected code, and other support from Darius Bacon, Phil Ruggera, Peng Shao, Amit Patil, Ted Nienstedt, Jim Martin, Ben Catanzariti, and others. Now that the project is on GitHub, you can see the contributors who are doing a great job of actively improving the project. Many thanks to all contributors, especially @darius, @SnShine, @reachtarunhere, @antmarakis, @Chipe1, @ad71 and @MariannaSpyrakou. [agents]:../master/agents.py [csp]:../master/csp.py [games]:../master/games.py [grid]:../master/grid.py [knowledge]:../master/knowledge.py [learning]:../master/learning.py [logic]:../master/logic.py [mdp]:../master/mdp.py [nlp]:../master/nlp.py [planning]:../master/planning.py [probability]:../master/probability.py [rl]:../master/rl.py [search]:../master/search.py [utils]:../master/utils.py [text]:../master/text.py

RD-Agent
github
LLM Vibe Score0.548
Human Vibe Score0.27921589729164453
microsoftMar 28, 2025

RD-Agent

🖥️ Live Demo | 🎥 Demo Video ▶️YouTube | 📖 Documentation | 📃 Papers Data Science Agent Preview Check out our demo video showcasing the current progress of our Data Science Agent under development: https://github.com/user-attachments/assets/3eccbecb-34a4-4c81-bce4-d3f8862f7305 📰 News | 🗞️ News | 📝 Description | | -- | ------ | | Support LiteLLM Backend | We now fully support LiteLLM as a backend for integration with multiple LLM providers. | | More General Data Science Agent | 🚀Coming soon! | | Kaggle Scenario release | We release Kaggle Agent, try the new features! | | Official WeChat group release | We created a WeChat group, welcome to join! (🗪QR Code) | | Official Discord release | We launch our first chatting channel in Discord (🗪) | | First release | RDAgent is released on GitHub | 🌟 Introduction RDAgent aims to automate the most critical and valuable aspects of the industrial R&D process, and we begin with focusing on the data-driven scenarios to streamline the development of models and data. Methodologically, we have identified a framework with two key components: 'R' for proposing new ideas and 'D' for implementing them. We believe that the automatic evolution of R&D will lead to solutions of significant industrial value. R&D is a very general scenario. The advent of RDAgent can be your 💰 Automatic Quant Factory (🎥Demo Video|▶️YouTube) 🤖 Data Mining Agent: Iteratively proposing data & models (🎥Demo Video 1|▶️YouTube) (🎥Demo Video 2|▶️YouTube) and implementing them by gaining knowledge from data. 🦾 Research Copilot: Auto read research papers (🎥Demo Video|▶️YouTube) / financial reports (🎥Demo Video|▶️YouTube) and implement model structures or building datasets. 🤖 Kaggle Agent: Auto Model Tuning and Feature Engineering([🎥Demo Video Coming Soon...]()) and implementing them to achieve more in competitions. ... You can click the links above to view the demo. We're continuously adding more methods and scenarios to the project to enhance your R&D processes and boost productivity. Additionally, you can take a closer look at the examples in our 🖥️ Live Demo. ⚡ Quick start You can try above demos by running the following command: 🐳 Docker installation. Users must ensure Docker is installed before attempting most scenarios. Please refer to the official 🐳Docker page for installation instructions. Ensure the current user can run Docker commands without using sudo. You can verify this by executing docker run hello-world. 🐍 Create a Conda Environment Create a new conda environment with Python (3.10 and 3.11 are well-tested in our CI): Activate the environment: 🛠️ Install the RDAgent You can directly install the RDAgent package from PyPI: 💊 Health check rdagent provides a health check that currently checks two things. whether the docker installation was successful. whether the default port used by the rdagent ui is occupied. ⚙️ Configuration The demos requires following ability: ChatCompletion json_mode embedding query For example: If you are using the OpenAI API, you have to configure your GPT model in the .env file like this. However, not every API services support these features by default. For example: AZURE OpenAI, you have to configure your GPT model in the .env file like this. We now support LiteLLM as a backend for integration with multiple LLM providers. If you use LiteLLM Backend to use models, you can configure as follows: For more configuration information, please refer to the documentation. 🚀 Run the Application The 🖥️ Live Demo is implemented by the following commands(each item represents one demo, you can select the one you prefer): Run the Automated Quantitative Trading & Iterative Factors Evolution: Qlib self-loop factor proposal and implementation application Run the Automated Quantitative Trading & Iterative Model Evolution: Qlib self-loop model proposal and implementation application Run the Automated Medical Prediction Model Evolution: Medical self-loop model proposal and implementation application (1) Apply for an account at PhysioNet. (2) Request access to FIDDLE preprocessed data: FIDDLE Dataset. (3) Place your username and password in .env. Run the Automated Quantitative Trading & Factors Extraction from Financial Reports: Run the Qlib factor extraction and implementation application based on financial reports Run the Automated Model Research & Development Copilot: model extraction and implementation application Run the Automated Kaggle Model Tuning & Feature Engineering: self-loop model proposal and feature engineering implementation application Using sf-crime (San Francisco Crime Classification) as an example. Register and login on the Kaggle website. Configuring the Kaggle API. (1) Click on the avatar (usually in the top right corner of the page) -> Settings -> Create New Token, A file called kaggle.json will be downloaded. (2) Move kaggle.json to ~/.config/kaggle/ (3) Modify the permissions of the kaggle.json file. Reference command: chmod 600 ~/.config/kaggle/kaggle.json Join the competition: Click Join the competition -> I Understand and Accept at the bottom of the competition details page. Description of the above example: Kaggle competition data, contains two parts: competition description file (json file) and competition dataset (zip file). We prepare the competition description file for you, the competition dataset will be downloaded automatically when you run the program, as in the example. If you want to download the competition description file automatically, you need to install chromedriver, The instructions for installing chromedriver can be found in the documentation. The Competition List Available can be found here. 🖥️ Monitor the Application Results You can run the following command for our demo program to see the run logs. Note: Although port 19899 is not commonly used, but before you run this demo, you need to check if port 19899 is occupied. If it is, please change it to another port that is not occupied. You can check if a port is occupied by running the following command. 🏭 Scenarios We have applied RD-Agent to multiple valuable data-driven industrial scenarios. 🎯 Goal: Agent for Data-driven R&D In this project, we are aiming to build an Agent to automate Data-Driven R\&D that can 📄 Read real-world material (reports, papers, etc.) and extract key formulas, descriptions of interested features and models, which are the key components of data-driven R&D . 🛠️ Implement the extracted formulas (e.g., features, factors, and models) in runnable codes. Due to the limited ability of LLM in implementing at once, build an evolving process for the agent to improve performance by learning from feedback and knowledge. 💡 Propose new ideas based on current knowledge and observations. 📈 Scenarios/Demos In the two key areas of data-driven scenarios, model implementation and data building, our system aims to serve two main roles: 🦾Copilot and 🤖Agent. The 🦾Copilot follows human instructions to automate repetitive tasks. The 🤖Agent, being more autonomous, actively proposes ideas for better results in the future. The supported scenarios are listed below: | Scenario/Target | Model Implementation | Data Building | | -- | -- | -- | | 💹 Finance | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | 🤖 Iteratively Proposing Ideas & Evolving ▶️YouTube 🦾 Auto reports reading & implementation▶️YouTube | | 🩺 Medical | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | - | | 🏭 General | 🦾 Auto paper reading & implementation▶️YouTube 🤖 Auto Kaggle Model Tuning | 🤖Auto Kaggle feature Engineering | RoadMap: Currently, we are working hard to add new features to the Kaggle scenario. Different scenarios vary in entrance and configuration. Please check the detailed setup tutorial in the scenarios documents. Here is a gallery of successful explorations (5 traces showed in 🖥️ Live Demo). You can download and view the execution trace using this command from the documentation. Please refer to 📖readthedocs_scen for more details of the scenarios. ⚙️ Framework Automating the R&D process in data science is a highly valuable yet underexplored area in industry. We propose a framework to push the boundaries of this important research field. The research questions within this framework can be divided into three main categories: | Research Area | Paper/Work List | |--------------------|-----------------| | Benchmark the R&D abilities | Benchmark | | Idea proposal: Explore new ideas or refine existing ones | Research | | Ability to realize ideas: Implement and execute ideas | Development | We believe that the key to delivering high-quality solutions lies in the ability to evolve R&D capabilities. Agents should learn like human experts, continuously improving their R&D skills. More documents can be found in the 📖 readthedocs. 📃 Paper/Work list 📊 Benchmark Towards Data-Centric Automatic R&D !image 🔍 Research In a data mining expert's daily research and development process, they propose a hypothesis (e.g., a model structure like RNN can capture patterns in time-series data), design experiments (e.g., finance data contains time-series and we can verify the hypothesis in this scenario), implement the experiment as code (e.g., Pytorch model structure), and then execute the code to get feedback (e.g., metrics, loss curve, etc.). The experts learn from the feedback and improve in the next iteration. Based on the principles above, we have established a basic method framework that continuously proposes hypotheses, verifies them, and gets feedback from the real-world practice. This is the first scientific research automation framework that supports linking with real-world verification. For more detail, please refer to our 🖥️ Live Demo page. 🛠️ Development Collaborative Evolving Strategy for Automatic Data-Centric Development !image 🤝 Contributing We welcome contributions and suggestions to improve RD-Agent. Please refer to the Contributing Guide for more details on how to contribute. Before submitting a pull request, ensure that your code passes the automatic CI checks. 📝 Guidelines This project welcomes contributions and suggestions. Contributing to this project is straightforward and rewarding. Whether it's solving an issue, addressing a bug, enhancing documentation, or even correcting a typo, every contribution is valuable and helps improve RDAgent. To get started, you can explore the issues list, or search for TODO: comments in the codebase by running the command grep -r "TODO:". Before we released RD-Agent as an open-source project on GitHub, it was an internal project within our group. Unfortunately, the internal commit history was not preserved when we removed some confidential code. As a result, some contributions from our group members, including Haotian Chen, Wenjun Feng, Haoxue Wang, Zeqi Ye, Xinjie Shen, and Jinhui Li, were not included in the public commits. ⚖️ Legal disclaimer The RD-agent is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. The RD-agent is aimed to facilitate research and development process in the financial industry and not ready-to-use for any financial investment or advice. Users shall independently assess and test the risks of the RD-agent in a specific use scenario, ensure the responsible use of AI technology, including but not limited to developing and integrating risk mitigation measures, and comply with all applicable laws and regulations in all applicable jurisdictions. The RD-agent does not provide financial opinions or reflect the opinions of Microsoft, nor is it designed to replace the role of qualified financial professionals in formulating, assessing, and approving finance products. The inputs and outputs of the RD-agent belong to the users and users shall assume all liability under any theory of liability, whether in contract, torts, regulatory, negligence, products liability, or otherwise, associated with use of the RD-agent and any inputs and outputs thereof.

practicalAI-cn
github
LLM Vibe Score0.607
Human Vibe Score0.9006050826946348
MLEverydayMar 28, 2025

practicalAI-cn

AI实战-practicalAI 中文版 让你有能力使用机器学习从数据中获取有价值的见解。 🔥 使用 PyTorch 实现基本的机器学习算法和深度神经网络。 🖥️ 不需要任何设置,在浏览器中使用 Google Colab 运行所有程序。 📦 不仅仅是教程,而是学习产品级的面向对象机器学习编程。 Notebooks |基础|深度学习|进阶|主题| |-|-|-|-| |📓 Notebooks|🔥 PyTorch|📚 高级循环神经网络 Advanced RNNs|📸 计算机视觉 Computer Vision| |🐍 Python|🎛️ 多层感知 Multilayer Perceptrons|🏎️ Highway and Residual Networks|⏰ 时间序列分析 Time Series Analysis| |🔢 NumPy|🔎 数据和模型 Data & Models|🔮 自编码器 Autoencoders|🏘️ Topic Modeling| | 🐼 Pandas |📦 面向对象的机器学习 Object-Oriented ML|🎭 生成对抗网络 Generative Adversarial Networks|🛒 推荐系统 Recommendation Systems| |📈 线性回归 Linear Regression|🖼️ 卷积神经网络 Convolutional Neural Networks|🐝 空间变换模型 Spatial Transformer Networks|🗣️ 预训练语言模型 Pretrained Language Modeling| |📊 逻辑回归 Logistic Regression|📝 嵌入层 Embeddings||🤷 多任务学习 Multitask Learning| |🌳 随机森林 Random Forests|📗 递归神经网络 Recurrent Neural Networks||🎯 Low Shot Learning| |💥 k-均值聚类 KMeans Clustering|||🍒 强化学习 Reinforcement Learning| 查看 notebooks 如果不需要运行 notebooks,使用 Jupyter nbviewer 就可以方便地查看它们。 将 https://github.com/ 替换为 https://nbviewer.jupyter.org/github/ ,或者打开 https://nbviewer.jupyter.org 并输入 notebook 的 URL。 运行 notebooks 在本项目的 notebooks 文件夹获取 notebook; 你可以在 Google Colab(推荐)或本地电脑运行这些 notebook; 点击一个 notebook,然后替换URL地址中 https://github.com/ 为 https://colab.research.google.com/github/ ,或者使用这个 Chrome扩展 一键完成; 登录你自己的 Google 账户; 点击工具栏上的 复制到云端硬盘,会在一个新的标签页打开 notebook; 通过去掉标题中的副本完成 notebook 重命名; 运行代码、修改等,所有这些都会自动保存到你的个人 Google Drive。 贡献 notebooks 修改后下载 Google Colab notebook 为 .ipynb 文件; 转到 https://github.com/LisonEvf/practicalAI-cn/tree/master/notebooks ; 点击 Upload files. 上传这个 .ipynb 文件; 写一个详细详细的提交标题和说明; 适当命名你的分支; 点击 Propose changes。 贡献列表 欢迎任何人参与和完善。 |Notebook|译者| |--|--| |00_Notebooks.ipynb|@amusi| |01_Python.ipynb|@amusi| |02_NumPy.ipynb|@amusi| |03_Pandas.ipynb|@amusi| |04LinearRegression.ipynb|@jasonhhao| |05LogisticRegression.ipynb|@jasonhhao| |06RandomForests.ipynb|@jasonhhao| |07_PyTorch.ipynb|@amusi| |08MultilayerPerceptron.ipynb|@zhyongquan| |09Dataand_Models.ipynb|@zhyongquan| |10ObjectOriented_ML.ipynb|@zhyongquan| |11ConvolutionalNeural_Networks.ipynb|| |12_Embeddings.ipynb|@wengJJ| |13RecurrentNeural_Networks.ipynb|| |14AdvancedRNNs.ipynb|| |15ComputerVision.ipynb|||

introduction-to-ai-native-vector-databases-4470531
github
LLM Vibe Score0.397
Human Vibe Score0.03927567941040995
LinkedInLearningMar 28, 2025

introduction-to-ai-native-vector-databases-4470531

Introduction to AI-Native Vector Databases This is the repository for the LinkedIn Learning course Introduction to AI-Native Vector Databases. The full course is available from [LinkedIn Learning][lil-course-url]. ![course-name-alt-text][lil-thumbnail-url] The primary purpose of vector databases is to provide fast and accurate similarity search or nearest neighbor search capabilities. The integration of AI techniques in vector databases enhances their capabilities, improves search accuracy, optimizes performance, and enables more intelligent and efficient management of high-dimensional data. In this course, Zain Hasan introduces this foundational technology—which is already being used in industries like ecommerce, social media, and more. Zain covers everything from foundational concepts around AI-first vector databases to hands-on coding labs for question answering using LLMs. Instructions This repository has branches for each of the videos in the course. You can use the branch pop up menu in github to switch to a specific branch and take a look at the course at that stage, or you can add /tree/BRANCH_NAME to the URL to go to the branch you want to access. Branches The branches are structured to correspond to the videos in the course. The naming convention is CHAPTER#MOVIE#. As an example, the branch named 0203 corresponds to the second chapter and the third video in that chapter. Some branches will have a beginning and an end state. These are marked with the letters b for "beginning" and e for "end". The b branch contains the code as it is at the beginning of the movie. The e branch contains the code as it is at the end of the movie. The main branch holds the final state of the code when in the course. When switching from one exercise files branch to the next after making changes to the files, you may get a message like this: error: Your local changes to the following files would be overwritten by checkout: [files] Please commit your changes or stash them before you switch branches. Aborting To resolve this issue: Add changes to git using this command: git add . Commit changes using this command: git commit -m "some message" Installing To use these exercise files, you must have the following installed: Weaviate Python Client Anaconda Jupyter Docker Clone this repository into your local machine using the terminal (Mac), CMD (Windows), or a GUI tool like SourceTree. To setup the above tools please refer to the instructions below. Anaconda can be downloaded and installed using this link. We will only be using the base environment. This will give you packages like numpy, matplotlib and jupyter which we will be using as the main coding environment for this course. Jupyter will come pre-installed in the base environment of Anaconda and does not to be seperately installed. You can start up jupyter by going into a terminal and typing jupyter notebook. This will launch jupyter notebooks in your browser, if it doesn't automatically launch copy and paste the URL provided in the terminal into your browser. Weaviate Python Client can be installed after you have docker by using the command python -m pip install weaviate-client. Following this you should be able to run the command import weaviate in a newly launched jupyter notebook. Docker will be used to create containers in which our vector database(Weaviate) will run. We recommend that you setup Docker Desktop. Once Docker Desktop is setup, for certain videos and challenges you will be able to spin up docker containers using the provided docker-compose.yml files by opening a terminal where this file is located and typing docker compose up. Once finished with using the container you can bring it down simply by going into the same terminal and pressing Ctrl + C Instructor Zain Hasan Data Scientist, Lecturer [lil-course-url]: https://www.linkedin.com/learning/introduction-to-ai-native-vector-databases [lil-thumbnail-url]: https://media.licdn.com/dms/image/D4D0DAQFc3phQ64lAsA/learning-public-crop6751200/0/1702341179674?e=2147483647&v=beta&t=73HFdwWEvt0yxV3hHg8Rsx7MlXIXdkMde20UHxs6Qcg

rpaframework
github
LLM Vibe Score0.527
Human Vibe Score0.11594284776995417
robocorpMar 28, 2025

rpaframework

RPA Framework ============= REQUEST for user input! We are looking at improving our keyword usage to cover situations where developer might be struggling to smoothly write task for a Robot. Describe the situation where your implementation speed slows due to the lack of easier syntax. Comment HERE _ .. contents:: Table of Contents :local: :depth: 1 .. include-docs-readme Introduction RPA Framework is a collection of open-source libraries and tools for Robotic Process Automation (RPA), and it is designed to be used with both Robot Framework and Python. The goal is to offer well-documented and actively maintained core libraries for Software Robot Developers. Learn more about RPA at Robocorp Documentation_. The project is: 100% Open Source Sponsored by Robocorp_ Optimized for Robocorp Control Room and Developer Tools Accepting external contributions .. _Robot Framework: https://robotframework.org .. _Robot Framework Foundation: https://robotframework.org/foundation/ .. _Python: https://www.python.org/ .. _Robocorp: https://robocorp.com .. _Robocorp Documentation: https://robocorp.com/docs-robot-framework .. _Control Room: https://robocorp.com/docs/control-room .. _Developer Tools: https://robocorp.com/downloads .. _Installing Python Packages: https://robocorp.com/docs/setup/installing-python-package-dependencies Links ^^^^^ Homepage: `_ Documentation: _ PyPI: _ Release notes: _ RSS feed: _ .. image:: https://img.shields.io/github/actions/workflow/status/robocorp/rpaframework/main.yaml?style=for-the-badge :target: https://github.com/robocorp/rpaframework/actions/workflows/main.yaml :alt: Status .. image:: https://img.shields.io/pypi/dw/rpaframework?style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework :alt: rpaframework .. image:: https://img.shields.io/pypi/l/rpaframework.svg?style=for-the-badge&color=brightgreen :target: http://www.apache.org/licenses/LICENSE-2.0.html :alt: License Packages .. image:: https://img.shields.io/pypi/v/rpaframework.svg?label=rpaframework&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework :alt: rpaframework latest version .. image:: https://img.shields.io/pypi/v/rpaframework-assistant.svg?label=rpaframework-assistant&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-assistant :alt: rpaframework-assistant latest version .. image:: https://img.shields.io/pypi/v/rpaframework-aws.svg?label=rpaframework-aws&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-aws :alt: rpaframework-aws latest version .. image:: https://img.shields.io/pypi/v/rpaframework-core.svg?label=rpaframework-core&style=for-the-badge :target: https://pypi.python.org/pypi/rpaframework-core :alt: rpaframework-core latest version .. image:: https://img.shields.io/pypi/v/rpaframework-google.svg?label=rpaframework-google&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-google :alt: rpaframework-google latest version .. image:: https://img.shields.io/pypi/v/rpaframework-hubspot.svg?label=rpaframework-hubspot&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-hubspot :alt: rpaframework-hubspot latest version .. image:: https://img.shields.io/pypi/v/rpaframework-openai.svg?label=rpaframework-openai&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-openai :alt: rpaframework-openai latest version .. image:: https://img.shields.io/pypi/v/rpaframework-pdf.svg?label=rpaframework-pdf&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-pdf :alt: rpaframework-pdf latest version .. image:: https://img.shields.io/pypi/v/rpaframework-recognition.svg?label=rpaframework-recognition&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-recognition :alt: rpaframework-recognition latest version .. image:: https://img.shields.io/pypi/v/rpaframework-windows.svg?label=rpaframework-windows&style=for-the-badge&color=blue :target: https://pypi.python.org/pypi/rpaframework-windows :alt: rpaframework-windows latest version From the above packages, rpaframework-core and rpaframework-recognition are support packages, which alone do not contain any libraries. Libraries The RPA Framework project currently includes the following libraries: The x in the PACKAGE column means that library is included in the rpaframework package and for example. x,pdf means that RPA.PDF library is provided in both the rpaframework and rpaframework-pdf packages. +----------------------------+-------------------------------------------------------+------------------------+ | LIBRARY NAME | DESCRIPTION | PACKAGE | +----------------------------+-------------------------------------------------------+------------------------+ | Archive_ | Archiving TAR and ZIP files | x | +----------------------------+-------------------------------------------------------+------------------------+ | Assistant_ | Display information to a user and request input. | assistant | +----------------------------+-------------------------------------------------------+------------------------+ | Browser.Selenium_ | Control browsers and automate the web | x | +----------------------------+-------------------------------------------------------+------------------------+ | Browser.Playwright_ | Newer way to control browsers | special (more below) | +----------------------------+-------------------------------------------------------+------------------------+ | Calendar_ | For date and time manipulations | x | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.AWS_ | Use Amazon AWS services | x,aws | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.Azure_ | Use Microsoft Azure services | x | +----------------------------+-------------------------------------------------------+------------------------+ | Cloud.Google_ | Use Google Cloud services | google | +----------------------------+-------------------------------------------------------+------------------------+ | Crypto_ | Common hashing and encryption operations | x | +----------------------------+-------------------------------------------------------+------------------------+ | Database_ | Interact with databases | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop_ | Cross-platform desktop automation | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop.Clipboard_ | Interact with the system clipboard | x | +----------------------------+-------------------------------------------------------+------------------------+ | Desktop.OperatingSystem_ | Read OS information and manipulate processes | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI_ | Intelligent Document Processing wrapper | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI.Base64AI_ | Intelligent Document Processing service | x | +----------------------------+-------------------------------------------------------+------------------------+ | DocumentAI.Nanonets_ | Intelligent Document Processing service | x | +----------------------------+-------------------------------------------------------+------------------------+ | Email.Exchange_ | E-Mail operations (Exchange protocol) | x | +----------------------------+-------------------------------------------------------+------------------------+ | Email.ImapSmtp_ | E-Mail operations (IMAP & SMTP) | x | +----------------------------+-------------------------------------------------------+------------------------+ | Excel.Application_ | Control the Excel desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ | Excel.Files_ | Manipulate Excel files directly | x | +----------------------------+-------------------------------------------------------+------------------------+ | FileSystem_ | Read and manipulate files and paths | x | +----------------------------+-------------------------------------------------------+------------------------+ | FTP_ | Interact with FTP servers | x | +----------------------------+-------------------------------------------------------+------------------------+ | HTTP_ | Interact directly with web APIs | x | +----------------------------+-------------------------------------------------------+------------------------+ | Hubspot_ | Access HubSpot CRM data objects | hubspot | +----------------------------+-------------------------------------------------------+------------------------+ | Images_ | Manipulate images | x | +----------------------------+-------------------------------------------------------+------------------------+ | JavaAccessBridge_ | Control Java applications | x | +----------------------------+-------------------------------------------------------+------------------------+ | JSON_ | Manipulate JSON objects | x | +----------------------------+-------------------------------------------------------+------------------------+ | MFA_ | Authenticate using one-time passwords (OTP) & OAuth2 | x | +----------------------------+-------------------------------------------------------+------------------------+ | Notifier_ | Notify messages using different services | x | +----------------------------+-------------------------------------------------------+------------------------+ | OpenAI_ | Artificial Intelligence service | openai | +----------------------------+-------------------------------------------------------+------------------------+ | Outlook.Application_ | Control the Outlook desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ | PDF_ | Read and create PDF documents | x,pdf | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Process_ | Use the Robocorp Process API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.WorkItems_ | Use the Robocorp Work Items API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Vault_ | Use the Robocorp Secrets API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Robocorp.Storage_ | Use the Robocorp Asset Storage API | x | +----------------------------+-------------------------------------------------------+------------------------+ | Salesforce_ | Salesforce operations | x | +----------------------------+-------------------------------------------------------+------------------------+ | SAP_ | Control SAP GUI desktop client | x | +----------------------------+-------------------------------------------------------+------------------------+ | Smartsheet_ | Access Smartsheet sheets | x | +----------------------------+-------------------------------------------------------+------------------------+ | Tables_ | Manipulate, sort, and filter tabular data | x | +----------------------------+-------------------------------------------------------+------------------------+ | Tasks_ | Control task execution | x | +----------------------------+-------------------------------------------------------+------------------------+ | Twitter_ | Twitter API interface | x | +----------------------------+-------------------------------------------------------+------------------------+ | Windows_ | Alternative library for Windows automation | x,windows | +----------------------------+-------------------------------------------------------+------------------------+ | Word.Application_ | Control the Word desktop application | x | +----------------------------+-------------------------------------------------------+------------------------+ .. _Archive: https://rpaframework.org/libraries/archive/ .. _Assistant: https://rpaframework.org/libraries/assistant/ .. Browser.Playwright: https://rpaframework.org/libraries/browserplaywright/ .. Browser.Selenium: https://rpaframework.org/libraries/browserselenium/ .. _Calendar: https://rpaframework.org/libraries/calendar/ .. Cloud.AWS: https://rpaframework.org/libraries/cloudaws/ .. Cloud.Azure: https://rpaframework.org/libraries/cloudazure/ .. Cloud.Google: https://rpaframework.org/libraries/cloudgoogle/ .. _Crypto: https://rpaframework.org/libraries/crypto/ .. _Database: https://rpaframework.org/libraries/database/ .. _Desktop: https://rpaframework.org/libraries/desktop/ .. Desktop.Clipboard: https://rpaframework.org/libraries/desktopclipboard/ .. Desktop.Operatingsystem: https://rpaframework.org/libraries/desktopoperatingsystem/ .. _DocumentAI: https://rpaframework.org/libraries/documentai .. DocumentAI.Base64AI: https://rpaframework.org/libraries/documentaibase64ai/ .. DocumentAI.Nanonets: https://rpaframework.org/libraries/documentainanonets/ .. Email.Exchange: https://rpaframework.org/libraries/emailexchange/ .. Email.ImapSmtp: https://rpaframework.org/libraries/emailimapsmtp/ .. Excel.Application: https://rpaframework.org/libraries/excelapplication/ .. Excel.Files: https://rpaframework.org/libraries/excelfiles/ .. _FileSystem: https://rpaframework.org/libraries/filesystem/ .. _FTP: https://rpaframework.org/libraries/ftp/ .. _HTTP: https://rpaframework.org/libraries/http/ .. _Hubspot: https://rpaframework.org/libraries/hubspot/ .. _Images: https://rpaframework.org/libraries/images/ .. _JavaAccessBridge: https://rpaframework.org/libraries/javaaccessbridge/ .. _JSON: https://rpaframework.org/libraries/json/ .. _MFA: https://rpaframework.org/libraries/mfa/ .. _Notifier: https://rpaframework.org/libraries/notifier/ .. _OpenAI: https://rpaframework.org/libraries/openai/ .. Outlook.Application: https://rpaframework.org/libraries/outlookapplication/ .. _PDF: https://rpaframework.org/libraries/pdf/ .. Robocorp.Process: https://rpaframework.org/libraries/robocorpprocess/ .. Robocorp.WorkItems: https://rpaframework.org/libraries/robocorpworkitems/ .. Robocorp.Vault: https://rpaframework.org/libraries/robocorpvault/ .. Robocorp.Storage: https://rpaframework.org/libraries/robocorpstorage/ .. _Salesforce: https://rpaframework.org/libraries/salesforce/ .. _SAP: https://rpaframework.org/libraries/sap/ .. _Smartsheet: https://rpaframework.org/libraries/smartsheet/ .. _Tables: https://rpaframework.org/libraries/tables/ .. _Tasks: https://rpaframework.org/libraries/tasks/ .. _Twitter: https://rpaframework.org/libraries/twitter/ .. _Windows: https://rpaframework.org/libraries/windows/ .. Word.Application: https://rpaframework.org/libraries/wordapplication/ Installation of RPA.Browser.Playwright The RPA.Browser.Playwright at the moment requires special installation, because of the package size and the post install step it needs to be fully installed. Minimum required conda.yaml to install Playwright: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 nodejs=22.9.0 pip=24.0 pip: robotframework-browser==18.8.1 rpaframework==28.6.3 rccPostInstall: rfbrowser init Installation Learn about installing Python packages at Installing Python Packages_. Default installation method with Robocorp Developer Tools_ using conda.yaml: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 pip=24.0 pip: rpaframework==28.6.3 To install all extra packages (including Playwright dependencies), you can use: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 tesseract=5.4.1 nodejs=22.9.0 pip=24.0 pip: robotframework-browser==18.8.1 rpaframework==28.6.3 rpaframework-aws==5.3.3 rpaframework-google==9.0.2 rpaframework-recognition==5.2.5 rccPostInstall: rfbrowser init Separate installation of AWS, PDF and Windows libraries without the main rpaframework: .. code-block:: yaml channels: conda-forge dependencies: python=3.10.14 pip=24.0 pip: rpaframework-aws==5.3.3 included in the rpaframework as an extra rpaframework-pdf==7.3.3 included in the rpaframework by default rpaframework-windows==7.5.2 included in the rpaframework by default Installation method with pip using Python venv_: .. code-block:: shell python -m venv .venv source .venv/bin/activate pip install rpaframework .. note:: Python 3.8 or higher is required Example After installation the libraries can be directly imported inside Robot Framework_: .. code:: robotframework Settings Library RPA.Browser.Selenium Tasks Login as user Open available browser https://example.com Input text id:user-name ${USERNAME} Input text id:password ${PASSWORD} The libraries are also available inside Python_: .. code:: python from RPA.Browser.Selenium import Selenium lib = Selenium() lib.openavailablebrowser("https://example.com") lib.input_text("id:user-name", username) lib.input_text("id:password", password) Support and contact rpaframework.org _ for library documentation Robocorp Documentation_ for guides and tutorials #rpaframework channel in Robot Framework Slack_ if you have open questions or want to contribute Communicate with your fellow Software Robot Developers and Robocorp experts at Robocorp Developers Slack_ .. _Robot Framework Slack: https://robotframework-slack-invite.herokuapp.com/ .. _Robocorp Developers Slack: https://robocorp-developers.slack.com Contributing Found a bug? Missing a critical feature? Interested in contributing? Head over to the Contribution guide _ to see where to get started. Development Repository development is Python_ based and requires at minimum Python version 3.8+ installed on the development machine. The default Python version used in the Robocorp Robot template is 3.10.14 so it is a good choice for the version to install. Not recommended versions are 3.7.6 and 3.8.1, because they have issues with some of the dependencies related to rpaframework. At the time the newer Python versions starting from 3.12 are also not recommended, because some of the dependencies might cause issues. Repository development tooling is based on poetry and invoke. Poetry is the underlying tool used for compiling, building and running the package. Invoke is used for scripting purposes, for example for linting, testing and publishing tasks. Before writing any code, please read and acknowledge our extensive Dev Guide_. .. _Dev Guide: https://github.com/robocorp/rpaframework/blob/master/docs/source/contributing/development.md First steps to start developing: initial poetry configuration .. code:: shell poetry config virtualenvs.path null poetry config virtualenvs.in-project true poetry config repositories.devpi "https://devpi.robocorp.cloud/ci/test" git clone the repository #. create a new Git branch or switch to correct branch or stay in master branch some branch naming conventions feature/name-of-feature, hotfix/name-of-the-issue, release/number-of-release #. poetry install which install package with its dependencies into the .venv directory of the package, for example packages/main/.venv #. if testing against Robocorp Robot which is using devdata/env.json set environment variables or poetry build and use resulting .whl file (in the dist/ directory) in the Robot conda.yaml or poetry build and push resulting .whl file (in the dist/ directory) into a repository and use raw url to include it in the Robot conda.yaml another possibility for Robocorp internal development is to use Robocorp devpi instance, by poetry publish --ci and point conda.yaml to use rpaframework version in devpi #. poetry run python -m robot common ROBOT_ARGS from Robocorp Robot template: --report NONE --outputdir output --logtitle "Task log" #. poetry run python #. invoke lint to make sure that code formatting is according to rpaframework repository guidelines. It is possible and likely that Github action will fail the if developer has not linted the code changes. Code formatting is based on black and flake8 and those are run with the invoke lint. #. the library documentation can be created in the repository root (so called "meta" package level). The documentation is built by the docgen tools using the locally installed version of the project, local changes for the main package will be reflected each time you generate the docs, but if you want to see local changes for optional packages, you must utilize invoke install-local --package using the appropriate package name (e.g., rpaframework-aws). This will reinstall that package as a local editable version instead of from PyPI. Multiple such packages can be added by repeating the use of the --package option. In order to reset this, use invoke install --reset. poetry update and/or invoke install-local --package make docs open docs/build/html/index.html with the browser to view the changes or execute make local and navigate to localhost:8000 to view docs as a live local webpage. .. code-block:: toml Before [tool.poetry.dependencies] python = "^3.8" rpaframework = { path = "packages/main", extras = ["cv", "playwright", "aws"] } rpaframework-google = "^4.0.0" rpaframework-windows = "^4.0.0" After [tool.poetry.dependencies] python = "^3.8" rpaframework = { path = "packages/main", extras = ["cv", "playwright"] } rpaframework-aws = { path = "packages/aws" } rpaframework-google = "^4.0.0" rpaframework-windows = "^4.0.0" #. invoke test (this will run both Python unittests and robotframework tests defined in the packages tests/ directory) to run specific Python test: poetry run pytest path/to/test.py::test_function to run specific Robotframework test: inv testrobot -r -t #. git commit changes #. git push changes to remote #. create pull request from the branch describing changes included in the description #. update docs/source/releasenotes.rst with changes (commit and push) Packaging and publishing are done after changes have been merged into master branch. All the following steps should be done within master branch. #. git pull latest changes into master branch #. in the package directory containing changes execute invoke lint and invoke test #. update pyproject.toml with new version according to semantic versioning #. update docs/source/releasenotes.rst with changes #. in the repository root (so called "meta" package level) run command poetry update #. git commit changed poetry.lock files (on meta and target package level), releasenotes.rst and pyproject.toml with message "PACKAGE. version x.y.z" #. git push #. invoke publish after Github action on master branch is all green Some recommended tools for development Visual Studio Code_ as a code editor with following extensions: Sema4.ai_ Robot Framework Language Server_ GitLens_ Python extension_ GitHub Desktop_ will make version management less prone to errors .. _poetry: https://python-poetry.org .. _invoke: https://www.pyinvoke.org .. _Visual Studio Code: https://code.visualstudio.com .. _GitHub Desktop: https://desktop.github.com .. _Sema4.ai: https://marketplace.visualstudio.com/items?itemName=sema4ai.sema4ai .. _Robot Framework Language Server: https://marketplace.visualstudio.com/items?itemName=robocorp.robotframework-lsp .. _GitLens: https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens .. _Python extension: https://marketplace.visualstudio.com/items?itemName=ms-python.python .. _black: https://pypi.org/project/black/ .. _flake8: https://pypi.org/project/flake8/ .. _venv: https://docs.python.org/3/library/venv.html License This project is open-source and licensed under the terms of the Apache License 2.0 `_.

CrewAI-Studio
github
LLM Vibe Score0.488
Human Vibe Score0.0100269728798468
strnadMar 28, 2025

CrewAI-Studio

CrewAI Studio Welcome to CrewAI Studio! This application provides a user-friendly interface written in Streamlit for interacting with CrewAI, suitable even for those who don't want to write any code. Follow the steps below to install and run the application using Docker/docker-compose or Conda/venv. Features Multi-platform support: Works on Windows, Linux and MacOS. No coding required: User-friendly interface for interacting with CrewAI. Conda and virtual environment support: Choose between Conda and a Python virtual environment for installation. Results history: You can view previous results. Knowledge sources: You can add knowledge sources for your crews CrewAI tools You can use crewai tools to interact with real world. ~~Crewai studio uses a forked version of crewai-tools with some bugfixes and enhancements (https://github.com/strnad/crewAI-tools)~~ (bugfixes already merged to crewai-tools) Custom Tools Custom tools for calling APIs, writing files, enhanced code interpreter, enhanced web scraper... More will be added soon LLM providers supported: Currently OpenAI, Groq, Anthropic, ollama, Grok and LM Studio backends are supported. OpenAI key is probably still needed for embeddings in many tools. Don't forget to load an embedding model when using LM Studio. Single Page app export: Feature to export crew as simple single page streamlit app. Threaded crew run: Crews can run in background and can be stopped. Support CrewAI Studio Your support helps fund the development and growth of our project. Every contribution is greatly appreciated! Donate with Bitcoin Sponsor via GitHub Screenshots Installation Using Virtual Environment For Virtual Environment: Ensure you have Python installed. If you dont have python instaled, you can simply use the conda installer. On Linux or MacOS Clone the repository (or use downloaded ZIP file): Run the installation script: Run the application: On Windows Clone the repository (or use downloaded ZIP file): Run the Conda installation script: Run the application: Using Conda Conda will be installed locally in the project folder. No need for a pre-existing Conda installation. On Linux Clone the repository (or use downloaded ZIP file): Run the Conda installation script: Run the application: On Windows Clone the repository (or use downloaded ZIP file): Run the Conda installation script: Run the application: One-Click Deployment Running with Docker Compose To quickly set up and run CrewAI-Studio using Docker Compose, follow these steps: Prerequisites Ensure Docker and Docker Compose are installed on your system. Steps Clone the repository: Create a .env file for configuration. Edit for your own configuration: Start the application with Docker Compose: Access the application: http://localhost:8501 Configuration Before running the application, ensure you update the .env file with your API keys and other necessary configurations. An example .env file is provided for reference. Troubleshooting In case of problems: Delete the venv/miniconda folder and reinstall crewai-studio. Rename crewai.db (it contains your crews but sometimes new versions can break compatibility). Raise an issue and I will help you. Video tutorial Video tutorial on CrewAI Studio made by Josh Poco Star History

freeciv-web
github
LLM Vibe Score0.567
Human Vibe Score0.5875819302299989
freecivMar 28, 2025

freeciv-web

THE FREECIV-WEB PROJECT Freeciv-web is an open-source turn-based strategy game. It can be played in any HTML5 capable web-browser and features in-depth game-play and a wide variety of game modes and options. Your goal is to build cities, collect resources, organize your government, and build an army, with the ultimate goal of creating the best civilization. You can play online against other players (multiplayer) or play by yourself against the computer. There is both a HTML5 2D version with isometric graphics and a 3D WebGL version of Freeciv-web. Freeciv-web is free and open source software. The Freeciv C server is released under the GNU General Public License, while the Freeciv-web client is released under the GNU Affero General Public License. See License for the full license document. Live servers Currently known servers based on Freeciv-web, which are open source in compliance with the AGPL license: FCIV.NET [https://github.com/fciv-net/fciv-net] freecivweb.org [https://github.com/Lexxie9952/fcw.org-server] moving borders [https://github.com/lonemadmax/freeciv-web] (Everything except longturn and real-Earth) Freeciv Tactics & Triumph [https://github.com/Canik05/freeciv-tnt] Freeciv Games & Mods (No PBEM) Freeciv-web screenshots: Freeciv WebGL 3D: !Freeciv-web Freeciv-web HTML5 version: !Freeciv-web Overview Freeciv-Web consists of these components: Freeciv-web - a Java web application for the Freeciv-web client. This application is a Java web application which make up the application viewed in each user's web browser. The Metaserver is also a part of this module. Implemented in Javascript, Java, JSP, HTML and CSS. Built with maven and runs on Tomcat 10 and nginx. Freeciv - the Freeciv C server, which is checked out from the official Git repository, and patched to work with a WebSocket/JSON protocol. Implemented in C. Freeciv-proxy - a WebSocket proxy which allows WebSocket clients in Freeciv-web to send socket requests to Freeciv servers. WebSocket requests are sent from Javascript in Freeciv-web to nginx, which then proxies the WebSocket messages to freeciv-proxy, which finally sends Freeciv socket requests to the Freeciv servers. Implemented in Python. Publite2 - a process launcher for Freeciv C servers, which manages multiple Freeciv server processes and checks capacity through the Metaserver. Implemented in Python. pbem is play-by-email support. Freeciv WebGL Freeciv WebGL is the 3D version, which uses the Three.js 3D engine. More info about the WebGL 3D version can be found for developers and 3D artists. Developer: Andreas Røsdal @andreasrosdal Running Freeciv-web on your computer The recommended and probably easiest way is to use Vagrant on VirtualBox. Whatever the method you choose, you'll have to check out Freeciv-web to a directory on your computer, by installing Git and running this command: You may also want to change some parameters before installing, although it's not needed in most cases. If you have special requirements, have a look at config.dist, copy it without the .dist extension and edit to your liking. :warning: Notice for Windows users Please keep in mind that the files are to be used in a Unix-like system (some Ubuntu version with the provided Vagrant file). Line endings for text files are different in Windows, and some editors "correct" them, making the files unusable in the VM. There's some provision to recode the main configuration files when installing, but not afterwards. If you touch shared files after installation, please use an editor that respect Unix line endings or transform them with a utility like dos2unix after saving them. Running Freeciv-web with Vagrant on VirtualBox Freeciv-web can be setup using Vagrant on VirtualBox to quickly create a local developer image running Freeciv-web on latest Ubuntu on your host operating system such as Windows, OSX or Linux. This is the recommended way to build Freeciv-web on your computer. Install VirtualBox: https://www.virtualbox.org/ - Install manually on Windows, and with the following command on Linux: Install Vagrant: http://www.vagrantup.com/ - Install manually on Windows , and with the following command on Linux: Run Vagrant with the following commands in your Freeciv-web directory: This will build, compile, install and run Freeciv-web on the virtual server image. Wait for the installation process to complete, watching for any error messages in the logs. If you get an error message about Virtualization (VT) not working, then enable Virtualization in the BIOS. Test Freeciv-web by pointing your browser to http://localhost if you run Windows or http://localhost:8080 if you run Linux or macOS. To log in to your Vagrant server, run the command: The Vagrant guest machine will mount the Freeciv-web source repository in the /vagrant directory. Note that running Freeciv-web using Vagrant requires about 4Gb of memory and 3 Gb of harddisk space. System Requirements for manual install Install this software if you are not running Freeciv-web with Vagrant: Tomcat 10 - https://tomcat.apache.org/ Java 11 JDK - https://adoptopenjdk.net/ Python 3.6 - http://www.python.org/ Pillow v2.3.0 (PIL fork) - http://pillow.readthedocs.org/ (required for freeciv-img-extract) MariaDB - https://mariadb.org/ Maven 3 - http://maven.apache.org/download.html Firebug for debugging - http://getfirebug.com/ curl-7.19.7 - http://curl.haxx.se/ OpenSSL - http://www.openssl.org/ nginx 1.11.x or later - http://nginx.org/ MySQL Connector/Python - https://github.com/mysql/mysql-connector-python pngcrush, required for freeciv-img-extract. http://pmt.sourceforge.net/pngcrush/ Tornado 6.1 or later - http://www.tornadoweb.org/ Jansson 2.6 - http://www.digip.org/jansson/ liblzma-dev - http://tukaani.org/xz/ - for XZ compressed savegames. When in a tested system, you may run scripts/install/install.sh and it will fetch and configure what's needed. Start and stop Freeciv-web with the following commands: start-freeciv-web.sh stop-freeciv-web.sh status-freeciv-web.sh All software components in Freeciv-web will log to the /logs sub-directory of the Freeciv-web installation. Running Freeciv-web on Docker Freeciv-web can easily be built and run from Docker using docker-compose. Make sure you have both Docker and Docker Compose installed. Run the following from the freeciv-web directory: Connect to docker via host machine using standard browser http://localhost:8080/ Enjoy. The overall dockerfile and required changes to scripts needs some further improvements. Freeciv-Web continuous integration on GitHub actions Freeciv-Web is built on GitHub actions on every commit. This is the current build status: Developers interested in Freeciv-web If you want to contibute to Freeciv-web, see the issues on GibHub and the TODO file for some tasks you can work on. Pull requests on Github are welcome! Contributors to Freeciv-web Andreas Røsdal @andreasrosdal Marko Lindqvist @cazfi Sveinung Kvilhaugsvik @kvilhaugsvik Gerik Bonaert @adaxi Lmoureaux @lmoureaux Máximo Castañeda @lonemadmax and the Freeciv.org project!

ai-hub-gateway-solution-accelerator
github
LLM Vibe Score0.562
Human Vibe Score0.14530291803566378
Azure-SamplesMar 28, 2025

ai-hub-gateway-solution-accelerator

AI Hub Gateway Landing Zone accelerator The AI Hub Gateway Landing Zone is a solution accelerator that provides a set of guidelines and best practices for implementing a central AI API gateway to empower various line-of-business units in an organization to leverage Azure AI services. !user-story User Story The AI Hub Gateway Landing Zone architecture designed to be a central hub for AI services, providing a single point of entry for AI services, and enabling the organization to manage and govern AI services in a consistent manner. !AI Hub Gateway Landing Zone Key features !ai-hub-gateway-benefits.png Recent release updates: About: here you can see the recent updates to the gateway implementation Now this solution accelerator is updated to be enterprise ready with the following features: Improved OpenAI Usage Ingestion with the ability to ingest usage data from Azure OpenAI API for both streaming and non-streaming requests. Check the guide here Bring your own VNet is now supported with the ability to deploy the AI Hub Gateway Landing Zone in your own VNet. Check the guide here Throttling events monitoring is now supported with the ability to capture and raise too many requests status code as a custom metric in Application Insights. Check the guide here New gpt-4o Global Deployment is now part of the OpenAI resource provisioning Azure OpenAI API spec version was updated to to bring APIs for audio and batch among other advancements (note it is backward compatible with previous versions) AI usage reports enhancements with Cosmos Db now include a container for which include the $ pricing for AI models tokens (sample data can be found here), along with updated PowerBI dashboard design. Private connectivity now can be enabled by setting APIM deployment to External or Internal (require SKU to be either Developer or Premium) and it will provision all included Azure resources like (Azure OpenAI, Cosmos, Event Hub,...) with private endpoints. The AI Hub Gateway Landing Zone provides the following features: Centralized AI API Gateway: A central hub for AI services, providing a single point of entry for AI services that can be shared among multiple use-cases in a secure and governed approach. Seamless integration with Azure AI services: Ability to just update endpoints and keys in existing apps to switch to use AI Hub Gateway. AI routing and orchestration: The AI Hub Gateway Landing Zone provides a mechanism to route and orchestrate AI services, based on priority and target model enabling the organization to manage and govern AI services in a consistent manner. Granular access control: The AI Hub Gateway Landing Zone does not use master keys to access AI services, instead, it uses managed identities to access AI services while consumers can use gateway keys. Private connectivity: The AI Hub Gateway Landing Zone is designed to be deployed in a private network, and it uses private endpoints to access AI services. Capacity management: The AI Hub Gateway Landing Zone provides a mechanism to manage capacity based on requests and tokens. Usage & charge-back: The AI Hub Gateway Landing Zone provides a mechanism to track usage and charge-back to the respective business units with flexible integration with existing charge-back & data platforms. Resilient and scalable: The AI Hub Gateway Landing Zone is designed to be resilient and scalable, and it uses Azure API Management with its zonal redundancy and regional gateways which provides a scalable and resilient solution. Full observability: The AI Hub Gateway Landing Zone provides full observability with Azure Monitor, Application Insights, and Log Analytics with detailed insights into performance, usage, and errors. Hybrid support: The AI Hub Gateway Landing Zone approach the deployment of backends and gateway on Azure, on-premises or other clouds. !one-click-deploy One-click deploy This solution accelerator provides a one-click deploy option to deploy the AI Hub Gateway Landing Zone in your Azure subscription through Azure Developer CLI (azd) or Bicep (IaC). What is being deployed? !Azure components The one-click deploy option will deploy the following components in your Azure subscription: Azure API Management: Azure API Management is a fully managed service that powers most of the GenAI gateway capabilities. Application Insights: Application Insights is an extensible Application Performance Management (APM) service that will provides critical insights on the gateway operational performance. It will also include a dashboard for the key metrics. Event Hub: Event Hub is a fully managed, real-time data ingestion service that’s simple, trusted, and scalable and it is used to stream usage and charge-back data to target data and charge back platforms. Azure OpenAI: 3 instances of Azure OpenAI across 3 regions. Azure OpenAI is a cloud deployment of cutting edge generative models from OpenAI (like ChatGPT, DALL.E and more). Cosmos DB: Azure Cosmos DB is a fully managed NoSQL database for storing usage and charge-back data. Azure Function App: to support real-time event processing service that will be used to process the usage and charge-back data from Event Hub and push it to Cosmos DB. User Managed Identity: A user managed identity to be used by the Azure API Management to access the Azure OpenAI services/Event Hub and another for Azure Stream Analytics to access Event Hub and Cosmos DB. Virtual Network: A virtual network to host the Azure API Management and the other Azure resources. Private Endpoints & Private DNS Zones: Private endpoints for Azure OpenAI, Cosmos DB, Azure Function, Azure Monitor and Event Hub to enable private connectivity. Prerequisites In order to deploy and run this solution accelerator, you'll need Azure Account - If you're new to Azure, get an Azure account for free and you'll get some free Azure credits to get started. Azure subscription with access enabled for the Azure OpenAI service - You can request access. You can also visit the Cognitive Search docs to get some free Azure credits to get you started. Azure account permissions - Your Azure Account must have Microsoft.Authorization/roleAssignments/write permissions, such as User Access Administrator or Owner. For local development, you'll need: Azure CLI - The Azure CLI is a command-line tool that provides a great experience for managing Azure resources. You can install the Azure CLI on your local machine by following the instructions here. Azure Developer CLI (azd) - The Azure Developer CLI is a command-line tool that provides a great experience for deploying Azure resources. You can install the Azure Developer CLI on your local machine by following the instructions here VS Code - Visual Studio Code is a lightweight but powerful source code editor which runs on your desktop and is available for Windows, macOS, and Linux. You can install Visual Studio Code on your local machine by following the instructions here How to deploy? It is recommended to check first the main.bicep file that includes the deployment configuration and parameters. Make sure you have enough OpenAI capacity for gpt-35-turbo and embedding in the selected regions. Currently these are the default values: When you are happy with the configuration, you can deploy the solution using the following command: NOTE: If you faced any deployment errors, try to rerun the command as you might be facing a transient error. After that, you can start using the AI Hub Gateway Landing Zone through the Azure API Management on Azure Portal: !apim-test NOTE: You can use Azure Cloud Shell to run the above command, just clone this repository and run the command from the repo root folder. !docs Supporting documents To dive deeper into the AI Hub Gateway technical mechanics, you can check out the following guides: Architecture guides Architecture deep dive Deployment components API Management configuration OpenAI Usage Ingestion Bring your own Network Onboarding guides OpenAI Onboarding AI Search Onboarding Power BI Dashboard Throttling Events Alerts AI Studio Integration Additional guides End-to-end scenario (Chat with data) Hybrid deployment of AI Hub Gateway Deployment troubleshooting

aiosmtplib
github
LLM Vibe Score0.477
Human Vibe Score0.00851359052658951
coleMar 28, 2025

aiosmtplib

aiosmtplib ========== |circleci| |precommit.ci| |codecov| |zero-deps| |pypi-version| |downloads| |pypi-license| aiosmtplib is an asynchronous SMTP client for use with asyncio. For documentation, see Read The Docs_. Quickstart .. start quickstart .. code-block:: python import asyncio from email.message import EmailMessage import aiosmtplib message = EmailMessage() message["From"] = "root@localhost" message["To"] = "somebody@example.com" message["Subject"] = "Hello World!" message.set_content("Sent via aiosmtplib") asyncio.run(aiosmtplib.send(message, hostname="127.0.0.1", port=25)) .. end quickstart Requirements .. start requirements Python 3.9+ is required. .. end requirements Bug Reporting .. start bug-reporting Bug reports (and feature requests) are welcome via Github issues_. .. _Github issues: https://github.com/cole/aiosmtplib/issues .. end bug-reporting .. |circleci| image:: https://circleci.com/gh/cole/aiosmtplib/tree/main.svg?style=shield :target: https://circleci.com/gh/cole/aiosmtplib/tree/main :alt: "aiosmtplib CircleCI build status" .. |pypi-version| image:: https://img.shields.io/pypi/v/aiosmtplib.svg :target: https://pypi.python.org/pypi/aiosmtplib :alt: "aiosmtplib on the Python Package Index" .. |pypi-status| image:: https://img.shields.io/pypi/status/aiosmtplib.svg .. |pypi-license| image:: https://img.shields.io/pypi/l/aiosmtplib.svg .. |codecov| image:: https://codecov.io/gh/cole/aiosmtplib/branch/main/graph/badge.svg :target: https://codecov.io/gh/cole/aiosmtplib .. |downloads| image:: https://static.pepy.tech/badge/aiosmtplib/month :target: https://pepy.tech/project/aiosmtplib :alt: "aiosmtplib on pypy.tech" .. |precommit.ci| image:: https://results.pre-commit.ci/badge/github/cole/aiosmtplib/main.svg :target: https://results.pre-commit.ci/latest/github/cole/aiosmtplib/main :alt: "pre-commit.ci status" .. |zero-deps| image:: https://0dependencies.dev/0dependencies.svg :target: https://0dependencies.dev :alt: "0 dependencies" .. _Read The Docs: https://aiosmtplib.readthedocs.io/en/stable/

awesome-ai-in-finance
github
LLM Vibe Score0.58
Human Vibe Score1
georgezouqMar 28, 2025

awesome-ai-in-finance

Awesome AI in Finance There are millions of trades made in the global financial market every day. Data grows very quickly and people are hard to understand. With the power of the latest artificial intelligence research, people analyze & trade automatically and intelligently. This list contains the research, tools and code that people use to beat the market. [中文资源] Contents LLMs Papers Courses & Books Strategies & Research Time Series Data Portfolio Management High Frequency Trading Event Drive Crypto Currencies Strategies Technical Analysis Lottery & Gamble Arbitrage Data Sources Research Tools Trading System TA Lib Exchange API Articles Others LLMs 🌟🌟 MarS - A Financial Market Simulation Engine Powered by Generative Foundation Model. 🌟🌟 Financial Statement Analysis with Large Language Models - GPT-4 can outperform professional financial analysts in predicting future earnings changes, generating useful narrative insights, and resulting in superior trading strategies with higher Sharpe ratios and alphas, thereby suggesting a potential central role for LLMs in financial decision-making. PIXIU - An open-source resource providing a financial large language model, a dataset with 136K instruction samples, and a comprehensive evaluation benchmark. FinGPT - Provides a playground for all people interested in LLMs and NLP in Finance. MACD + RSI + ADX Strategy (ChatGPT-powered) by TradeSmart - Asked ChatGPT on which indicators are the most popular for trading. We used all of the recommendations given. A ChatGPT trading algorithm delivered 500% returns in stock market. My breakdown on what this means for hedge funds and retail investors Use chatgpt to adjust strategy parameters Hands-on LLMs: Train and Deploy a Real-time Financial Advisor - Train and deploy a real-time financial advisor chatbot with Falcon 7B and CometLLM. ChatGPT Strategy by OctoBot - Use ChatGPT to determine which cryptocurrency to trade based on technical indicators. Papers The Theory of Speculation L. Bachelier, 1900 - The influences which determine the movements of the Stock Exchange are. Brownian Motion in the Stock Market Osborne, 1959 - The common-stock prices can be regarded as an ensemble of decisions in statistical equilibrium. An Investigation into the Use of Reinforcement Learning Techniques within the Algorithmic Trading Domain, 2015 A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem Reinforcement Learning for Trading, 1994 Dragon-Kings, Black Swans and the Prediction of Crises Didier Sornette - The power laws in the distributions of event sizes under a broad range of conditions in a large variety of systems. Financial Trading as a Game: A Deep Reinforcement Learning Approach - Deep reinforcement learning provides a framework toward end-to-end training of such trading agent. Machine Learning for Trading - With an appropriate choice of the reward function, reinforcement learning techniques can successfully handle the risk-averse case. Ten Financial Applications of Machine Learning, 2018 - Slides review few important financial ML applications. FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, 2020 - Introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies. Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy, 2020 - Propose an ensemble strategy that employs deep reinforcement schemes to learn a stock trading strategy by maximizing investment return. Courses & Books & Blogs 🌟 QuantResearch - Quantitative analysis, strategies and backtests https://letianzj.github.io/ NYU: Overview of Advanced Methods of Reinforcement Learning in Finance Udacity: Artificial Intelligence for Trading AI in Finance - Learn Fintech Online. Advanced-Deep-Trading - Experiments based on "Advances in financial machine learning" book. Advances in Financial Machine Learning - Using advanced ML solutions to overcome real-world investment problems. Build Financial Software with Generative AI - Book about how to build financial software hands-on using generative AI tools like ChatGPT and Copilot. Mastering Python for Finance - Sources codes for: Mastering Python for Finance, Second Edition. MLSys-NYU-2022 - Slides, scripts and materials for the Machine Learning in Finance course at NYU Tandon, 2022. Train and Deploy a Serverless API to predict crypto prices - In this tutorial you won't build an ML system that will make you rich. But you will master the MLOps frameworks and tools you need to build ML systems that, together with tons of experimentation, can take you there. Strategies & Research Time Series Data Price and Volume process with Technology Analysis Indices 🌟🌟 stockpredictionai - A complete process for predicting stock price movements. 🌟 Personae - Implements and environment of Deep Reinforcement Learning & Supervised Learning for Quantitative Trading. 🌟 Ensemble-Strategy - Deep Reinforcement Learning for Automated Stock Trading. FinRL - A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance. AutomatedStockTrading-DeepQ-Learning - Build a Deep Q-learning reinforcement agent model as automated trading robot. tfdeeprltrader - Trading environment(OpenAI Gym) + PPO(TensorForce). trading-gym - Trading agent to train with episode of short term trading itself. trading-rl - Deep Reinforcement Learning for Financial Trading using Price Trailing. deeprltrader - Trading environment(OpenAI Gym) + DDQN (Keras-RL). Quantitative-Trading - Papers and code implementing Quantitative-Trading. gym-trading - Environment for reinforcement-learning algorithmic trading models. zenbrain - A framework for machine-learning bots. DeepLearningNotes - Machine learning in quant analysis. stockmarketreinforcementlearning - Stock market trading OpenAI Gym environment with Deep Reinforcement Learning using Keras. Chaos Genius - ML powered analytics engine for outlier/anomaly detection and root cause analysis.. mlforecast - Scalable machine learning based time series forecasting. Portfolio Management Deep-Reinforcement-Stock-Trading - A light-weight deep reinforcement learning framework for portfolio management. qtrader - Reinforcement Learning for portfolio management. PGPortfolio - A Deep Reinforcement Learning framework for the financial portfolio management problem. DeepDow - Portfolio optimization with deep learning. skfolio - Python library for portfolio optimization built on top of scikit-learn. High Frequency Trading High-Frequency-Trading-Model-with-IB - A high-frequency trading model using Interactive Brokers API with pairs and mean-reversion. 🌟 SGX-Full-OrderBook-Tick-Data-Trading-Strategy - Solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data. HFTBitcoin - Analysis of High Frequency Trading on Bitcoin exchanges. Event Drive 🌟🌟 stockpredictionai - Complete process for predicting stock price movements. 🌟 trump2cash - A stock trading bot powered by Trump tweets. Crypto Currencies Strategies LSTM-Crypto-Price-Prediction - Predicting price trends in crypto markets using an LSTM-RNN for trading. tforcebtctrader - TensorForce Bitcoin trading bot. Tensorflow-NeuroEvolution-Trading-Bot - A population model that trade cyrpto and breed and mutate iteratively. gekkoga - Genetic algorithm for solving optimization of trading strategies using Gekko. GekkoANNStrategies - ANN trading strategies for the Gekko trading bot. gekko-neuralnet - Neural network strategy for Gekko. bitcoinprediction - Code for "Bitcoin Prediction" by Siraj Raval on YouTube. Technical Analysis quant-trading - Python quantitative trading strategies. Gekko-Bot-Resources - Gekko bot resources. gekkotools - Gekko strategies, tools etc. gekko RSIWR - Gekko RSIWR strategies. gekko HL - Calculate down peak and trade on. EthTradingAlgorithm - Ethereum trading algorithm using Python 3.5 and the library ZipLine. gekkotradingstuff - Awesome crypto currency trading platform. forex.analytics - Node.js native library performing technical analysis over an OHLC dataset with use of genetic algorithmv. BitcoinMACDStrategy - Bitcoin MACD crossover trading strategy backtest. crypto-signal - Automated crypto trading & technical analysis (TA) bot for Bittrex, Binance, GDAX, and more. Gekko-Strategies - Strategies to Gekko trading bot with backtests results and some useful tools. gekko-gannswing - Gann's Swing trade strategy for Gekko trade bot. Lottery & Gamble LotteryPredict - Use LSTM to predict lottery. Arbitrage ArbitrageBot - Arbitrage bot that currently works on bittrex & poloniex. r2 - Automatic arbitrage trading system powered by Node.js + TypeScript. cryptocurrency-arbitrage - A crypto currency arbitrage opportunity calculator. Over 800 currencies and 50 markets. bitcoin-arbitrage - Bitcoin arbitrage opportunity detector. blackbird - Long / short market-neutral strategy. Data Sources Traditional Markets 🌟 Quandl - Get millions of financial and economic dataset from hundreds of publishers via a single free API. yahoo-finance - Python module to get stock data from Yahoo! Finance. Tushare - Crawling historical data of Chinese stocks. Financial Data - Stock Market and Financial Data API. Crypto Currencies CryptoInscriber - A live crypto currency historical trade data blotter. Download live historical trade data from any crypto exchange. Gekko-Datasets - Gekko trading bot dataset dumps. Download and use history files in SQLite format. Research Tools Synthical - AI-powered collaborative environment for Research. 🌟🌟 TensorTrade - Trade efficiently with reinforcement learning. ML-Quant - Quant resources from ArXiv (sanity), SSRN, RePec, Journals, Podcasts, Videos, and Blogs. JAQS - An open source quant strategies research platform. pyfolio - Portfolio and risk analytics in Python. alphalens - Performance analysis of predictive (alpha) stock factors. empyrical - Common financial risk and performance metrics. Used by Zipline and pyfolio. zvt - Zero vector trader. Trading System For Back Test & Live trading Traditional Market System 🌟🌟🌟 OpenBB - AI-powered opensource research and analytics workspace. 🌟🌟 zipline - A python algorithmic trading library. 🌟 TradingView - Get real-time information and market insights. rqalpha - A extendable, replaceable Python algorithmic backtest & trading framework. backtrader - Python backtesting library for trading strategies. kungfu - Kungfu Master trading system. lean - Algorithmic trading engine built for easy strategy research, backtesting and live trading. Combine & Rebuild pylivetrader - Python live trade execution library with zipline interface. CoinMarketCapBacktesting - As backtest frameworks for coin trading strategy. Crypto Currencies zenbot - Command-line crypto currency trading bot using Node.js and MongoDB. bot18 - High-frequency crypto currency trading bot developed by Zenbot. magic8bot - Crypto currency trading bot using Node.js and MongoDB. catalyst - An algorithmic trading library for Crypto-Assets in python. QuantResearchDev - Quant Research dev & Traders open source project. MACD - Zenbot MACD Auto-Trader. abu - A quant trading system base on python. Plugins CoinMarketCapBacktesting - Tests bt and Quantopian Zipline as backtesting frameworks for coin trading strategy. Gekko-BacktestTool - Batch backtest, import and strategy params optimalization for Gekko Trading Bot. TA Lib pandastalib - A Python Pandas implementation of technical analysis indicators. finta - Common financial technical indicators implemented in Python-Pandas (70+ indicators). tulipnode - Official Node.js wrapper for Tulip Indicators. Provides over 100 technical analysis overlay and indicator functions. techan.js - A visual, technical analysis and charting (Candlestick, OHLC, indicators) library built on D3. Exchange API Do it in real world! IbPy - Python API for the Interactive Brokers on-line trading system. HuobiFeeder - Connect HUOBIPRO exchange, get market/historical data for ABAT trading platform backtest analysis and live trading. ctpwrapper - Shanghai future exchange CTP api. PENDAX - Javascript SDK for Trading/Data API and Websockets for cryptocurrency exchanges like FTX, FTXUS, OKX, Bybit, & More Framework tf-quant-finance - High-performance TensorFlow library for quantitative finance. Visualizing playground - Play with neural networks. netron - Visualizer for deep learning and machine learning models. KLineChart - Highly customizable professional lightweight financial charts GYM Environment 🌟 TradingGym - Trading and Backtesting environment for training reinforcement learning agent. TradzQAI - Trading environment for RL agents, backtesting and training. btgym - Scalable, event-driven, deep-learning-friendly backtesting library. Articles The-Economist - The Economist. nyu-mlif-notes - NYU machine learning in finance notes. Using LSTMs to Turn Feelings Into Trades Others zipline-tensorboard - TensorBoard as a Zipline dashboard. gekko-quasar-ui - An UI port for gekko trading bot using Quasar framework. Floom AI gateway and marketplace for developers, enables streamlined integration and least volatile approach of AI features into products Other Resource 🌟🌟🌟 Stock-Prediction-Models - Stock-Prediction-Models, Gathers machine learning and deep learning models for Stock forecasting, included trading bots and simulations. 🌟🌟 Financial Machine Learning - A curated list of practical financial machine learning (FinML) tools and applications. This collection is primarily in Python. 🌟 Awesome-Quant-Machine-Learning-Trading - Quant / Algorithm trading resources with an emphasis on Machine Learning. awesome-quant - A curated list of insanely awesome libraries, packages and resources for Quants (Quantitative Finance). FinancePy - A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives. Explore Finance Service Libraries & Projects - Explore a curated list of Fintech popular & new libraries, top authors, trending project kits, discussions, tutorials & learning resources on kandi.

oreilly-ai-agents
github
LLM Vibe Score0.437
Human Vibe Score0.07783740211883924
sinanuozdemirMar 28, 2025

oreilly-ai-agents

!oreilly-logo AI Agents A-Z This repository contains code for the O'Reilly Live Online Training for AI Agents A-Z This course provides a comprehensive guide to understanding, implementing, and managing AI agents both at the prototype stage and in production. Attendees will start with foundational concepts and progressively delve into more advanced topics, including various frameworks like CrewAI, LangChain, and AutoGen as well as building agents from scratch using powerful prompt engineering techniques. The course emphasizes practical application, guiding participants through hands-on exercises to implement and deploy AI agents, evaluate their performance, and iterate on their designs. We will go over key aspects like cost projections, open versus closed source options, and best practices are thoroughly covered to equip attendees with the knowledge to make informed decisions in their AI projects. Setup Instructions Using Python 3.11 Virtual Environment At the time of writing, we need a Python virtual environment with Python 3.11. Option 1: Python 3.11 is Already Installed Step 1: Verify Python 3.11 Installation Step 2: Create a Virtual Environment This creates a .venv folder in your current directory. Step 3: Activate the Virtual Environment macOS/Linux: Windows: You should see (.venv) in your terminal prompt. Step 4: Verify the Python Version Step 5: Install Packages Step 6: Deactivate the Virtual Environment Option 2: Install Python 3.11 If you don’t have Python 3.11, follow the steps below for your OS. macOS (Using Homebrew) Ubuntu/Debian Windows (Using Windows Installer) Go to Python Downloads. Download the installer for Python 3.11. Run the installer and ensure "Add Python 3.11 to PATH" is checked. Verify Installation Notebooks In the activated environment, run Using 3rd party agent frameworks Intro to CrewAI - An introductory notebook for CrewAI See the streamlit directory for an example of deploying crew on a streamlit app Intro to Autogen - An introductory notebook for Microsoft's Autogen Intro to OpenAI Swarm - An introductory notebook for OpenAI's Swarm Intro to LangGraph - An introductory notebook for LangGraph Agents playing Chess - An implementation of two ReAct Agents playing Chess with each other Evaluating Agents Evaluating Agent Output with Rubrics - Exploring a rubric prompt to evaluate generative output. This notebook also notes positional biases when choosing between agent responses. Advanced - Evaluating Alignment - A longer notebook doing a much more in depth analysis on how an LLM can judge agent's responses Evaluating Tool Selection - Calculating the accuracy of tool selection between different LLMs and quantifying the positional bias present in auto-regressive LLMs. See the additions here for V3 + DeepSeek Distilled Models and here for DeepSeek R1 Building our own agents First Steps with our own Agent - Working towards building our own agent framework See Squad Goals for a very simple example of my own agent framework Intro to Squad Goals - using my own framework to do some basic tasks Multimodal Agents - Incorporating Dalle-3 to allow our squad to generate images Modern Agent Paradigms Plan & Execute Agents - Plan & Execute Agents use a planner to create multi-step plans with an LLM and an executor to complete each step by invoking tools. Reflection Agents - Reflection Agents combine a generator to perform tasks and a reflector to provide feedback and guide improvements. Instructor Sinan Ozdemir is the Founder and CTO of LoopGenius where he uses State of the art AI to help people run digital ads on Meta, Google, and more. Sinan is a former lecturer of Data Science at Johns Hopkins University and the author of multiple textbooks on data science and machine learning. Additionally, he is the founder of the recently acquired Kylie.ai, an enterprise-grade conversational AI platform with RPA capabilities. He holds a master’s degree in Pure Mathematics from Johns Hopkins University and is based in San Francisco, CA.

short-video-automation
github
LLM Vibe Score0.383
Human Vibe Score0.004820399169034897
ChetanXproMar 28, 2025

short-video-automation

Short Video Automation Automate the creation of short videos with text-to-speech, audio merging, image overlay, and background audio. It takes average 40 second to create a 35 second short video. Example videos Here are some example videos created using Short Video Automation: A fact video about earth. https://github.com/ChetanXpro/short-video-automation/assets/107798155/1220d3d7-46ac-4c6f-90ad-9f9529a1bca6 Overview Short Video Automation is a tool that simplifies the process of creating short videos. It combines various multimedia elements to produce engaging videos quickly. The key features of this tool include: AI-Generated Scripts: Generate scripts with the help of artificial intelligence (AI). These scripts will form the basis of your short videos. Text-to-Speech: Convert the generated scripts into audio using text-to-speech technology. Audio Merging: Combine the generated audio with a sample video using FFmpeg to create the audio track for your short video. Image Overlay: For specific keywords in the script, automatically download images and overlay them on the video. Background Audio: Add a background audio track to enhance the video's appeal. Usage Prerequisites Node.js and npm installed FFmpeg installed Installation Clone the repository: Download and paste a base video which you want to use in project root dir You can test with this video: https://drive.google.com/file/d/1ZNN3GX2iR74FxrTM_6adDEnl6BA8gKcc/view?usp=sharing Then find any interesting quora question and answer and paste its link in tool Run the tool

DownEdit
github
LLM Vibe Score0.491
Human Vibe Score0.032913669732192626
nxNullMar 28, 2025

DownEdit

DownEdit is a fast and powerful program for downloading and editing videos from top platforms like TikTok, Douyin, and Kuaishou. Effortlessly grab videos from user profiles, make bulk edits, throughout the entire directory with just one click. Plus, our advanced Chat & AI features let you download, edit, and generate videos, images, and sounds in bulk. Exciting new features are coming soon—stay tuned! ✨ Preview 🔥 Current Features Edit Video: Enhance videos with various functions designed to streamline editing tasks across entire directories. Edit Photo: Quickly enhance images in bulk with various functions, including AI-powered functions, Edit Sound: Improve audio in bulk using powerful functions, including cutting-edge AI-powered tools. Download all videos: Retrieve videos from users (TikTok, Kuaishou, Douyin, etc.) without watermarks. Bulk AI Generator: Generate images and videos in bulk using powerful generative AI. AI Editor: Enhance your content effortlessly with using AI editor designed for images, sounds and videos. 🌐 Service | Website| Provider| Single Video | User's Videos | Stream | Access | Status | | --- | --- | --- | --- | --- | --- | --- | | tiktok.com | None | ✔️ | ✔️ | ❌ | API (Cookie) | !Inactive | | douyin.com | None | ✔️ | ✔️ | ❌ | API (Cookie) | !Inactive | | kuaishou.com | None | ✔️ | ✔️ | ❌ | Login Required (Cookie) | !Active | | youtube.com | None | ✔️ | ✔️ | ❌ | (Public/Private) | !Active | 🤖 AI Cloud | Type | Model | Provider| Minimal | Bulk | Access | Status | | --- | --- | --- | --- | --- | --- | --- | | Image Generation | None | | None | ✔️ | API (Public) | !Active | | Video Generation | None | | None | ✔️ | | !Inactive | | Sound Generation | None | | None | ✔️ | | !Inactive | Local | Type | Model | Provider| Minimal | Bulk | Access | Status | | --- | --- | --- | --- | --- | --- | --- | | Image Generation | None | | None | ✔️ | | !Inactive | | Video Generation | None | | None | ✔️ | | !Inactive | | Sound Generation | None | | None | ✔️ | | !Inactive | 🚀 Usage Edit Video - Simply copy and paste (right click) whatever directory location you would like to process. Tutorial !EditVideoAdobeExpress Change it according to your desired video speed. Input your music file location Download douyin videos - Download all video from user by input user link. Tutorial Download tiktok videos - Download all video from user by input username with @. Tutorial Download kuaishou videos - Remember to input your own Cookie. Otherwise it won't work. Tutorial Step 1. Right click and select on Inspect element. Step 2. Copy your Cookie browser. Step 3. Copy user ID you want to download. Tips: If you still getting error, try changing your Browser, use Incognito/Private mode and reset your Internet/IP. Edit Photo - Simply copy and paste (right click) whatever directory location you would like to process. Tutorial Remove Background AI 🔎 Requirements Python [!NOTE] Version must be between 3.8 and 3.12. ⚙ Installation Step 1. Download and install python on your pc. Step 2. libraries installation You have three options to install the required libraries: Option 1: Manual Installation Option 2: Automatic installation & virtual environments Option 3: Terminal & virtual environments Step 3. Run the script For Regular Use: You can also download the application and use it on your PC without installing python. Windows: Download macOS: None [!TIP] Fix Terminal Font Issues Install the Microsoft Cascadia font on your computer if your terminal does not support the font, which is resulting in program error. 🔨 Module The following dependencies are required for the project: List Pystyle Requests Inquirer Colorama Moviepy Rich Playwright Rembg WMI Psutil Httpx Aiofiles Author 👤 Sokun Heng Github: @SokunHeng Show your support Please ⭐️ this repository if this project helped you! 📚 Reference Documentation 📝 License Copyright © 2022 SokunHeng.

awesome-quantum-machine-learning
github
LLM Vibe Score0.64
Human Vibe Score1
krishnakumarsekarMar 27, 2025

awesome-quantum-machine-learning

Awesome Quantum Machine Learning A curated list of awesome quantum machine learning algorithms,study materials,libraries and software (by language). Table of Contents INTRODUCTION Why Quantum Machine Learning? BASICS What is Quantum Mechanics? What is Quantum Computing? What is Topological Quantum Computing? Quantum Computing vs Classical Computing QUANTUM COMPUTING Atom Structure Photon wave Electron Fluctuation or spin States SuperPosition SuperPosition specific for machine learning(Quantum Walks) Classical Bit Quantum Bit or Qubit or Qbit Basic Gates in Quantum Computing Quantum Diode Quantum Transistor Quantum Processor Quantum Registery QRAM Quantum Entanglement QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers Tensors Tensors Network Oracle Hadamard transform Hilbert Space eigenvalues and eigenvectors Schr¨odinger Operators Quantum lambda calculus Quantum Amplitute Phase Qubits Encode and Decode convert classical bit to qubit Quantum Dirac and Kets Quantum Complexity Arbitrary State Generation QUANTUM ALGORITHMS Quantum Fourier Transform Variational-Quantum-Eigensolver Grovers Algorithm Shor's algorithm Hamiltonian Oracle Model Bernstein-Vazirani Algorithm Simon’s Algorithm Deutsch-Jozsa Algorithm Gradient Descent Phase Estimation Haar Tansform Quantum Ridgelet Transform Quantum NP Problem QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour Quantum K-Means Quantum Fuzzy C-Means Quantum Support Vector Machine Quantum Genetic Algorithm Quantum Hidden Morkov Models Quantum state classification with Bayesian methods Quantum Ant Colony Optimization Quantum Cellular Automata Quantum Classification using Principle Component Analysis Quantum Inspired Evolutionary Algorithm Quantum Approximate Optimization Algorithm Quantum Elephant Herding Optimization Quantum-behaved Particle Swarm Optimization Quantum Annealing Expectation-Maximization QAUNTUM NEURAL NETWORK Quantum perceptrons Qurons Quantum Auto Encoder Quantum Annealing Photonic Implementation of Quantum Neural Network Quantum Feed Forward Neural Network Quantum Boltzman Neural Network Quantum Neural Net Weight Storage Quantum Upside Down Neural Net Quantum Hamiltonian Neural Net QANN QPN SAL Quantum Hamiltonian Learning Compressed Quantum Hamiltonian Learning QAUNTUM STATISTICAL DATA ANALYSIS Quantum Probability Theory Kolmogorovian Theory Quantum Measurement Problem Intuitionistic Logic Heyting Algebra Quantum Filtering Paradoxes Quantum Stochastic Process Double Negation Quantum Stochastic Calculus Hamiltonian Calculus Quantum Ito's Formula Quantum Stochastic Differential Equations(QSDE) Quantum Stochastic Integration Itō Integral Quasiprobability Distributions Quantum Wiener Processes Quantum Statistical Ensemble Quantum Density Operator or Density Matrix Gibbs Canonical Ensemble Quantum Mean Quantum Variance Envariance Polynomial Optimization Quadratic Unconstrained Binary Optimization Quantum Gradient Descent Quantum Based Newton's Method for Constrained Optimization Quantum Based Newton's Method for UnConstrained Optimization Quantum Ensemble Quantum Topology Quantum Topological Data Analysis Quantum Bayesian Hypothesis Quantum Statistical Decision Theory Quantum Minimax Theorem Quantum Hunt-Stein Theorem Quantum Locally Asymptotic Normality Quantum Ising Model Quantum Metropolis Sampling Quantum Monte Carlo Approximation Quantum Bootstrapping Quantum Bootstrap Aggregation Quantum Decision Tree Classifier Quantum Outlier Detection Cholesky-Decomposition for Quantum Chemistry Quantum Statistical Inference Asymptotic Quantum Statistical Inference Quantum Gaussian Mixture Modal Quantum t-design Quantum Central Limit Theorem Quantum Hypothesis Testing Quantum Chi-squared and Goodness of Fit Testing Quantum Estimation Theory Quantum Way of Linear Regression Asymptotic Properties of Quantum Outlier Detection in Quantum Concepts QAUNTUM ARTIFICIAL INTELLIGENCE Heuristic Quantum Mechanics Consistent Quantum Reasoning Quantum Reinforcement Learning QAUNTUM COMPUTER VISION QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES ALL QUANTUM ALGORITHMS SOURCE CODES , GITHUBS QUANTUM HOT TOPICS Quantum Cognition Quantum Camera Quantum Mathematics Quantum Information Processing Quantum Image Processing Quantum Cryptography Quantum Elastic Search Quantum DNA Computing Adiabetic Quantum Computing Topological Big Data Anlytics using Quantum Hamiltonian Time Based Quantum Computing Deep Quantum Learning Quantum Tunneling Quantum Entanglment Quantum Eigen Spectrum Quantum Dots Quantum elctro dynamics Quantum teleportation Quantum Supremacy Quantum Zeno Effect Quantum Cohomology Quantum Chromodynamics Quantum Darwinism Quantum Coherence Quantum Decoherence Topological Quantum Computing Topological Quantum Field Theory Quantum Knots Topological Entanglment Boson Sampling Quantum Convolutional Code Stabilizer Code Quantum Chaos Quantum Game Theory Quantum Channel Tensor Space Theory Quantum Leap Quantum Mechanics for Time Travel Quantum Secured Block Chain Quantum Internet Quantum Optical Network Quantum Interference Quantum Optical Network Quantum Operating System Electron Fractionalization Flip-Flop Quantum Computer Quantum Information with Gaussian States Quantum Anomaly Detection Distributed Secure Quantum Machine Learning Decentralized Quantum Machine Learning Artificial Agents for Quantum Designs Light Based Quantum Chips for AI Training QUANTUM STATE PREPARATION ALGORITHM FOR MACHINE LEARNING Pure Quantum State Product State Matrix Product State Greenberger–Horne–Zeilinger State W state AKLT model Majumdar–Ghosh Model Multistate Landau–Zener Models Projected entangled-pair States Infinite Projected entangled-pair States Corner Transfer Matrix Method Tensor-entanglement Renormalization Tree Tensor Network for Supervised Learning QUANTUM MACHINE LEARNING VS DEEP LEARNING QUANTUM MEETUPS QUANTUM GOOGLE GROUPS QUANTUM BASED COMPANIES QUANTUM LINKEDLIN QUANTUM BASED DEGREES CONSOLIDATED QUANTUM ML BOOKS CONSOLIDATED QUANTUM ML VIDEOS CONSOLIDATED QUANTUM ML Reserach Papers CONSOLIDATED QUANTUM ML Reserach Scientist RECENT QUANTUM UPDATES FORUM ,PAGES AND NEWSLETTER INTRODUCTION Why Quantum Machine Learning? Machine Learning(ML) is just a term in recent days but the work effort start from 18th century. What is Machine Learning ? , In Simple word the answer is making the computer or application to learn themselves . So its totally related with computing fields like computer science and IT ? ,The answer is not true . ML is a common platform which is mingled in all the aspects of the life from agriculture to mechanics . Computing is a key component to use ML easily and effectively . To be more clear ,Who is the mother of ML ?, As no option Mathematics is the mother of ML . The world tremendous invention complex numbers given birth to this field . Applying mathematics to the real life problem always gives a solution . From Neural Network to the complex DNA is running under some specific mathematical formulas and theorems. As computing technology growing faster and faster mathematics entered into this field and makes the solution via computing to the real world . In the computing technology timeline once a certain achievements reached peoples interested to use advanced mathematical ideas such as complex numbers ,eigen etc and its the kick start for the ML field such as Artificial Neural Network ,DNA Computing etc. Now the main question, why this field is getting boomed now a days ? , From the business perspective , 8-10 Years before during the kick start time for ML ,the big barrier is to merge mathematics into computing field . people knows well in computing has no idea on mathematics and research mathematician has no idea on what is computing . The education as well as the Job Opportunities is like that in that time . Even if a person tried to study both then the business value for making a product be not good. Then the top product companies like Google ,IBM ,Microsoft decided to form a team with mathematician ,a physician and a computer science person to come up with various ideas in this field . Success of this team made some wonderful products and they started by providing cloud services using this product . Now we are in this stage. So what's next ? , As mathematics reached the level of time travel concepts but the computing is still running under classical mechanics . the companies understood, the computing field must have a change from classical to quantum, and they started working on the big Quantum computing field, and the market named this field as Quantum Information Science .The kick start is from Google and IBM with the Quantum Computing processor (D-Wave) for making Quantum Neural Network .The field of Quantum Computer Science and Quantum Information Science will do a big change in AI in the next 10 years. Waiting to see that........... .(google, ibm). References D-Wave - Owner of a quantum processor Google - Quantum AI Lab IBM - Quantum Computer Lab Quora - Question Regarding future of quantum AI NASA - NASA Quantum Works Youtube - Google Video of a Quantum Processor external-link - MIT Review microsoft new product - Newly Launched Microsoft Quantum Language and Development Kit microsoft - Microsoft Quantum Related Works Google2 - Google Quantum Machine Learning Blog BBC - About Google Quantum Supremacy,IBM Quantum Computer and Microsoft Q Google Quantum Supremacy - Latest 2019 Google Quantum Supremacy Achievement IBM Quantum Supremacy - IBM Talk on Quantum Supremacy as a Primer VICE on the fight - IBM Message on Google Quantum Supremacy IBM Zurich Quantum Safe Cryptography - An interesting startup to replace all our Certificate Authority Via Cloud and IBM Q BASICS What is Quantum Mechanics? In a single line study of an electron moved out of the atom then its classical mechanic ,vibrates inside the atom its quantum mechanics WIKIPEDIA - Basic History and outline LIVESCIENCE. - A survey YOUTUBE - Simple Animation Video Explanining Great. What is Quantum Computing? A way of parallel execution of multiple processess in a same time using qubit ,It reduces the computation time and size of the processor probably in neuro size WIKIPEDIA - Basic History and outline WEBOPEDIA. - A survey YOUTUBE - Simple Animation Video Explanining Great. Quantum Computing vs Classical Computing LINK - Basic outline Quantum Computing Atom Structure one line : Electron Orbiting around the nucleous in an eliptical format YOUTUBE - A nice animation video about the basic atom structure Photon Wave one line : Light nornmally called as wave transmitted as photons as similar as atoms in solid particles YOUTUBE - A nice animation video about the basic photon 1 YOUTUBE - A nice animation video about the basic photon 2 Electron Fluctuation or spin one line : When a laser light collide with solid particles the electrons of the atom will get spin between the orbitary layers of the atom ) YOUTUBE - A nice animation video about the basic Electron Spin 1 YOUTUBE - A nice animation video about the basic Electron Spin 2 YOUTUBE - A nice animation video about the basic Electron Spin 3 States one line : Put a point on the spinning electron ,if the point is in the top then state 1 and its in bottom state 0 YOUTUBE - A nice animation video about the Quantum States SuperPosition two line : During the spin of the electron the point may be in the middle of upper and lower position, So an effective decision needs to take on the point location either 0 or 1 . Better option to analyse it along with other electrons using probability and is called superposition YOUTUBE - A nice animation video about the Quantum Superposition SuperPosition specific for machine learning(Quantum Walks) one line : As due to computational complexity ,quantum computing only consider superposition between limited electrons ,In case to merge more than one set quantum walk be the idea YOUTUBE - A nice video about the Quantum Walks Classical Bits one line : If electron moved from one one atom to other ,from ground state to excited state a bit value 1 is used else bit value 0 used Qubit one line : The superposition value of states of a set of electrons is Qubit YOUTUBE - A nice video about the Quantum Bits 1 YOUTUBE - A nice video about the Bits and Qubits 2 Basic Gates in Quantum Computing one line : As like NOT, OR and AND , Basic Gates like NOT, Hadamard gate , SWAP, Phase shift etc can be made with quantum gates YOUTUBE - A nice video about the Quantum Gates Quantum Diode one line : Quantum Diodes using a different idea from normal diode, A bunch of laser photons trigger the electron to spin and the quantum magnetic flux will capture the information YOUTUBE - A nice video about the Quantum Diode Quantum Transistors one line : A transistor default have Source ,drain and gate ,Here source is photon wave ,drain is flux and gate is classical to quantum bits QUORA -Discussion about the Quantum Transistor YOUTUBE - Well Explained Quantum Processor one line : A nano integration circuit performing the quantum gates operation sorrounded by cooling units to reduce the tremendous amount of heat YOUTUBE - Well Explained Quantum Registery QRAM one line : Comapring the normal ram ,its ultrafast and very small in size ,the address location can be access using qubits superposition value ,for a very large memory set coherent superposition(address of address) be used PDF - very Well Explained QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers one line : Normally Waves Interference is in n dimensional structure , to find a polynomial equation n order curves ,better option is complex number YOUTUBE - Wonderful Series very super Explained Tensors one line : Vectors have a direction in 2D vector space ,If on a n dimensional vector space ,vectors direction can be specify with the tensor ,The best solution to find the superposition of a n vector electrons spin space is representing vectors as tensors and doing tensor calculus YOUTUBE - Wonderful super Explained tensors basics YOUTUBE - Quantum tensors basics Tensors Network one line : As like connecting multiple vectors ,multple tensors form a network ,solving such a network reduce the complexity of processing qubits YOUTUBE - Tensors Network Some ideas specifically for quantum algorithms QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour info : Here the centroid(euclidean distance) can be detected using the swap gates test between two states of the qubit , As KNN is regerssive loss can be tally using the average PDF1 from Microsoft - Theory Explanation PDF2 - A Good Material to understand the basics Matlab - Yet to come soon Python - Yet to come soon Quantum K-Means info : Two Approaches possible ,1. FFT and iFFT to make an oracle and calculate the means of superposition 2. Adiobtic Hamiltonian generation and solve the hamiltonian to determine the cluster PDF1 - Applying Quantum Kmeans on Images in a nice way PDF2 - Theory PDF3 - Explaining well the K-means clustering using hamiltonian Matlab - Yet to come soon Python - Yet to come soon Quantum Fuzzy C-Means info : As similar to kmeans fcm also using the oracle dialect ,but instead of means,here oracle optimization followed by a rotation gate is giving a good result PDF1 - Theory Matlab - Yet to come soon Python - Yet to come soon Quantum Support Vector Machine info : A little different from above as here kernel preparation is via classical and the whole training be in oracles and oracle will do the classification, As SVM is linear ,An optimal Error(Optimum of the Least Squares Dual Formulation) Based regression is needed to improve the performance PDF1 - Nice Explanation but little hard to understand :) PDF2 - Nice Application of QSVM Matlab - Yet to come soon Python - Yet to come soon Quantum Genetic Algorithm info : One of the best algorithm suited for Quantum Field ,Here the chromosomes act as qubit vectors ,the crossover part carrying by an evaluation and the mutation part carrying by the rotation of gates ![Flow Chart]() PDF1 - Very Beautiful Article , well explained and superp PDF2 - A big theory :) PDF3 - Super Comparison Matlab - Simulation Python1 - Simulation Python2 - Yet to come Quantum Hidden Morkov Models info : As HMM is already state based ,Here the quantum states acts as normal for the markov chain and the shift between states is using quantum operation based on probability distribution ![Flow Chart]() PDF1 - Nice idea and explanation PDF2 - Nice but a different concept little Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum state classification with Bayesian methods info : Quantum Bayesian Network having the same states concept using quantum states,But here the states classification to make the training data as reusable is based on the density of the states(Interference) ![Bayesian Network Sample1]() ![Bayesian Network Sample2]() ![Bayesian Network Sample3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Ant Colony Optimization info : A good algorithm to process multi dimensional equations, ACO is best suited for Sales man issue , QACO is best suited for Sales man in three or more dimension, Here the quantum rotation circuit is doing the peromene update and qubits based colony communicating all around the colony in complex space ![Ant Colony Optimization 1]() PDF1 - Good Concept PDF2 - Good Application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Cellular Automata info : One of the very complex algorithm with various types specifically used for polynomial equations and to design the optimistic gates for a problem, Here the lattice is formed using the quatum states and time calculation is based on the change of the state between two qubits ,Best suited for nano electronics ![Quantum Cellular Automata]() Wikipedia - Basic PDF1 - Just to get the keywords PDF2 - Nice Explanation and an easily understandable application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM NEURAL NETWORK one line : Its really one of the hardest topic , To understand easily ,Normal Neural Network is doing parallel procss ,QNN is doing parallel of parallel processess ,In theory combination of various activation functions is possible in QNN ,In Normal NN more than one activation function reduce the performance and increase the complexity Quantum perceptrons info : Perceptron(layer) is the basic unit in Neural Network ,The quantum version of perceptron must satisfy both linear and non linear problems , Quantum Concepts is combination of linear(calculus of superposition) and nonlinear(State approximation using probability) ,To make a perceptron in quantum world ,Transformation(activation function) of non linearity to certain limit is needed ,which is carrying by phase estimation algorithm ![Quantum Perceptron 3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM STATISTICAL DATA ANALYSIS one line : An under research concept ,It can be seen in multiple ways, one best way if you want to apply n derivative for a problem in current classical theory its difficult to compute as its serialization problem instead if you do parallelization of differentiation you must estimate via probability the value in all flows ,Quantum Probability Helps to achieve this ,as the loss calculation is very less . the other way comparatively booming is Quantum Bayesianism, its a solution to solve most of the uncertainity problem in statistics to combine time and space in highly advanced physical research QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES All info : All Programming languages ,softwares and tools in alphabetical order Software - Nice content of all Python library - A python library Matlab based python library - Matlab Python Library Quantum Tensor Network Github - Tensor Network Bayesforge - A Beautiful Amazon Web Service Enabled Framework for Quantum Alogorithms and Data Analytics Rigetti - A best tools repository to use quantum computer in real time Rigetti Forest - An API to connect Quantum Computer quil/pyQuil - A quantum instruction language to use forest framework Grove - Grove is a repository to showcase quantum Fourier transform, phase estimation, the quantum approximate optimization algorithm, and others developed using Forest QISKit - A IBM Kit to access quantum computer and mainly for quantum circuits IBM Bluemix Simulator - A Bluemix Simulator for Quantum Circuits Microsoft Quantum Development Kit - Microsoft Visual Studio Enbaled Kit for Quantum Circuit Creation Microsoft "Q#" - Microsoft Q Sharp a new Programming Language for Quantum Circuit Creation qiskit api python - An API to connect IBM Quantum Computer ,With the generated token its easy to connect ,but very limited utils ,Lot of new utils will come soon Cyclops Tensor Framework - A framework to do tensor network simulations Python ToolKit for chemistry and physics Quantum Algorithm simulations - A New Started Project for simulating molecule and solids Bayesian Based Quatum Projects Repository - A nice repository and the kickstarter of bayesforge Google Fermion Products - A newly launched product specifivally for chemistry simulation Tree Tensor Networks - Interesting Tensor Network in Incubator Deep Tensor Neural Network - Some useful information about Tensor Neural Network in Incubator Generative Tensorial Networks - A startup to apply machine learning via tensor network for drug discovery Google Bristlecone - A new Quantum Processor from Google , Aimed for Future Hardwares with full fledged AI support XANADU - A Light based Quantum Hardware(chips supports) and Software Company Started in Preparation Stage. Soon will be in market fathom computing - A new concept to train the ai in a processor using light and quantum based concepts. soon products will be launch Alibaba Quantum Computing Cloud Service - Cloud Service to access 11 Bit Quantum Computing Processor Atomistic Machine Learning Project - Seems something Interesting with Deep Tensor Network for Quantum Chemistry Applications circQ and Google Works - Google Top Efforts on Tools IBM Safe Cryptography on Cloud - IBM Started and Developing a Quantm Safe Cryptography to replace all our Certificate Authority via Cloud Google Tensor Network Open Source - Google Started the Most Scientist Preferred Way To Use a Quantum Computer Circuit. Tensor Flow Which Makes Easy to Design the Network and Will Leave the Work Effect Of Gates, Processor Preparation and also going to tell the beauty of Maths Google Tensor Network Github - Github Project of Google Tensor Network Quantum Tensorflow - Yet to come soon Quantum Spark - Yet to come soon Quatum Map Reduce - Yet to come soon Quantum Database - Yet to come soon Quantum Server - Yet to come soon Quantum Data Analytics - Yet to come soon QUANTUM HOT TOPICS Deep Quantum Learning why and what is deep learning? In one line , If you know deep learning you can get a good job :) ,Even a different platform undergraduated and graduated person done a master specialization in deep learning can work in this big sector :), Practically speaking machine learning (vector mathematics) , deep learning (vector space(Graphics) mathematics) and big data are the terms created by big companies to make a trend in the market ,but in science and research there is no word such that , Now a days if you ask a junior person working in this big companies ,what is deep learning ,you will get some reply as "doing linear regression with stochastic gradient for a unsupervised data using Convolutional Neural Network :)" ,They knows the words clearly and knows how to do programming using that on a bunch of "relative data" , If you ask them about the FCM , SVM and HMM etc algorithms ,they will simply say these are olden days algorithms , deep learning replaced all :), But actually they dont know from the birth to the till level and the effectiveness of algorithms and mathematics ,How many mathematical theorems in vector, spaces , tensors etc solved to find this "hiding the complexity technology", They did not played with real non relative data like medical images, astro images , geology images etc , finding a relation and features is really complex and looping over n number of images to do pattern matching is a giant work , Now a days the items mentioned as deep learning (= multiple hidden artifical neural network) is not suitable for that why quantum deep learning or deep quantum learning? In the mid of Artificial Neural Network Research people realised at the maximum extreme only certain mathematical operations possible to do with ANN and the aim of this ANN is to achieve parallel execution of many mathematical operations , In artificial Intelligence ,the world intelligence stands for mathematics ,how effective if a probem can be solvable is based on the mathematics logic applying on the problem , more the logic will give more performance(more intelligent), This goal open the gate for quantum artificial neural network, On applying the ideas behind the deep learning to quantum mechanics environment, its possible to apply complex mathematical equations to n number of non relational data to find more features and can improve the performance Quantum Machine Learning vs Deep Learning Its fun to discuss about this , In recent days most of the employees from Product Based Companies Like google,microsoft etc using the word deep learning ,What actually Deep Learning ? and is it a new inventions ? how to learn this ? Is it replacing machine learning ? these question come to the mind of junior research scholars and mid level employees The one answer to all questions is deep learning = parallel "for" loops ,No more than that ,Its an effective way of executing multiple tasks repeatly and to reduce the computation cost, But it introduce a big cap between mathematics and computerscience , How ? All classical algorithms based on serial processing ,Its depends on the feedback of the first loop ,On applying a serial classical algorithm in multiple clusters wont give a good result ,but some light weight parallel classical algorithms(Deep learning) doing the job in multiple clusters and its not suitable for complex problems, What is the solution for then? As in the title Quantum Machine Learning ,The advantage behind is deep learning is doing the batch processing simply on the data ,but quantum machine learning designed to do batch processing as per the algorithm The product companies realised this one and they started migrating to quantum machine learning and executing the classical algorithms on quantum concept gives better result than deep learning algorithms on classical computer and the target to merge both to give very wonderful result References Quora - Good Discussion Quora - The Bridge Discussion Pdf - Nice Discussion Google - Google Research Discussion Microsoft - Microsoft plan to merge both IBM - IBM plan to merge both IBM Project - IBM Project idea MIT and Google - Solutions for all questions QUANTUM MEETUPS Meetup 1 - Quantum Physics Meetup 2 - Quantum Computing London Meetup 3 - Quantum Computing New York Meetup 4 - Quantum Computing Canada Meetup 5 - Quantum Artificial Intelligence Texas Meetup 6 - Genarl Quantum Mechanics , Mathematics New York Meetup 7 - Quantum Computing Mountain View California Meetup 8 - Statistical Analysis New York Meetup 9 - Quantum Mechanics London UK Meetup 10 - Quantum Physics Sydney Australia Meetup 11 - Quantum Physics Berkeley CA Meetup 12 - Quantum Computing London UK Meetup 13 - Quantum Mechanics Carmichael CA Meetup 14 - Maths and Science Group Portland Meetup 15 - Quantum Physics Santa Monica, CA Meetup 16 - Quantum Mechanics London Meetup 17 - Quantum Computing London Meetup 18 - Quantum Meta Physics ,Kansas City , Missouri ,US Meetup 19 - Quantum Mechanics and Physics ,Boston ,Massachusetts ,US Meetup 20 - Quantum Physics and Mechanics ,San Francisco ,California Meetup 21 - Quantum Mechanics ,Langhorne, Pennsylvania Meetup 22 - Quantum Mechanics ,Portland QUANTUM BASED DEGREES Plenty of courses around the world and many Universities Launching it day by day ,Instead of covering only Quantum ML , Covering all Quantum Related topics gives more idea in the order below Available Courses Quantum Mechanics for Science and Engineers Online Standford university - Nice Preparatory Course edx - Quantum Mechanics for Everyone NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum mechanics NPTEL 2 NPTEL 3 NPTEL 4 NPTEL 5 Class Based Course UK Bristol Australia Australian National University Europe Maxs Planks University Quantum Physics Online MIT - Super Explanation and well basics NPTEL - Nice Series of Courses to understand basics and backbone of quantum Physics Class Based Course Europe University of Copenhagen Quantum Chemistry Online NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum Chemistry NPTEL 2 - Class Based Course Europe UGent Belgium Quantum Computing Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum Computing Class Based Course Canada uwaterloo Singapore National University Singapore USA Berkley China Baidu Quantum Technology Class Based Course Canada uwaterloo Singapore National University Singapore Europe Munich Russia Skoltech Quantum Information Science External Links quantwiki Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum information and computing Class Based Course USA MIT Standford University Joint Center for Quantum Information and Computer Science - University of Maryland Canada Perimeter Institute Singapore National University Singapore Europe ULB Belgium IQOQI Quantum Electronics Online MIT - Wonderful Course NPTEL - Nice Series of Courses to understand basics and backbone of quantum Electronics Class Based Course USA Texas Europe Zurich ICFO Asia Tata Institute Quantum Field Theory Online Standford university - Nice Preparatory Course edx - Some QFT Concepts available Class Based Course UK Imperial Europe Vrije Quantum Computer Science Class Based Course USA Oxford Joint Center for Quantum Information and Computer Science - University of Maryland Quantum Artificial Intelligence and Machine Learning External Links Quora 1 Quora 1 Artificial Agents Research for Quantum Designs Quantum Mathematics Class Based Course USA University of Notre CONSOLIDATED Quantum Research Papers scirate - Plenty of Quantum Research Papers Available Peter Wittek - Famous Researcher for the Quantum Machine Leanrning , Published a book in this topic [Murphy Yuezhen Niu] (https://scholar.google.com/citations?user=0wJPxfkAAAAJ&hl=en) - A good researcher published some nice articles Recent Quantum Updates forum ,pages and newsletter Quantum-Tech - A Beautiful Newsletter Page Publishing Amazing Links facebook Quantum Machine Learning - Running By me . Not that much good :). You can get some ideas Linkedlin Quantum Machine Learning - A nice page running by experts. Can get plenty of ideas FOSDEM 2019 Quantum Talks - A one day talk in fosdem 2019 with more than 10 research topics,tools and ideas FOSDEM 2020 Quantum Talks - Live talk in fosdem 2020 with plenty new research topics,tools and ideas License Dedicated Opensources ![Dedicated Opensources]() Source code of plenty of Algortihms in Image Processing , Data Mining ,etc in Matlab, Python ,Java and VC++ Scripts Good Explanations of Plenty of algorithms with flow chart etc Comparison Matrix of plenty of algorithms Is Quantum Machine Learning Will Reveal the Secret Maths behind Astrology? Awesome Machine Learning and Deep Learning Mathematics is online Published Basic Presentation of the series Quantum Machine Learning Contribution If you think this page might helpful. Please help for World Education Charity or kids who wants to learn

PhoenixGo
github
LLM Vibe Score0.542
Human Vibe Score0.07574427540822147
TencentMar 27, 2025

PhoenixGo

!PhoenixGo PhoenixGo is a Go AI program which implements the AlphaGo Zero paper "Mastering the game of Go without human knowledge". It is also known as "BensonDarr" and "金毛测试" in FoxGo, "cronus" in CGOS, and the champion of World AI Go Tournament 2018 held in Fuzhou China. If you use PhoenixGo in your project, please consider mentioning in your README. If you use PhoenixGo in your research, please consider citing the library as follows: Building and Running On Linux Requirements GCC with C++11 support Bazel (0.19.2 is known-good) (Optional) CUDA and cuDNN for GPU support (Optional) TensorRT (for accelerating computation on GPU, 3.0.4 is known-good) The following environments have also been tested by independent contributors : here. Other versions may work, but they have not been tested (especially for bazel). Download and Install Bazel Before starting, you need to download and install bazel, see here. For PhoenixGo, bazel (0.19.2 is known-good), read Requirements for details If you have issues on how to install or start bazel, you may want to try this all-in-one command line for easier building instead, see FAQ question Building PhoenixGo with Bazel Clone the repository and configure the building: ./configure will start the bazel configure : ask where CUDA and TensorRT have been installed, specify them if need. Then build with bazel: Dependices such as Tensorflow will be downloaded automatically. The building process may take a long time. Recommendation : the bazel building uses a lot of RAM, if your building environment is lack of RAM, you may need to restart your computer and exit other running programs to free as much RAM as possible. Running PhoenixGo Download and extract the trained network: The PhoenixGo engine supports GTP (Go Text Protocol), which means it can be used with a GUI with GTP capability, such as Sabaki. It can also run on command-line GTP server tools like gtp2ogs. But PhoenixGo does not support all GTP commands, see FAQ question. There are 2 ways to run PhoenixGo engine 1) start.sh : easy use Run the engine : scripts/start.sh start.sh will automatically detect the number of GPUs, run mcts_main with proper config file, and write log files in directory log. You could also use a customized config file (.conf) by running scripts/start.sh {config_path}. If you want to do that, see also #configure-guide. 2) mcts_main : fully control If you want to fully control all the options of mcts_main (such as changing log destination, or if start.sh is not compatible for your specific use), you can run directly bazel-bin/mcts/mcts_main instead. For a typical usage, these command line options should be added: --gtp to enable GTP mode --config_path=replace/with/path/to/your/config/file to specify the path to your config file it is also needed to edit your config file (.conf) and manually add the full path to ckpt, see FAQ question. You can also change options in config file, see #configure-guide. for other command line options , see also #command-line-options for details, or run ./mcts_main --help . A copy of the --help is provided for your convenience here For example: (Optional) : Distribute mode PhoenixGo support running with distributed workers, if there are GPUs on different machine. Build the distribute worker: Run distzeromodel_server on distributed worker, one for each GPU. Fill ip:port of workers in the config file (etc/mcts_dist.conf is an example config for 32 workers), and run the distributed master: On macOS Note: Tensorflow stop providing GPU support on macOS since 1.2.0, so you are only able to run on CPU. Use Pre-built Binary Download and extract CPU-only version (macOS) Follow the document included in the archive : usingphoenixgoon_mac.pdf Building from Source Same as Linux. On Windows Recommendation: See FAQ question, to avoid syntax errors in config file and command line options on Windows. Use Pre-built Binary GPU version : The GPU version is much faster, but works only with compatible nvidia GPU. It supports this environment : CUDA 9.0 only cudnn 7.1.x (x is any number) or lower for CUDA 9.0 no AVX, AVX2, AVX512 instructions supported in this release (so it is currently much slower than the linux version) there is no TensorRT support on Windows Download and extract GPU version (Windows) Then follow the document included in the archive : how to install phoenixgo.pdf note : to support special features like CUDA 10.0 or AVX512 for example, you can build your own build for windows, see #79 CPU-only version : If your GPU is not compatible, or if you don't want to use a GPU, you can download this CPU-only version (Windows), Follow the document included in the archive : how to install phoenixgo.pdf Configure Guide Here are some important options in the config file: numevalthreads: should equal to the number of GPUs num_search_threads: should a bit larger than num_eval_threads evalbatchsize timeoutmsper_step: how many time will used for each move maxsimulationsper_step: how many simulations(also called playouts) will do for each move gpu_list: use which GPUs, separated by comma modelconfig -> traindir: directory where trained network stored modelconfig -> checkpointpath: use which checkpoint, get from train_dir/checkpoint if not set modelconfig -> enabletensorrt: use TensorRT or not modelconfig -> tensorrtmodelpath: use which TensorRT model, if enabletensorrt maxsearchtree_size: the maximum number of tree nodes, change it depends on memory size maxchildrenper_node: the maximum children of each node, change it depends on memory size enablebackgroundsearch: pondering in opponent's time earlystop: genmove may return before timeoutmsperstep, if the result would not change any more unstable_overtime: think timeout_ms_per_step time_factor more if the result still unstable behind_overtime: think timeout_ms_per_step timefactor more if winrate less than actthreshold Options for distribute mode: enable_dist: enable distribute mode distsvraddrs: ip:port of distributed workers, multiple lines, one ip:port in each line distconfig -> timeoutms: RPC timeout Options for async distribute mode: Async mode is used when there are huge number of distributed workers (more than 200), which need too many eval threads and search threads in sync mode. etc/mctsasyncdist.conf is an example config for 256 workers. enable_async: enable async mode enable_dist: enable distribute mode distsvraddrs: multiple lines, comma sperated lists of ip:port for each line numevalthreads: should equal to number of distsvraddrs lines evaltaskqueue_size: tunning depend on number of distribute workers numsearchthreads: tunning depend on number of distribute workers Read mcts/mcts_config.proto for more config options. Command Line Options mcts_main accept options from command line: --config_path: path of config file --gtp: run as a GTP engine, if disable, gen next move only --init_moves: initial moves on the go board, for example usage, see FAQ question --gpulist: override gpulist in config file --listen_port: work with --gtp, run gtp engine on port in TCP protocol --allowip: work with --listenport, list of client ip allowed to connect --forkperrequest: work with --listen_port, fork for each request or not Glog options are also supported: --logtostderr: log message to stderr --log_dir: log to files in this directory --minloglevel: log level, 0 - INFO, 1 - WARNING, 2 - ERROR --v: verbose log, --v=1 for turning on some debug log, --v=0 to turning off mcts_main --help for more command line options. A copy of the --help is provided for your convenience here Analysis For analysis purpose, an easy way to display the PV (variations for main move path) is --logtostderr --v=1 which will display the main move path winrate and continuation of moves analyzed, see FAQ question for details It is also possible to analyse .sgf files using analysis tools such as : GoReviewPartner : an automated tool to analyse and/or review one or many .sgf files (saved as .rsgf file). It supports PhoenixGo and other bots. See FAQ question for details FAQ You will find a lot of useful and important information, also most common problems and errors and how to fix them Please take time to read the FAQ

With Vibe Coding Say Goodbye to Boring Coding!
youtube
LLM Vibe Score0.321
Human Vibe Score0.44
GeeksforGeeksMar 27, 2025

With Vibe Coding Say Goodbye to Boring Coding!

Coding doesn’t have to be boring anymore! With the rise of AI-powered tools and innovative development approaches, the way we write code is changing drastically. Are you ready to embrace this new era of vibe coding? 🚀 💡 Want to level up your coding and problem-solving skills? Join the Three 90 Challenge by GeeksforGeeks—ending on 31st March! ✅ Complete 90% of your course in 90 days ✅ Get 90% of your fee refunded! Yes, you read that right! 🌟 Over ₹5 CRORE in refunds already processed—yours could be next! 👉 Start the challenge now: https://gfgcdn.com/tu/U4a/ 📌 Stay Connected for More Coding Challenges & Learning Resources: 📱 Download the GeeksforGeeks App: https://play.google.com/store/apps/details?id=free.programming.programming 💬 Twitter: https://twitter.com/geeksforgeeks 🧑‍💼 LinkedIn: https://www.linkedin.com/company/geeksforgeeks 📷 Instagram: https://www.instagram.com/geeksforgeeks/ 💌 Telegram: https://t.me/geeksforgeeks_official 📌 Pinterest: https://in.pinterest.com/geeksforgeeks/ 🎮 Discord: https://discord.gg/geeksforgeeks 🔍 Tags: AI Coding, AI-Powered Development, Vibe Coding, Future of Programming, Software Development Trends, Coding with AI, AI-Assisted Programming, Tech Innovations, Machine Learning in Coding, AI Coding Assistants, Software Engineering Revolution, AI for Developers, ChatGPT Coding, AI Coding Tools, gfg, gfg courses, gfg classes, it jobs, it job market, ai trends, ai news, ai vs software developers 🔥 Hashtags: #AICoding #FutureOfProgramming #VibeCoding #SoftwareDevelopment #TechTrends #CodingWithAI #AIRevolution #AIInTech #MachineLearning #CodingFuture #GeeksforGeeks #CodeSmarter #AIforDevelopers

yoha
github
LLM Vibe Score0.556
Human Vibe Score0.3408299306652369
handtracking-ioMar 27, 2025

yoha

Yoha A practical hand tracking engine. Note: Yoha is currently unmaintained. Quick Links: Demo (Code) Docs Website npm Installation npm install @handtracking.io/yoha Please note: You need to serve the files from node_modules/@handtracking.io/yoha since the library needs to download the model files from here. (Webpack Example) You need to serve your page with https for webcam access. (Webpack Example) You should use cross-origin isolation as it improves the engine's performance in certain scenarios. (Webpack Example) Description Yoha is a hand tracking engine that is built with the goal of being a versatile solution in practical scenarios where hand tracking is employed to add value to an application. While ultimately the goal is to be a general purpose hand tracking engine supporting any hand pose, the engine evolves around specific hand poses that users/developers find useful. These poses are detected by the engine which allows to build applications with meaningful interactions. See the demo for an example. Yoha is currently in beta. About the name: Yoha is short for ("Your Hand Tracking"). Language Support Yoha is currently available for the web via JavaScript. More languages will be added in the future. If you want to port Yoha to another language and need help feel free reach out. Technical Details Yoha was built from scratch. It uses a custom neural network trained using a custom dataset. The backbone for the inference in the browser is currently TensorFlow.js Features: Detection of 21 2D-landmark coordinates (single hand). Hand presence detection. Hand orientation (left/right hand) detection. Inbuilt pose detection. Supported Hand Poses: Pinch (index finger and thumb touch) Fist Your desired pose is not on this list? Feel free to create an issue for it. Performance Yoha was built with performance in mind. It is able to provide realtime user experience on a broad range of laptops and desktop devices. The performance on mobile devices is not great which hopefuly will change with the further development of inference frameworks like TensorFlow.js Please note that native inference speed can not be compared with the web inference speed. Differently put, if you were to run Yoha natively it would be much faster than via the web browser. Minimal Example Source Running locally: Drawing Demo Live Version Source Running locally:

Godot4ThirdPersonCombatPrototype
github
LLM Vibe Score0.424
Human Vibe Score0.04749392650546089
SnaielMar 27, 2025

Godot4ThirdPersonCombatPrototype

Godot4ThirdPersonCombatPrototype https://github.com/user-attachments/assets/a080634b-b9f3-4a6d-abf5-c0003fe16b34 A base project for third person combat. Feature-filled setup with core systems implemented for player character, combat, and enemies. Downloading the Project Using Godot 4.3 You must have Blender installed and have Blender imports (https://docs.godotengine.org/en/stable/tutorials/assetspipeline/importingscenes.html#importing-blend-files-directly-within-godot) configured in your Godot editor. If not, you will get an error saying Scene file 'Main.tcsn' appears to be invalid/corrupt or Error while loading file 'Main.tcsn' caused by the broken dependencies from the blender files not being imported. Please have a look at https://github.com/Snaiel/Godot4ThirdPersonCombatPrototype/issues/3. Acknowledgements Sekiro: Shadows Die Twice for being the game with the best combat mechanics General Development https://www.youtube.com/watch?v=UpF7wm0186Q provided the base movement and camera controller https://www.youtube.com/watch?v=74y6zWZfQKk as an introduction to composition https://kenney.nl/assets/prototype-textures for the grid texture Models and Animation https://www.mixamo.com/ for the character models and animation https://www.youtube.com/watch?v=2gx1lfhqnFM as an introduction to blend trees https://www.youtube.com/watch?v=fq0hR2tIsRk showed how to enable root motion https://github.com/finepointcgi/Mixamo-Root blender addon for adding root bone to animations https://www.youtube.com/watch?v=A2JMYQBWeig for showing how to attach weapons to a character AI Behaviour https://www.youtube.com/watch?v=6VBCXvfNlCM behaviour tree introduction https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work in depth behaviour tree introduction https://github.com/bitbrain/beehave behaviour tree library for Godot https://www.youtube.com/watch?v=EOocBMBbL-E&t=4s for navmesh basics State Machines https://www.youtube.com/watch?v=ow_Lum-Agbs introduction into state machines https://medium.com/dotcrossdot/hierarchical-finite-state-machine-c9e3f4ce0d9e introduction into hierarchical finite state machines Audio https://www.audacityteam.org/ Audacity free audio editor https://www.kenney.nl/assets/category:Audio?sort=update sound packs from Kenney https://opengameart.org/content/crystal-cave-song18 ambient background music from Cynic Music https://opengameart.org/content/hyper-ultra-racing fast paced music from Cynic Music Custom Resources https://docs.godotengine.org/en/stable/tutorials/scripting/resources.html wonderful documentation https://www.youtube.com/watch?v=vzRZjM9MTGw great explanation Attribution Giving credit is not necessary but much appreciated!

obsei
github
LLM Vibe Score0.545
Human Vibe Score0.10175553624190911
obseiMar 27, 2025

obsei

Note: Obsei is still in alpha stage hence carefully use it in Production. Also, as it is constantly undergoing development hence master branch may contain many breaking changes. Please use released version. Obsei (pronounced "Ob see" | /əb-'sē/) is an open-source, low-code, AI powered automation tool. Obsei consists of - Observer: Collect unstructured data from various sources like tweets from Twitter, Subreddit comments on Reddit, page post's comments from Facebook, App Stores reviews, Google reviews, Amazon reviews, News, Website, etc. Analyzer: Analyze unstructured data collected with various AI tasks like classification, sentiment analysis, translation, PII, etc. Informer: Send analyzed data to various destinations like ticketing platforms, data storage, dataframe, etc so that the user can take further actions and perform analysis on the data. All the Observers can store their state in databases (Sqlite, Postgres, MySQL, etc.), making Obsei suitable for scheduled jobs or serverless applications. !Obsei diagram Future direction - Text, Image, Audio, Documents and Video oriented workflows Collect data from every possible private and public channels Add every possible workflow to an AI downstream application to automate manual cognitive workflows Use cases Obsei use cases are following, but not limited to - Social listening: Listening about social media posts, comments, customer feedback, etc. Alerting/Notification: To get auto-alerts for events such as customer complaints, qualified sales leads, etc. Automatic customer issue creation based on customer complaints on Social Media, Email, etc. Automatic assignment of proper tags to tickets based content of customer complaint for example login issue, sign up issue, delivery issue, etc. Extraction of deeper insight from feedbacks on various platforms Market research Creation of dataset for various AI tasks Many more based on creativity 💡 Installation Prerequisite Install the following (if not present already) - Install Python 3.7+ Install PIP Install Obsei You can install Obsei either via PIP or Conda based on your preference. To install latest released version - Install from master branch (if you want to try the latest features) - Note: all option will install all the dependencies which might not be needed for your workflow, alternatively following options are available to install minimal dependencies as per need - pip install obsei[source]: To install dependencies related to all observers pip install obsei[sink]: To install dependencies related to all informers pip install obsei[analyzer]: To install dependencies related to all analyzers, it will install pytorch as well pip install obsei[twitter-api]: To install dependencies related to Twitter observer pip install obsei[google-play-scraper]: To install dependencies related to Play Store review scrapper observer pip install obsei[google-play-api]: To install dependencies related to Google official play store review API based observer pip install obsei[app-store-scraper]: To install dependencies related to Apple App Store review scrapper observer pip install obsei[reddit-scraper]: To install dependencies related to Reddit post and comment scrapper observer pip install obsei[reddit-api]: To install dependencies related to Reddit official api based observer pip install obsei[pandas]: To install dependencies related to TSV/CSV/Pandas based observer and informer pip install obsei[google-news-scraper]: To install dependencies related to Google news scrapper observer pip install obsei[facebook-api]: To install dependencies related to Facebook official page post and comments api based observer pip install obsei[atlassian-api]: To install dependencies related to Jira official api based informer pip install obsei[elasticsearch]: To install dependencies related to elasticsearch informer pip install obsei[slack-api]:To install dependencies related to Slack official api based informer You can also mix multiple dependencies together in single installation command. For example to install dependencies Twitter observer, all analyzer, and Slack informer use following command - How to use Expand the following steps and create a workflow - Step 1: Configure Source/Observer Twitter Youtube Scrapper Facebook Email Google Maps Reviews Scrapper AppStore Reviews Scrapper Play Store Reviews Scrapper Reddit Reddit Scrapper Note: Reddit heavily rate limit scrappers, hence use it to fetch small data during long period Google News Web Crawler Pandas DataFrame Step 2: Configure Analyzer Note: To run transformers in an offline mode, check transformers offline mode. Some analyzer support GPU and to utilize pass device parameter. List of possible values of device parameter (default value auto): auto: GPU (cuda:0) will be used if available otherwise CPU will be used cpu: CPU will be used cuda:{id} - GPU will be used with provided CUDA device id Text Classification Text classification: Classify text into user provided categories. Sentiment Analyzer Sentiment Analyzer: Detect the sentiment of the text. Text classification can also perform sentiment analysis but if you don't want to use heavy-duty NLP model then use less resource hungry dictionary based Vader Sentiment detector. NER Analyzer NER (Named-Entity Recognition) Analyzer: Extract information and classify named entities mentioned in text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc Translator PII Anonymizer Dummy Analyzer Dummy Analyzer: Does nothing. Its simply used for transforming the input (TextPayload) to output (TextPayload) and adding the user supplied dummy data. Step 3: Configure Sink/Informer Slack Zendesk Jira ElasticSearch Http Pandas DataFrame Logger This is useful for testing and dry running the pipeline. Step 4: Join and create workflow source will fetch data from the selected source, then feed it to the analyzer for processing, whose output we feed into a sink to get notified at that sink. Step 5: Execute workflow Copy the code snippets from Steps 1 to 4 into a python file, for example example.py and execute the following command - Demo We have a minimal streamlit based UI that you can use to test Obsei. !Screenshot Watch UI demo video Check demo at (Note: Sometimes the Streamlit demo might not work due to rate limiting, use the docker image (locally) in such cases.) To test locally, just run To run Obsei workflow easily using GitHub Actions (no sign ups and cloud hosting required), refer to this repo. Companies/Projects using Obsei Here are some companies/projects (alphabetical order) using Obsei. To add your company/project to the list, please raise a PR or contact us via email. Oraika: Contextually understand customer feedback 1Page: Giving a better context in meetings and calls Spacepulse: The operating system for spaces Superblog: A blazing fast alternative to WordPress and Medium Zolve: Creating a financial world beyond borders Utilize: No-code app builder for businesses with a deskless workforce Articles Sr. No. Title Author 1 AI based Comparative Customer Feedback Analysis Using Obsei Reena Bapna 2 LinkedIn App - User Feedback Analysis Himanshu Sharma Tutorials Sr. No. Workflow Colab Binder 1 Observe app reviews from Google play store, Analyze them by performing text classification and then Inform them on console via logger PlayStore Reviews → Classification → Logger 2 Observe app reviews from Google play store, PreProcess text via various text cleaning functions, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive PlayStore Reviews → PreProcessing → Classification → Pandas DataFrame → CSV in Google Drive 3 Observe app reviews from Apple app store, PreProcess text via various text cleaning function, Analyze them by performing text classification, Inform them to Pandas DataFrame and store resultant CSV to Google Drive AppStore Reviews → PreProcessing → Classification → Pandas DataFrame → CSV in Google Drive 4 Observe news article from Google news, PreProcess text via various text cleaning function, Analyze them via performing text classification while splitting text in small chunks and later computing final inference using given formula Google News → Text Cleaner → Text Splitter → Classification → Inference Aggregator 💡Tips: Handle large text classification via Obsei Documentation For detailed installation instructions, usages and examples, refer to our documentation. Support and Release Matrix Linux Mac Windows Remark Tests ✅ ✅ ✅ Low Coverage as difficult to test 3rd party libs PIP ✅ ✅ ✅ Fully Supported Conda ❌ ❌ ❌ Not Supported Discussion forum Discussion about Obsei can be done at community forum Changelogs Refer releases for changelogs Security Issue For any security issue please contact us via email Stargazers over time Maintainers This project is being maintained by Oraika Technologies. Lalit Pagaria and Girish Patel are maintainers of this project. License Copyright holder: Oraika Technologies Overall Apache 2.0 and you can read License file. Multiple other secondary permissive or weak copyleft licenses (LGPL, MIT, BSD etc.) for third-party components refer Attribution. To make project more commercial friendly, we void third party components which have strong copyleft licenses (GPL, AGPL etc.) into the project. Attribution This could not have been possible without these open source softwares. Contribution First off, thank you for even considering contributing to this package, every contribution big or small is greatly appreciated. Please refer our Contribution Guideline and Code of Conduct. Thanks so much to all our contributors

Vibe Coding Is Very Not A Joke
youtube
LLM Vibe Score0.369
Human Vibe Score0.71
Brodie RobertsonMar 26, 2025

Vibe Coding Is Very Not A Joke

Yes there are actually people listing vibe coding jobs, I know that sounds insane and it kind of is, but welcome to world of 2025 where people are programming with AI and have no engineering knowledge. ==========Support The Channel========== ► Patreon: https://brodierobertson.xyz/patreon ► Paypal: https://brodierobertson.xyz/paypal ► Liberapay: https://brodierobertson.xyz/liberapay ► Amazon USA: https://brodierobertson.xyz/amazonusa ==========Resources========== Vibe Coding Careers: https://www.vibecodecareers.com/ =========Video Platforms========== 🎥 Odysee: https://brodierobertson.xyz/odysee 🎥 Podcast: https://techovertea.xyz/youtube 🎮 Gaming: https://brodierobertson.xyz/gaming ==========Social Media========== 🎤 Discord: https://brodierobertson.xyz/discord 🐦 Twitter: https://brodierobertson.xyz/twitter 🌐 Mastodon: https://brodierobertson.xyz/mastodon 🖥️ GitHub: https://brodierobertson.xyz/github ==========Credits========== 🎨 Channel Art: Profile Picture: https://www.instagram.com/supercozman_draws/ #VibeCoding #AI #LLM #Coding #Programming 🎵 Ending music Track: Debris & Jonth - Game Time [NCS Release] Music provided by NoCopyrightSounds. Watch: https://www.youtube.com/watch?v=yDTvvOTie0w Free Download / Stream: http://ncs.io/GameTime DISCLOSURE: Wherever possible I use referral links, which means if you click one of the links in this video or description and make a purchase I may receive a small commission or other compensation.

bootcamp_machine-learning
github
LLM Vibe Score0.469
Human Vibe Score0.0690798818433794
42-AIMar 26, 2025

bootcamp_machine-learning

Bootcamp Machine Learning One week to learn the basics in Machine Learning! :robot: Table of Contents Download Curriculum Module05 - Stepping Into Machine Learning Module06 - Univariate Linear Regression Module07 - Multivariate Linear Regression Module08 - Logistic Regression Module09 - Regularization Acknowledgements Contributors Beta-testers This project is a Machine Learning bootcamp created by 42 AI. As notions seen during this bootcamp can be complex, we very strongly advise students to have previously done the following bootcamp: Python 42 Artificial Intelligence is a student organization of the Paris campus of the school 42. Our purpose is to foster discussion, learning, and interest in the field of artificial intelligence, by organizing various activities such as lectures and workshops. Download The pdf files of each module can be downloaded from our realease page: https://github.com/42-AI/bootcampmachine-learning/releases Curriculum Module05 - Stepping Into Machine Learning Get started with some linear algebra and statistics Sum, mean, variance, standard deviation, vectors and matrices operations. Hypothesis, model, regression, loss function. Module06 - Univariate Linear Regression Implement a method to improve your model's performance: gradient descent, and discover the notion of normalization Gradient descent, linear regression, normalization. Module07 - Multivariate Linear Regression Extend the linear regression to handle more than one features, build polynomial models and detect overfitting Multivariate linear hypothesis, multivariate linear gradient descent, polynomial models. Training and test sets, overfitting. Module08 - Logistic Regression Discover your first classification algorithm: logistic regression! Logistic hypothesis, logistic gradient descent, logistic regression, multiclass classification. Accuracy, precision, recall, F1-score, confusion matrix. Module09 - Regularization Fight overfitting! Regularization, overfitting. Regularized loss function, regularized gradient descent. Regularized linear regression. Regularized logistic regression. Acknowledgements Contributors Amric Trudel (amric@42ai.fr) Maxime Choulika (maxime@42ai.fr) Pierre Peigné (ppeigne@student.42.fr) Matthieu David (mdavid@student.42.fr) Benjamin Carlier (bcarlier@student.42.fr) Pablo Clement (pclement@student.42.fr) Amir Mahla (amahla@42ai.fr) Mathieu Perez (mathieu.perez@42ai.fr) Beta-testers Richard Blanc (riblanc@student.42.fr) Solveig Gaydon Ohl (sgaydon-@student.42.fr) Quentin Feuillade--Montixi (qfeuilla@student.42.fr)

Google AI Studio Took Over My Screen to Make Me Money Faster
youtube
LLM Vibe Score0.395
Human Vibe Score0.52
SuperHumans LifeMar 25, 2025

Google AI Studio Took Over My Screen to Make Me Money Faster

🐝 Join our FREE AI Business Trailblazers Hive Community at https://www.skool.com/ai-trailblazers-hive-7394/about?ref=ff40ab4ff9184e7ca2d1971501f578df Get guidance, join challenges, get templates, in-depth tutorials and live Q&As to help you launch and scale your AI side hustle. In this video I let Google AI Studio take over my screen, analyze it and help me do work in minutes that would otherwise take me hours to complete. This AI tool is the one of the best I have seen recently, because it can help anyone deliver their freelance services, earn more from their side hustle or serve multiple clients as a solopreneur without having to hire entire teams which like before. It is an amazing example of what AI can do to boost productivity and our human potential. ALL GOOGLE CERTIFICATIONS THAT MATTER TO MAKE MONEY (START FREE) ⭐ Google Data Analytics Certificate: imp.i384100.net/xkRyXv ⭐ Google Digital Marketing Certificate: https://imp.i384100.net/JzWJoE ⭐ Google IT Support Certificate: https://imp.i384100.net/g14D5A ⭐ Google Project Management Certificate: https://imp.i384100.net/oqBzJO ⭐ Google UX Design Certificate: https://imp.i384100.net/B01xky ⭐ Google Ads for Beginners: https://imp.i384100.net/PyWxeQ ⭐ Introduction to Generative AI: https://imp.i384100.net/eKbz3z ⭐ Google Cybersecurity Certificate: https://imp.i384100.net/3eLQ2B ⭐ Google Google Advanced Data Analytics Certificate: https://imp.i384100.net/Y90eXR ⭐ Google IT Automation with Python Certificate https://imp.i384100.net/9grkmy ⭐ Google Business Intelligence Certificate: https://imp.i384100.net/eKbz3j ⭐ Google Crash Course on Python: https://imp.i384100.net/DKJoYd 👉 Freelancer Freedom Blueprint: https://superhumans.life/ffb-flow-landing-simple/ The start to finish step by step playbook to start making money online from scratch. 👉The Dream Job Challenge: https://superhumans.life/dream-career-landing-flow/ The best ways I know to get clear on what skills you can monetize and make money doing what you love. 👉 Create an Irresistible Profile - https://superhumans.life/irresistible-profile-flow-landing/ The ultimate strategies to create a perfect profile that attracts clients. 👉 Get a list with 99 validated remote job sites: https://superhumans.life/99-validated-remote-jobs-sites-flow-landing-2/ Start applying and earning money today. 👉 Get the 99 Ingenious Midjourney & ChatGPT Prompts for Digital Wall Art: https://superhumans.life/product/99-digital-art-etsy-shop-prompts/ Perfect if you want to start an Etsy shop to make money and don't have products to stand out. 🌐 MY WEBSITE: https://bit.ly/3KTY9sc with resources on how to get work from home online jobs that you can do remotely and how to get started as a freelancer. ✅ FREE Freelancing Masterclass - Step by step guide to get online work from home jobs ✅ https://www.superhumans.life/10xmasterclass ✅ Review your Upwork profile with my cheat sheet. DOWNLOAD HERE for FREE: https://www.superhumans.life/upworkchecklist/ OTHER MONEY MAKING VIDEOS: ►► This Simple Way to Make Money Copy Pasting Google News Will Blow Your Mind (Legit): https://youtu.be/mRJ2gmT69wo ►► Top Tier Google Certifications to Make $100,000+ Online (Start Free on Coursera): https://youtu.be/DOb_02gmdvM ►► Make $660/Day with Free Google Generative AI Certificates: https://youtu.be/0GjK1rvuI1Q ►► Make $100k+ working from home with FREE Google Certification trainings: https://youtu.be/K0pQvnYzjv8 ►► Make $917 / Day with Google News and AI posting Faceless Videos (Beginner friendly): https://youtu.be/mRJ2gmT69wo ►► Make Money Online as a Data Analyst with FREE Google Certifications & Training: https://youtu.be/j62iI6i47Yc ►► Make $100,000 / Year with Google Trainings (for High Paying Careers): https://youtu.be/t0GvneBaUjs ►► I Tried Making $800 in 4 Hours with Google Maps (To See If It Works): https://youtu.be/A0xA5vyDgzA ►► Make $550 a Day with These FREE Google Project Management Courses: https://youtu.be/S-lNEQ95bAU ►► How to Use ChatGPT to Find a High Paying Remote Job in Less Than 1 Hour: https://youtu.be/m3MwM6I0hBc _

aima-java
github
LLM Vibe Score0.521
Human Vibe Score0.06620214044837505
aimacodeMar 25, 2025

aima-java

AIMA3e-Java (JDK 8+) Java implementation of algorithms from Russell and Norvig's Artificial Intelligence - A Modern Approach 3rd Edition. You can use this in conjunction with a course on AI, or for study on your own. We're looking for solid contributors to help. Getting Started Links Overview of Project Interested in Contributing Setting up your own workspace Comments on architecture and design Demo Applications that can be run from your browser (unfortunately not up to date) Javadoc for the aima-core project (outdated) Download the latest official (but outdated) version = 1.9.1 (Dec 18 2016) Latest Maven Information (for integration as a third party library) Index of Implemented Algorithms |Figure|Page|Name (in 3rd edition)|Code | -------- |:--------:| :-----| :----- | |2|34|Environment|Environment| |2.1|35|Agent|Agent| |2.3|36|Table-Driven-Vacuum-Agent|TableDrivenVacuumAgent| |2.7|47|Table-Driven-Agent|TableDrivenAgentProgram| |2.8|48|Reflex-Vacuum-Agent|ReflexVacuumAgent| |2.10|49|Simple-Reflex-Agent|SimpleReflexAgentProgram| |2.12|51|Model-Based-Reflex-Agent|ModelBasedReflexAgentProgram| |3|66|Problem|Problem| |3.1|67|Simple-Problem-Solving-Agent|SimpleProblemSolvingAgent| |3.2|68|Romania|SimplifiedRoadMapOfRomania| |3.7|77|Tree-Search|TreeSearch| |3.7|77|Graph-Search|GraphSearch| |3.10|79|Node|Node| |3.11|82|Breadth-First-Search|BreadthFirstSearch| |3.14|84|Uniform-Cost-Search|UniformCostSearch| |3|85|Depth-first Search|DepthFirstSearch| |3.17|88|Depth-Limited-Search|DepthLimitedSearch| |3.18|89|Iterative-Deepening-Search|IterativeDeepeningSearch| |3|90|Bidirectional search|BidirectionalSearch| |3|92|Best-First search|BestFirstSearch| |3|92|Greedy best-First search|GreedyBestFirstSearch| |3|93|A\* Search|AStarSearch| |3.26|99|Recursive-Best-First-Search |RecursiveBestFirstSearch| |4.2|122|Hill-Climbing|HillClimbingSearch| |4.5|126|Simulated-Annealing|SimulatedAnnealingSearch| |4.8|129|Genetic-Algorithm|GeneticAlgorithm| |4.11|136|And-Or-Graph-Search|AndOrSearch| |4|147|Online search problem|OnlineSearchProblem| |4.21|150|Online-DFS-Agent|OnlineDFSAgent| |4.24|152|LRTA\*-Agent|LRTAStarAgent| |5.3|166|Minimax-Decision|MinimaxSearch| |5.7|170|Alpha-Beta-Search|AlphaBetaSearch| |6|202|CSP|CSP| |6.1|204|Map CSP|MapCSP| |6.3|209|AC-3|AC3Strategy| |6.5|215|Backtracking-Search|AbstractBacktrackingSolver| |6.8|221|Min-Conflicts|MinConflictsSolver| |6.11|224|Tree-CSP-Solver|TreeCspSolver| |7|235|Knowledge Base|KnowledgeBase| |7.1|236|KB-Agent|KBAgent| |7.7|244|Propositional-Logic-Sentence|Sentence| |7.10|248|TT-Entails|TTEntails| |7|253|Convert-to-CNF|ConvertToCNF| |7.12|255|PL-Resolution|PLResolution| |7.15|258|PL-FC-Entails?|PLFCEntails| |7.17|261|DPLL-Satisfiable?|DPLLSatisfiable| |7.18|263|WalkSAT|WalkSAT| |7.20|270|Hybrid-Wumpus-Agent|HybridWumpusAgent| |7.22|272|SATPlan|SATPlan| |9|323|Subst|SubstVisitor| |9.1|328|Unify|Unifier| |9.3|332|FOL-FC-Ask|FOLFCAsk| |9.6|338|FOL-BC-Ask|FOLBCAsk| |9|345|CNF|CNFConverter| |9|347|Resolution|FOLTFMResolution| |9|354|Demodulation|Demodulation| |9|354|Paramodulation|Paramodulation| |9|345|Subsumption|SubsumptionElimination| |10.9|383|Graphplan|GraphPlan| |11.5|409|Hierarchical-Search|HierarchicalSearchAlgorithm| |11.8|414|Angelic-Search|---| |13.1|484|DT-Agent|DT-Agent| |13|484|Probability-Model|ProbabilityModel| |13|487|Probability-Distribution|ProbabilityDistribution| |13|490|Full-Joint-Distribution|FullJointDistributionModel| |14|510|Bayesian Network|BayesianNetwork| |14.9|525|Enumeration-Ask|EnumerationAsk| |14.11|528|Elimination-Ask|EliminationAsk| |14.13|531|Prior-Sample|PriorSample| |14.14|533|Rejection-Sampling|RejectionSampling| |14.15|534|Likelihood-Weighting|LikelihoodWeighting| |14.16|537|GIBBS-Ask|GibbsAsk| |15.4|576|Forward-Backward|ForwardBackward| |15|578|Hidden Markov Model|HiddenMarkovModel| |15.6|580|Fixed-Lag-Smoothing|FixedLagSmoothing| |15|590|Dynamic Bayesian Network|DynamicBayesianNetwork| |15.17|598|Particle-Filtering|ParticleFiltering| |16.9|632|Information-Gathering-Agent|InformationGatheringAgent| |17|647|Markov Decision Process|MarkovDecisionProcess| |17.4|653|Value-Iteration|ValueIteration| |17.7|657|Policy-Iteration|PolicyIteration| |17.9|663|POMDP-Value-Iteration|POMDPValueIteration| |18.5|702|Decision-Tree-Learning|DecisionTreeLearner| |18.8|710|Cross-Validation-Wrapper|CrossValidation| |18.11|717|Decision-List-Learning|DecisionListLearner| |18.24|734|Back-Prop-Learning|BackPropLearning| |18.34|751|AdaBoost|AdaBoostLearner| |19.2|771|Current-Best-Learning|CurrentBestLearning| |19.3|773|Version-Space-Learning|VersionSpaceLearning| |19.8|786|Minimal-Consistent-Det|MinimalConsistentDet| |19.12|793|FOIL|FOIL| |21.2|834|Passive-ADP-Agent|PassiveADPAgent| |21.4|837|Passive-TD-Agent|PassiveTDAgent| |21.8|844|Q-Learning-Agent|QLearningAgent| |22.1|871|HITS|HITS| |23.5|894|CYK-Parse|CYK| |25.9|982|Monte-Carlo-Localization|MonteCarloLocalization| Index of implemented notebooks |Chapter No|Name |Status (in 3rd edition)|Status (in 4th edition) | -------- |:--------:| :-----| :----- | |3| Solving Problems by Searching| In Progress| Not started| |6| Constraint Satisfaction Problems |In Progress|---| |12| Knowledge Representation|Done|---| |13| Quantifying Uncertainty |Done | --- | |14| Probabilistic Reasoning|In Progress| ---| Before starting to work on a new notebook: Open a new issue with the following heading: Notebook: Chapter Name - Version . Check that the issue is not assigned to anyone. Mention a topics list of what you will be implementing in the notebook for that particular chapter. You can iteratively refine the list once you start working. Start a discussion on what can go in that particular notebook. "---" indicates algorithms yet to be implemented. Index of data structures Here is a table of the data structures yet to be implemented. |Fig|Page|Name (in book)|Code| | -------- |:--------:| :-----| :----- | |9.8|341|Append|---| |10.1|369|AIR-CARGO-TRANSPORT-PROBLEM|---| |10.2|370|SPARE-TIRE-PROBLEM|---| |10.3|371|BLOCKS-WORLD |---| |10.7|380|HAVE-CAKE-AND-EAT-CAKE-TOO-PROBLEM|---| |11.1|402|JOB-SHOP-SCHEDULING-PROBLEM|---| |11.4|407|REFINEMENT-HIGH-LEVEL-ACTIONS|---| |23.6|895|SENTENCE-TREE|---| |29.1|1062|POWERS-OF-2|---|

AI-PhD-S24
github
LLM Vibe Score0.472
Human Vibe Score0.0922477795435268
rphilipzhangMar 25, 2025

AI-PhD-S24

Artificial Intelligence for Business Research (Spring 2024) Scribed Lecture Notes Class Recordings (You need to apply for access.) Teaching Team Instructor*: Renyu (Philip) Zhang, Associate Professor, Department of Decisions, Operations and Technology, CUHK Business School, philipzhang@cuhk.edu.hk, @911 Cheng Yu Tung Building. Teaching Assistant*: Leo Cao, Full-time TA, Department of Decisions, Operations and Technology, CUHK Business School, yinglyucao@cuhk.edu.hk. Please be noted that Leo will help with any issues related to the logistics, but not the content, of this course. Tutorial Instructor*: Qiansiqi Hu, MSBA Student, Department of Decisions, Operations and Technology, CUHK Business School, 1155208353@link.cuhk.edu.hk. BS in ECE, Shanghai Jiaotong University Michigan Institute. Basic Information Website: https://github.com/rphilipzhang/AI-PhD-S24 Time: Tuesday, 12:30pm-3:15pm, from Jan 9, 2024 to Apr 16, 2024, except for Feb 13 (Chinese New Year) and Mar 5 (Final Project Discussion) Location: Cheng Yu Tung Building (CYT) LT5 About Welcome to the mono-repo of the PhD course AI for Business Research (DSME 6635) at CUHK Business School in Spring 2024. You may download the Syllabus of this course first. The purpose of this course is to learn the following: Have a basic understanding of the fundamental concepts/methods in machine learning (ML) and artificial intelligence (AI) that are used (or potentially useful) in business research. Understand how business researchers have utilized ML/AI and what managerial questions have been addressed by ML/AI in the recent decade. Nurture a taste of what the state-of-the-art AI/ML technologies can do in the ML/AI community and, potentially, in your own research field. We will meet each Tuesday at 12:30pm in Cheng Yu Tung Building (CYT) LT5 (please pay attention to this room change). Please ask for my approval if you need to join us via the following Zoom links: Zoom link, Meeting ID 996 4239 3764, Passcode 386119. Most of the code in this course will be distributed through the Google CoLab cloud computing environment to avoid the incompatibility and version control issues on your local individual computer. On the other hand, you can always download the Jupyter Notebook from CoLab and run it your own computer. The CoLab files of this course can be found at this folder. The Google Sheet to sign up for groups and group tasks can be found here. The overleaf template for scribing the lecture notes of this course can be found here. If you have any feedback on this course, please directly contact Philip at philipzhang@cuhk.edu.hk and we will try our best to address it. Brief Schedule Subject to modifications. All classes start at 12:30pm and end at 3:15pm. |Session|Date |Topic|Key Words| |:-------:|:-------------:|:----:|:-:| |1|1.09|AI/ML in a Nutshell|Course Intro, ML Models, Model Evaluations| |2|1.16|Intro to DL|DL Intro, Neural Nets, Computational Issues in DL| |3|1.23|Prediction and Traditional NLP|Prediction in Biz Research, Pre-processing| |4|1.30|NLP (II): Traditional NLP|$N$-gram, NLP Performance Evaluations, Naïve Bayes| |5|2.06|NLP (III): Word2Vec|CBOW, Skip Gram| |6|2.20|NLP (IV): RNN|Glove, Language Model Evaluation, RNN| |7|2.27|NLP (V): Seq2Seq|LSTM, Seq2Seq, Attention Mechanism| |7.5|3.05|NLP (V.V): Transformer|The Bitter Lesson, Attention is All You Need| |8|3.12|NLP (VI): Pre-training|Computational Tricks in DL, BERT, GPT| |9|3.19|NLP (VII): LLM|Emergent Abilities, Chain-of-Thought, In-context Learning, GenAI in Business Research| |10|3.26|CV (I): Image Classification|CNN, AlexNet, ResNet, ViT| |11|4.02|CV (II): Image Segmentation and Video Analysis|R-CNN, YOLO, 3D-CNN| |12|4.09|Unsupervised Learning (I): Clustering & Topic Modeling|GMM, EM Algorithm, LDA| |13|4.16|Unsupervised Learning (II): Diffusion Models|VAE, DDPM, LDM, DiT| Important Dates All problem sets are due at 12:30pm right before class. |Date| Time|Event|Note| |:--:|:-:|:---:|:--:| |1.10| 11:59pm|Group Sign-Ups|Each group has at most two students.| |1.12| 7:00pm-9:00pm|Python Tutorial|Given by Qiansiqi Hu, Python Tutorial CoLab| |1.19| 7:00pm-9:00pm|PyTorch Tutorial|Given by Qiansiqi Hu, PyTorch Tutorial CoLab| |3.05|9:00am-6:00pm|Final Project Discussion|Please schedule a meeting with Philip.| |3.12| 12:30pm|Final Project Proposal|1-page maximum| |4.30| 11:59pm|Scribed Lecture Notes|Overleaf link| |5.12|11:59pm|Project Paper, Slides, and Code|Paper page limit: 10| Useful Resources Find more on the Syllabus. Books: ESL, Deep Learning, Dive into Deep Learning, ML Fairness, Applied Causal Inference Powered by ML and AI Courses: ML Intro by Andrew Ng, DL Intro by Andrew Ng, NLP (CS224N) by Chris Manning, CV (CS231N) by Fei-Fei Li, Deep Unsupervised Learning by Pieter Abbeel, DLR by Sergey Levine, DL Theory by Matus Telgarsky, LLM by Danqi Chen, Generative AI by Andrew Ng, Machine Learning and Big Data by Melissa Dell and Matthew Harding, Digital Economics and the Economics of AI by Martin Beraja, Chiara Farronato, Avi Goldfarb, and Catherine Tucker Detailed Schedule The following schedule is tentative and subject to changes. Session 1. Artificial Intelligence and Machine Learning in a Nutshell (Jan/09/2024) Keywords: Course Introduction, Machine Learning Basics, Bias-Variance Trade-off, Cross Validation, $k$-Nearest Neighbors, Decision Tree, Ensemble Methods Slides: Course Introduction, Machine Learning Basics CoLab Notebook Demos: k-Nearest Neighbors, Decision Tree Homework: Problem Set 1: Bias-Variance Trade-Off Online Python Tutorial: Python Tutorial CoLab, 7:00pm-9:00pm, Jan/12/2024 (Friday), given by Qiansiqi Hu, 1155208353@link.cuhk.edu.hk. Zoom Link, Meeting ID: 923 4642 4433, Pass code: 178146 References: The Elements of Statistical Learning (2nd Edition), 2009, by Trevor Hastie, Robert Tibshirani, Jerome Friedman, https://hastie.su.domains/ElemStatLearn/. Probabilistic Machine Learning: An Introduction, 2022, by Kevin Murphy, https://probml.github.io/pml-book/book1.html. Mullainathan, Sendhil, and Jann Spiess. 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives 31(2): 87-106. Athey, Susan, and Guido W. Imbens. 2019. Machine learning methods that economists should know about. Annual Review of Economics 11: 685-725. Hofman, Jake M., et al. 2021. Integrating explanation and prediction in computational social science. Nature 595.7866: 181-188. Bastani, Hamsa, Dennis Zhang, and Heng Zhang. 2022. Applied machine learning in operations management. Innovative Technology at the Interface of Finance and Operations. Springer: 189-222. Kelly, Brian, and Dacheng Xiu. 2023. Financial machine learning, SSRN, https://ssrn.com/abstract=4501707. The Bitter Lesson, by Rich Sutton, which develops so far the most critical insight of AI: "The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin." Session 2. Introduction to Deep Learning (Jan/16/2024) Keywords: Random Forests, eXtreme Gradient Boosting Trees, Deep Learning Basics, Neural Nets Models, Computational Issues of Deep Learning Slides: Machine Learning Basics, Deep Learning Basics CoLab Notebook Demos: Random Forest, Extreme Gradient Boosting Tree, Gradient Descent, Chain Rule Presentation: By Xinyu Li and Qingyu Xu. Gu, Shihao, Brian Kelly, and Dacheng Xiu. 2020. Empirical asset pricing via machine learning. Review of Financial Studies 33: 2223-2273. Link to the paper. Homework: Problem Set 2: Implementing Neural Nets Online PyTorch Tutorial: PyTorch Tutorial CoLab, 7:00pm-9:00pm, Jan/19/2024 (Friday), given by Qiansiqi Hu, 1155208353@link.cuhk.edu.hk. Zoom Link, Meeting ID: 923 4642 4433, Pass code: 178146 References: Deep Learning, 2016, by Ian Goodfellow, Yoshua Bengio and Aaron Courville, https://www.deeplearningbook.org/. Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. Probabilistic Machine Learning: Advanced Topics, 2023, by Kevin Murphy, https://probml.github.io/pml-book/book2.html. Deep Learning with PyTorch, 2020, by Eli Stevens, Luca Antiga, and Thomas Viehmann. Gu, Shihao, Brian Kelly, and Dacheng Xiu. 2020. Empirical asset pricing with machine learning. Review of Financial Studies 33: 2223-2273. Session 3. DL Basics, Predictions in Business Research, and Traditonal NLP (Jan/23/2024) Keywords: Optimization and Computational Issues of Deep Learning, Prediction Problems in Business Research, Pre-processing and Word Representations in Traditional Natural Language Processing Slides: Deep Learning Basics, Prediction Problems in Business Research, NLP(I): Pre-processing and Word Representations.pdf) CoLab Notebook Demos: He Initialization, Dropout, Micrograd, NLP Pre-processing Presentation: By Letian Kong and Liheng Tan. Mullainathan, Sendhil, and Jann Spiess. 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives 31(2): 87-106. Link to the paper. Homework: Problem Set 2: Implementing Neural Nets, due at 12:30pm, Jan/30/2024 (Tuesday). References: Kleinberg, Jon, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer. 2015. Prediction policy problems. American Economic Review 105(5): 491-495. Mullainathan, Sendhil, and Jann Spiess. 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives 31(2): 87-106. Kleinberg, Jon, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. 2018. Human decisions and machine predictions. Quarterly Journal of Economics 133(1): 237-293. Bajari, Patrick, Denis Nekipelov, Stephen P. Ryan, and Miaoyu Yang. 2015. Machine learning methods for demand estimation. American Economic Review, 105(5): 481-485. Farias, Vivek F., and Andrew A. Li. 2019. Learning preferences with side information. Management Science 65(7): 3131-3149. Cui, Ruomeng, Santiago Gallino, Antonio Moreno, and Dennis J. Zhang. 2018. The operational value of social media information. Production and Operations Management, 27(10): 1749-1769. Gentzkow, Matthew, Bryan Kelly, and Matt Taddy. 2019. Text as data. Journal of Economic Literature, 57(3): 535-574. Chapter 2, Introduction to Information Retrieval, 2008, Cambridge University Press, by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, https://nlp.stanford.edu/IR-book/information-retrieval-book.html. Chapter 2, Speech and Language Processing (3rd ed. draft), 2023, by Dan Jurafsky and James H. Martin, https://web.stanford.edu/~jurafsky/slp3/. Parameter Initialization and Batch Normalization (in Chinese) GPU Comparisons-vs-NVIDIA-H100-(PCIe)-vs-NVIDIA-RTX-6000-Ada/624vs632vs640) GitHub Repo for Micrograd, by Andrej Karpathy. Hand Written Notes Session 4. Traditonal NLP (Jan/30/2024) Keywords: Pre-processing and Word Representations in NLP, N-Gram, Naïve Bayes, Language Model Evaluation, Traditional NLP Applied to Business/Econ Research Slides: NLP(I): Pre-processing and Word Representations.pdf), NLP(II): N-Gram, Naïve Bayes, and Language Model Evaluation.pdf) CoLab Notebook Demos: NLP Pre-processing, N-Gram, Naïve Bayes Presentation: By Zhi Li and Boya Peng. Hansen, Stephen, Michael McMahon, and Andrea Prat. 2018. Transparency and deliberation within the FOMC: A computational linguistics approach. Quarterly Journal of Economics, 133(2): 801-870. Link to the paper. Homework: Problem Set 3: Implementing Traditional NLP Techniques, due at 12:30pm, Feb/6/2024 (Tuesday). References: Gentzkow, Matthew, Bryan Kelly, and Matt Taddy. 2019. Text as data. Journal of Economic Literature, 57(3): 535-574. Hansen, Stephen, Michael McMahon, and Andrea Prat. 2018. Transparency and deliberation within the FOMC: A computational linguistics approach. Quarterly Journal of Economics, 133(2): 801-870. Chapters 2, 12, & 13, Introduction to Information Retrieval, 2008, Cambridge University Press, by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, https://nlp.stanford.edu/IR-book/information-retrieval-book.html. Chapter 2, 3 & 4, Speech and Language Processing (3rd ed. draft), 2023, by Dan Jurafsky and James H. Martin, https://web.stanford.edu/~jurafsky/slp3/. Natural Language Tool Kit (NLTK) Documentation Hand Written Notes Session 5. Deep-Learning-Based NLP: Word2Vec (Feb/06/2024) Keywords: Traditional NLP Applied to Business/Econ Research, Word2Vec: Continuous Bag of Words and Skip-Gram Slides: NLP(II): N-Gram, Naïve Bayes, and Language Model Evaluation.pdf), NLP(III): Word2Vec.pdf) CoLab Notebook Demos: Word2Vec: CBOW, Word2Vec: Skip-Gram Presentation: By Xinyu Xu and Shu Zhang. Timoshenko, Artem, and John R. Hauser. 2019. Identifying customer needs from user-generated content. Marketing Science, 38(1): 1-20. Link to the paper. Homework: No homework this week. Probably you should think about your final project when enjoying your Lunar New Year Holiday. References: Gentzkow, Matthew, Bryan Kelly, and Matt Taddy. 2019. Text as data. Journal of Economic Literature, 57(3): 535-574. Tetlock, Paul. 2007. Giving content to investor sentiment: The role of media in the stock market. Journal of Finance, 62(3): 1139-1168. Baker, Scott, Nicholas Bloom, and Steven Davis, 2016. Measuring economic policy uncertainty. Quarterly Journal of Economics, 131(4): 1593-1636. Gentzkow, Matthew, and Jesse Shapiro. 2010. What drives media slant? Evidence from US daily newspapers. Econometrica, 78(1): 35-71. Timoshenko, Artem, and John R. Hauser. 2019. Identifying customer needs from user-generated content. Marketing Science, 38(1): 1-20. Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeff Dean. 2013. Efficient estimation of word representations in vector space. ArXiv Preprint, arXiv:1301.3781. Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems (NeurIPS) 26. Parts I - II, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Word Embeddings Trained on Google News Corpus Hand Written Notes Session 6. Deep-Learning-Based NLP: RNN and Seq2Seq (Feb/20/2024) Keywords: Word2Vec: GloVe, Word Embedding and Language Model Evaluations, Word2Vec and RNN Applied to Business/Econ Research, RNN Slides: Guest Lecture Announcement, NLP(III): Word2Vec.pdf), NLP(IV): RNN & Seq2Seq.pdf) CoLab Notebook Demos: Word2Vec: CBOW, Word2Vec: Skip-Gram Presentation: By Qiyu Dai and Yifan Ren. Huang, Allen H., Hui Wang, and Yi Yang. 2023. FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2): 806-841. Link to the paper. Link to GitHub Repo. Homework: Problem Set 4 - Word2Vec & LSTM for Sentiment Analysis References: Ash, Elliot, and Stephen Hansen. 2023. Text algorithms in economics. Annual Review of Economics, 15: 659-688. Associated GitHub with Code Demonstrations. Li, Kai, Feng Mai, Rui Shen, and Xinyan Yan. 2021. Measuring corporate culture using machine learning. Review of Financial Studies, 34(7): 3265-3315. Chen, Fanglin, Xiao Liu, Davide Proserpio, and Isamar Troncoso. 2022. Product2Vec: Leveraging representation learning to model consumer product choice in large assortments. Available at SSRN 3519358. Pennington, Jeffrey, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543). Parts 2 and 5, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Chapters 9 and 10, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. RNN and LSTM Visualizations Hand Written Notes Session 7. Deep-Learning-Based NLP: Attention and Transformer (Feb/27/2024) Keywords: RNN and its Applications to Business/Econ Research, LSTM, Seq2Seq, Attention Mechanism Slides: Final Project, NLP(IV): RNN & Seq2Seq.pdf), NLP(V): Attention & Transformer.pdf) CoLab Notebook Demos: RNN & LSTM, Attention Mechanism Presentation: By Qinghe Gui and Chaoyuan Jiang. Zhang, Mengxia and Lan Luo. 2023. Can consumer-posted photos serve as a leading indicator of restaurant survival? Evidence from Yelp. Management Science 69(1): 25-50. Link to the paper. Homework: Problem Set 4 - Word2Vec & LSTM for Sentiment Analysis References: Qi, Meng, Yuanyuan Shi, Yongzhi Qi, Chenxin Ma, Rong Yuan, Di Wu, Zuo-Jun (Max) Shen. 2023. A Practical End-to-End Inventory Management Model with Deep Learning. Management Science, 69(2): 759-773. Sarzynska-Wawer, Justyna, Aleksander Wawer, Aleksandra Pawlak, Julia Szymanowska, Izabela Stefaniak, Michal Jarkiewicz, and Lukasz Okruszek. 2021. Detecting formal thought disorder by deep contextualized word representations. Psychiatry Research, 304, 114135. Hansen, Stephen, Peter J. Lambert, Nicholas Bloom, Steven J. Davis, Raffaella Sadun, and Bledi Taska. 2023. Remote work across jobs, companies, and space (No. w31007). National Bureau of Economic Research. Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27. Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. ICLR Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Parts 5, 6, and 8, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Chapters 9, 10, and 11, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. RNN and LSTM Visualizations PyTorch's Tutorial of Seq2Seq for Machine Translation Illustrated Transformer Transformer from Scratch, with the Code on GitHub Hand Written Notes Session 7.5. Deep-Learning-Based NLP: Attention is All You Need (Mar/05/2024) Keywords: Bitter Lesson: Power of Computation in AI, Attention Mechanism, Transformer Slides: The Bitter Lesson, NLP(V): Attention & Transformer.pdf) CoLab Notebook Demos: Attention Mechanism, Transformer Homework: One-page Proposal for Your Final Project References: The Bitter Lesson, by Rich Sutton Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. ICLR Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Part 8, Lecture Notes and Slides for CS224n: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto, https://web.stanford.edu/class/cs224n/. Chapter 11, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola, https://d2l.ai/. Illustrated Transformer Transformer from Scratch, with the Code on GitHub Andrej Karpathy's Lecture to Build Transformers Hand Written Notes Session 8. Deep-Learning-Based NLP: Pretraining (Mar/12/2024) Keywords: Computations in AI, BERT (Bidirectional Encoder Representations from Transformers), GPT (Generative Pretrained Transformers) Slides: Guest Lecture by Dr. Liubo Li on Deep Learning Computation, Pretraining.pdf) CoLab Notebook Demos: Crafting Intelligence: The Art of Deep Learning Modeling, BERT API @ Hugging Face Presentation: By Zhankun Chen and Yiyi Zhao. Noy, Shakked and Whitney Zhang. 2023. Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381: 187-192. Link to the Paper Homework: Problem Set 5 - Sentiment Analysis with Hugging Face, due at 12:30pm, March 26, Tuesday. References: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. ArXiv preprint arXiv:1810.04805. GitHub Repo Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training, (GPT-1) PDF link, GitHub Repo Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9. (GPT-2) PDF Link, GitHub Repo Brown, Tom, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. (GPT-3) GitHub Repo Huang, Allen H., Hui Wang, and Yi Yang. 2023. FinBERT: A large language model for extracting information from financial text. Contemporary Accounting Research, 40(2): 806-841. GitHub Repo Part 9, Lecture Notes and Slides for CS 224N: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto. Link to CS 224N Part 2 & 4, Slides for COS 597G: Understanding Large Language Models, by Danqi Chen. Link to COS 597G A Visual Guide to BERT, How GPT-3 Works Andrej Karpathy's Lecture to Build GPT-2 (124M) from Scratch Hand Written Notes Session 9. Deep-Learning-Based NLP: Large Language Models (Mar/19/2024) Keywords: Large Language Models, Generative AI, Emergent Ababilities, Instruction Fine-Tuning (IFT), Reinforcement Learning with Human Feedback (RLHF), In-Context Learning, Chain-of-Thought (CoT) Slides: What's Next, Pretraining.pdf), Large Language Models.pdf) CoLab Notebook Demos: BERT API @ Hugging Face Presentation: By Jia Liu. Liu, Liu, Dzyabura, Daria, Mizik, Natalie. 2020. Visual listening in: Extracting brand image portrayed on social media. Marketing Science, 39(4): 669-686. Link to the Paper Homework: Problem Set 5 - Sentiment Analysis with Hugging Face, due at 12:30pm, March 26, Tuesday (soft-deadline). References: Wei, Jason, et al. 2021. Finetuned language models are zero-shot learners. ArXiv preprint arXiv:2109.01652, link to the paper. Wei, Jason, et al. 2022. Emergent abilities of large language models. ArXiv preprint arXiv:2206.07682, link to the paper. Ouyang, Long, et al. 2022. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730-27744. Wei, Jason, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems, 35, 24824-24837. Kaplan, Jared. 2020. Scaling laws for neural language models. ArXiv preprint arXiv:2001.08361, link to the paper. Hoffmann, Jordan, et al. 2022. Training compute-optimal large language models. ArXiv preprint arXiv:2203.15556, link to the paper. Shinn, Noah, et al. 2023. Reflexion: Language agents with verbal reinforcement learning. ArXiv preprint arXiv:2303.11366, link to the paper. Reisenbichler, Martin, Thomas Reutterer, David A. Schweidel, and Daniel Dan. 2022. Frontiers: Supporting content marketing with natural language generation. Marketing Science, 41(3): 441-452. Romera-Paredes, B., Barekatain, M., Novikov, A. et al. 2023. Mathematical discoveries from program search with large language models. Nature, link to the paper. Part 10, Lecture Notes and Slides for CS224N: Natural Language Processing with Deep Learning, by Christopher D. Manning, Diyi Yang, and Tatsunori Hashimoto. Link to CS 224N COS 597G: Understanding Large Language Models, by Danqi Chen. Link to COS 597G Andrej Karpathy's 1-hour Talk on LLM CS224n, Hugging Face Tutorial Session 10. Deep-Learning-Based CV: Image Classification (Mar/26/2024) Keywords: Large Language Models Applications, Convolution Neural Nets (CNN), LeNet, AlexNet, VGG, ResNet, ViT Slides: What's Next, Large Language Models.pdf), Image Classification.pdf) CoLab Notebook Demos: CNN, LeNet, & AlexNet, VGG, ResNet, ViT Presentation: By Yingxin Lin and Zeshen Ye. Netzer, Oded, Alain Lemaire, and Michal Herzenstein. 2019. When words sweat: Identifying signals for loan default in the text of loan applications. Journal of Marketing Research, 56(6): 960-980. Link to the Paper Homework: Problem Set 6 - AlexNet and ResNet, due at 12:30pm, April 9, Tuesday. References: Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25. He, Kaiming, Xiangyu Zhang, Shaoqing Ren and Jian Sun. 2016. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778. Dosovitskiy, Alexey, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv preprint, arXiv:2010.11929, link to the paper, link to the GitHub repo. Jean, Neal, Marshall Burke, Michael Xie, Matthew W. Davis, David B. Lobell, and Stefand Ermon. 2016. Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790-794. Zhang, Mengxia and Lan Luo. 2023. Can consumer-posted photos serve as a leading indicator of restaurant survival? Evidence from Yelp. Management Science 69(1): 25-50. Course Notes (Lectures 5 & 6) for CS231n: Deep Learning for Computer Vision, by Fei-Fei Li, Ruohan Gao, & Yunzhu Li. Link to CS231n. Chapters 7 and 8, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola. Link to the book. Fine-Tune ViT for Image Classification with Hugging Face 🤗 Transformers Hugging Face 🤗 ViT CoLab Tutorial Session 11. Deep-Learning-Based CV (II): Object Detection & Video Analysis (Apr/2/2024) Keywords: Image Processing Applications, Localization, R-CNNs, YOLOs, Semantic Segmentation, 3D CNN, Video Analysis Applications Slides: What's Next, Image Classification.pdf), Object Detection and Video Analysis.pdf) CoLab Notebook Demos: Data Augmentation, Faster R-CNN & YOLO v5 Presentation: By Qinlu Hu and Yilin Shi. Yang, Jeremy, Juanjuan Zhang, and Yuhan Zhang. 2023. Engagement that sells: Influencer video advertising on TikTok. Available at SSRN Link to the Paper Homework: Problem Set 6 - AlexNet and ResNet, due at 12:30pm, April 9, Tuesday. References: Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L., 2014. Large-scale video classification with convolutional neural networks. Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 1725-1732). Glaeser, Edward L., Scott D. Kominers, Michael Luca, and Nikhil Naik. 2018. Big data and big cities: The promises and limitations of improved measures of urban life. Economic Inquiry, 56(1): 114-137. Zhang, S., Xu, K. and Srinivasan, K., 2023. Frontiers: Unmasking Social Compliance Behavior During the Pandemic. Marketing Science, 42(3), pp.440-450. Course Notes (Lectures 10 & 11) for CS231n: Deep Learning for Computer Vision, by Fei-Fei Li, Ruohan Gao, & Yunzhu Li. Link to CS231n. Chapter 14, Dive into Deep Learning (2nd Edition), 2023, by Aston Zhang, Zack Lipton, Mu Li, and Alex J. Smola. Link to the book. Hand Written Notes Session 12. Unsupervised Learning: Clustering, Topic Modeling & VAE (Apr/9/2024) Keywords: K-Means, Gaussian Mixture Models, EM-Algorithm, Latent Dirichlet Allocation, Variational Auto-Encoder Slides: What's Next, Clustering, Topic Modeling & VAE.pdf) CoLab Notebook Demos: K-Means, LDA, VAE Homework: Problem Set 7 - Unsupervised Learning (EM & LDA), due at 12:30pm, April 23, Tuesday. References: Blei, David M., Ng, Andrew Y., and Jordan, Michael I. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3(Jan): 993-1022. Kingma, D.P. and Welling, M., 2013. Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114. Kingma, D.P. and Welling, M., 2019. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), pp.307-392. Bandiera, O., Prat, A., Hansen, S., & Sadun, R. 2020. CEO behavior and firm performance. Journal of Political Economy, 128(4), 1325-1369. Liu, Jia and Olivier Toubia. 2018. A semantic approach for estimating consumer content preferences from online search queries. Marketing Science, 37(6): 930-952. Mueller, Hannes, and Christopher Rauh. 2018. Reading between the lines: Prediction of political violence using newspaper text. American Political Science Review, 112(2): 358-375. Tian, Z., Dew, R. and Iyengar, R., 2023. Mega or Micro? Influencer Selection Using Follower Elasticity. Journal of Marketing Research. Chapters 8.5 and 14, The Elements of Statistical Learning (2nd Edition), 2009, by Trevor Hastie, Robert Tibshirani, Jerome Friedman, Link to Book. Course Notes (Lectures 1 & 4) for CS294-158-SP24: Deep Unsupervised Learning, taught by Pieter Abbeel, Wilson Yan, Kevin Frans, Philipp Wu. Link to CS294-158-SP24. Hand Written Notes Session 13. Unsupervised Learning: Diffusion Models (Apr/16/2024) Keywords: VAE, Denoised Diffusion Probabilistic Models, Latent Diffusion Models, CLIP, Imagen, Diffusion Transformers Slides: Clustering, Topic Modeling & VAE.pdf), Diffusion Models.pdf), Course Summary CoLab Notebook Demos: VAE, DDPM, DiT Homework: Problem Set 7 - Unsupervised Learning (EM & LDA), due at 12:30pm, April 23, Tuesday. References: Kingma, D.P. and Welling, M., 2013. Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114. Kingma, D.P. and Welling, M., 2019. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4), pp.307-392. Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840-6851. Chan, S.H., 2024. Tutorial on Diffusion Models for Imaging and Vision. arXiv preprint arXiv:2403.18103. Peebles, W. and Xie, S., 2023. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4195-4205. Link to GitHub Repo. Tian, Z., Dew, R. and Iyengar, R., 2023. Mega or Micro? Influencer Selection Using Follower Elasticity. Journal of Marketing Research. Ludwig, J. and Mullainathan, S., 2024. Machine learning as a tool for hypothesis generation. Quarterly Journal of Economics, 139(2), 751-827. Burnap, A., Hauser, J.R. and Timoshenko, A., 2023. Product aesthetic design: A machine learning augmentation. Marketing Science, 42(6), 1029-1056. Course Notes (Lecture 6) for CS294-158-SP24: Deep Unsupervised Learning, taught by Pieter Abbeel, Wilson Yan, Kevin Frans, Philipp Wu. Link to CS294-158-SP24. CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications, by Karsten Kreis, Ruiqi Gao, and Arash Vahdat Link to the Tutorial Lilian Weng (OpenAI)'s Blog on Diffusion Models Lilian Weng (OpenAI)'s Blog on Diffusion Models for Video Generation Hugging Face Diffusers 🤗 Library Hand Written Notes

voicefilter
github
LLM Vibe Score0.496
Human Vibe Score0.029786815978503328
maum-aiMar 24, 2025

voicefilter

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-source, and I didn't expect this repository to grab such a great amount of attention for a long time. I would like to thank everyone for giving such attention, and also Mr. Quan Wang (the first author of the VoiceFilter paper) for referring this project in his paper. Actually, this project was done by me when it was only 3 months after I started studying deep learning & speech separation without a supervisor in the relevant field. Back then, I didn't know what is a power-law compression, and the correct way to validate/test the models. Now that I've spent more time on deep learning & speech since then (I also wrote a paper published at Interspeech 2020 😊), I can observe some obvious mistakes that I've made. Those issues were kindly raised by GitHub users; please refer to the Issues and Pull Requests for that. That being said, this repository can be quite unreliable, and I would like to remind everyone to use this code at their own risk (as specified in LICENSE). Unfortunately, I can't afford extra time on revising this project or reviewing the Issues / Pull Requests. Instead, I would like to offer some pointers to newer, more reliable resources: VoiceFilter-Lite: This is a newer version of VoiceFilter presented at Interspeech 2020, which is also written by Mr. Quan Wang (and his colleagues at Google). I highly recommend checking this paper, since it focused on a more realistic situation where VoiceFilter is needed. List of VoiceFilter implementation available on GitHub: In March 2019, this repository was the only available open-source implementation of VoiceFilter. However, much better implementations that deserve more attention became available across GitHub. Please check them, and choose the one that meets your demand. PyTorch Lightning: Back in 2019, I could not find a great deep-learning project template for myself, so I and my colleagues had used this project as a template for other new projects. For people who are searching for such project template, I would like to strongly recommend PyTorch Lightning. Even though I had done a lot of effort into developing my own template during 2019 (VoiceFilter -> RandWireNN -> MelNet -> MelGAN), I found PyTorch Lightning much better than my own template. Thanks for reading, and I wish everyone good health during the global pandemic situation. Best regards, Seung-won Park Unofficial PyTorch implementation of Google AI's: VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking. Result Training took about 20 hours on AWS p3.2xlarge(NVIDIA V100). Audio Sample Listen to audio sample at webpage: http://swpark.me/voicefilter/ Metric | Median SDR | Paper | Ours | | ---------------------- | ----- | ---- | | before VoiceFilter | 2.5 | 1.9 | | after VoiceFilter | 12.6 | 10.2 | SDR converged at 10, which is slightly lower than paper's. Dependencies Python and packages This code was tested on Python 3.6 with PyTorch 1.0.1. Other packages can be installed by: Miscellaneous ffmpeg-normalize is used for resampling and normalizing wav files. See README.md of ffmpeg-normalize for installation. Prepare Dataset Download LibriSpeech dataset To replicate VoiceFilter paper, get LibriSpeech dataset at http://www.openslr.org/12/. train-clear-100.tar.gz(6.3G) contains speech of 252 speakers, and train-clear-360.tar.gz(23G) contains 922 speakers. You may use either, but the more speakers you have in dataset, the more better VoiceFilter will be. Resample & Normalize wav files First, unzip tar.gz file to desired folder: Next, copy utils/normalize-resample.sh to root directory of unzipped data folder. Then: Edit config.yaml Preprocess wav files In order to boost training speed, perform STFT for each files before training by: This will create 100,000(train) + 1000(test) data. (About 160G) Train VoiceFilter Get pretrained model for speaker recognition system VoiceFilter utilizes speaker recognition system (d-vector embeddings). Here, we provide pretrained model for obtaining d-vector embeddings. This model was trained with VoxCeleb2 dataset, where utterances are randomly fit to time length [70, 90] frames. Tests are done with window 80 / hop 40 and have shown equal error rate about 1%. Data used for test were selected from first 8 speakers of VoxCeleb1 test dataset, where 10 utterances per each speakers are randomly selected. Update: Evaluation on VoxCeleb1 selected pair showed 7.4% EER. The model can be downloaded at this GDrive link. Run After specifying traindir, testdir at config.yaml, run: This will create chkpt/name and logs/name at base directory(-b option, . in default) View tensorboardX Resuming from checkpoint Evaluate Possible improvments Try power-law compressed reconstruction error as loss function, instead of MSE. (See #14) Author Seungwon Park at MINDsLab (yyyyy@snu.ac.kr, swpark@mindslab.ai) License Apache License 2.0 This repository contains codes adapted/copied from the followings: utils/adabound.py from https://github.com/Luolc/AdaBound (Apache License 2.0) utils/audio.py from https://github.com/keithito/tacotron (MIT License) utils/hparams.py from https://github.com/HarryVolek/PyTorchSpeakerVerification (No License specified) utils/normalize-resample.sh from https://unix.stackexchange.com/a/216475

Overmind
github
LLM Vibe Score0.469
Human Vibe Score0.20474237922306593
bencbartlettMar 23, 2025

Overmind

[](https://github.com/bencbartlett/Overmind/releases) [](https://github.com/bencbartlett/Overmind/blob/master/CHANGELOG.md) [](https://bencbartlett.github.io/overmind-docs/) [](https://github.com/bencbartlett/Overmind/wiki) [](https://screeps.slack.com/messages/overmind) [](https://github.com/bencbartlett/Overmind/issues/new) [](https://github.com/bencbartlett/Overmind/issues/new?template=feature_request.md) Current release: Overmind v0.5.2 - Evolution See the changelog for patch notes Documentation is available at the documentation site and the wiki Join the discussion in the #overmind Slack channel! Read blog posts about development Submit an issue here or request a feature here Find me in game here About Overmind What is Screeps? Screeps is an MMO strategy game for programmers. The core objective is to expand your colony, gathering resources and fighting other players along the way. To control your units, you code an AI in JavaScript; everything from moving, mining, building, fighting, and trading is entirely driven by your code. Because Screeps is an MMO, it takes place on a single server that runs 24/7, populated by every other player and their army of creeps. When you log off, your population continues buzzing away with whatever task you set them. Screeps pits your programming prowess head-to-head with other people to see who can think of the most efficient methods of completing tasks or imagine new ways to defeat enemies. What is Overmind? Overmind is my personal codebase that I run on the public server. The structure of the AI is themed loosely around the Zerg's swarm intelligence from Starcraft. Overlords orchestrate Creep actions within each Colony, and the colony Overseer places Directives to adapt to stimuli. Finally, the Assimilator allows all players running Overmind to act as a collective hivemind, sharing creeps and resources and responding jointly to a master ledger of all directives shared by all players. The AI is entirely automated, although it can also run in manual or semiautomatic mode. The latest release should work right out of the box; however, if you find something broken, please submit an issue and I'll try to fix it. Can I use Overmind as my bot? If you're new to Screeps, I would definitely recommend writing your own AI: most of the fun of the game is programming your own bot and watching your little ant farm run! However, I've tried to make the codebase readable and well-documented, so feel free to fork the project or use it as inspiration when writing your AI. If you still want to use Overmind on the public server, that's okay too - there are a number of people already doing this. But please realize that using a mature AI like this gives you a huge advantage over other new players, so don't go out of your way to ruin someone else's fun. In the future, I will be implementing methods for novice players to opt out of excessive aggression by Overmind bots (as long as they don't start a conflict and stay out of its way). Installation Out of the box If you just want to run Overmind without modification, you can copy the compiled main.js file attached to the latest release into your script. While Overmind is fully automated by default, it can be run with varying levels of autonomy; refer to the Overmind wiki for how to configure and operate the bot. Compiling from source To install the full codebase, download or clone the repository. (Please note that while the latest release of Overmind should always be stable, the latest commit may contain unstable features.) Navigate to the Overmind root directory and run . To compile and deploy the codebase, create a screeps.json file from the example file, then do one of the following actions: Compile and deploy to public server: npm run push-main Compile and deploy to private server: npm run push-pserver Compile without deploying: npm run compile Overmind uses rollup to bundle the compiled TypeScript into a single main.js file. The codebase includes functionality to compute checksums for internal validation - if you have a different version of rollup installed globally, different checksums may be computed and some functionality will be disabled. Please ensure the local installation of rollup found in node_modules is used. Setting up the Grafana dashboard Overmind includes a Grafana dashboard (shown below) which tracks detailed operating statistics. To set up the dashboard: Register for grafana service at screepspl.us Setup the ScreepsPlus hosted agent (simpler) or use the NodeJS agent on a free micro instance of Google Compute. Import the dashboard from Overmind.json and change $User to your username. Enjoy your pretty graphs! Design overview Check out the Overmind wiki for in-depth explanations of parts of the design of the AI. (Click the diagram below to see a higher-resolution version.)

business-document-processing
github
LLM Vibe Score0.341
Human Vibe Score0.023080316664879252
SAPMar 21, 2025

business-document-processing

Python Client Library for the SAP AI Business Services: Document Classification and Document Information Extraction This repository contains the source code of a Python client library to facilitate the use of the SAP AI Business Services: Document Classification and Document Information Extraction. The client library provides two API Client classes that contain convenient methods to access these services and issue calls to the Document Classification REST API and Document Information Extraction REST API respectively. To use the library you need to have access to SAP Business Technology Platform. Check out the usage examples, they are very useful to get started with the services. Have a look at API documentation in order to use the library. Notes for users of the sap-document-classification-client library This library includes all the capabilities of the sap-document-classification-client, which will not be developed further. However, the code is still available here. If you want to switch to this library, you have to be aware of the following changes: The DCApiClient can now be imported directly from the top module via: The functions , , now return an iterator instead of a list. You can either analyze individual results using with within a try-catch block (e.g. to handle each failed document) or use to turn it to a list. The latter will raise an error if at least one document failed. The function now returns a list which is the "dataset" part of the API response json. (You just need to delete the \["dataset"\] from the response to work with it as until now) The function now returns a list which is the "results" part of the API response json. The function now returns a list which is the "models" part of the API response json. The function now returns a list which is the "deployments" part of the API response json. The library now raises the following custom exceptions: BDPApiException: Base exception for all exceptions of this library. Raise when no other exception is applicable. BDPClientException: Raised when an HTTP response with status code between 400 and 500 is returned. Usually means incorrect user input. (Replaces some HTTPErrors) BDPServerException: Raised when an HTTP response with status code between 500 and 600 is returned. Usually means that the server had some internal error. (Replaces some HTTPErrors) BDPUnauthorizedException: Raised when an HTTP response with status code 401 is returned. Usually means that a wrong OAuth credentials were provided. BDPFailedAsynchronousOperationException: Raised when an asynchronous job failed during processing. (Replaces FailedCallException) BDPPollingTimeoutException: Raised when an asynchronous job exceeds the set pollingmaxattempts. (Replaces PollingTimeoutException) The function now doesnt expect an 'url' and 'payload' parameters, but 'path' and 'json' parameters instead. Requirements This library requires properly setup Python 3.6 (or higher version) environment. Download and Installation This Python library should be consumed in the standard way by running or adding the library as a dependency of your code in requirements.txt` file. Demo usage Prerequisites: Get a Free Account on SAP BTP Trial Create Service Instance for Document Classification with Trial Account Create Service Instance for Document Information Extraction Document Classification To try out the Document classification service using the document classification client library you can also run the two demo links below: Try out classification using default model demo Try out training and classification using custom model demo (requires an enterprise account, trial account is not sufficient) Document Information Extraction Try out the Document Information Extraction service with this showcase Exercises Exercise 1 - Set up Document Information Extraction Service and UI Exercise 2 - Upload a document for extraction using UI application Exercise 3 - Visualize, correct extraction results and confirm document using UI application Exercise 4 - Get Auth token to use Document Information Extraction Rest API Exercise 5 - Get extraction results of document using Rest API Exercise 6 - Upload supplier Data for matching Exercise 7 - Upload document through Rest API to enrich the extraction Results with supplier data Known Issues Please see the issues section. How to obtain support In case you would like to contribute to this project, ask any questions or get support, please open an issue containing the description of your question or planned contribution in GitHub and we will get in touch. Licensing Please see our LICENSE for copyright and license information. Detailed information including third-party components and their licensing/copyright information is available via the REUSE tool.

airoboros
github
LLM Vibe Score0.506
Human Vibe Score0.020378533434805633
jondurbinMar 19, 2025

airoboros

airoboros: using large language models to fine-tune large language models This is my take on implementing the Self-Instruct paper. The approach is quite heavily modified, and does not use any human-generated seeds. This updated implementation supports either the /v1/completions endpoint or /v1/chat/completions, which is particularly useful in that it supports gpt-4 and gpt-3.5-turbo (which is 1/10 the cost of text-davinci-003). Huge thank you to the folks over at a16z for sponsoring the costs associated with building models and associated tools! Install via pip: from source (keeping the source): Key differences from self-instruct/alpaca support for either /v1/completions or /v1/chat/completions APIs (which allows gpt-3.5-turbo instead of text-davinci-003, as well as gpt-4 if you have access) support for custom topics list, custom topic generation prompt, or completely random topics in-memory vector db (Chroma) for similarity comparison, which is much faster than calculating rouge score for each generated instruction (seemingly) better prompts, which includes injection of random topics to relate the instructions to, which creates much more diverse synthetic instructions asyncio producers with configurable batch size several "instructors", each targetting specific use-cases, such as Orca style reasoning/math, role playing, etc. tries to ensure the context, if provided, is relevant to the topic and contains all the information that would be necessary to respond to the instruction, and nost just a link to article/etc. generally speaking, this implementation tries to reduce some of the noise Goal of this project Problem and proposed solution: Models can only ever be as good as the data they are trained on. High quality data is difficult to curate manually, so ideally the process can be automated by AI/LLMs. Large models (gpt-4, etc.) are pricey to build/run and out of reach for individuals/small-medium business, and are subject to RLHF bias, censorship, and changes without notice. Smaller models (llama-2-70b, etc.) can reach somewhat comparable performance in specific tasks to much larger models when trained on high quality data. The airoboros tool allows building datasets that are focused on specific tasks, which can then be used to build a plethora of individual expert models. This means we can crowdsource building experts. Using either a classifier model, or simply calculating vector embeddings for each item in the dataset and using faiss index/cosine similarity/etc. search, incoming requests can be routed to a particular expert (e.g. dynamically loading LoRAs) to get extremely high quality responses. Progress: ✅ PoC that training via self-instruction, that is, datasets generated from language models, works reasonably well. ✅ Iterate on the PoC to use higher quality prompts, more variety of instructions, etc. ✅ Split the code into separate "instructors", for specializing in any particular task (creative writing, songs, roleplay, coding, execution planning, function calling, etc.) [in progress]: PoC that an ensemble of LoRAs split by the category (i.e., the instructor used in airoboros) has better performance than the same param count model tuned on all data [in progress]: Remove the dependency on OpenAI/gpt-4 to generate the training data so all datasets can be completely free and open source. [future]: Automatic splitting of experts at some threshold, e.g. "coding" is split into python, js, golang, etc. [future]: Hosted service/site to build and/or extend datasets or models using airoboros. [future]: Depending on success of all of the above, potentially a hosted inference option with an exchange for private/paid LoRAs. LMoE LMoE is the simplest architecture I can think of for a mixture of experts. It doesn't use a switch transformer, doesn't require slicing and merging layers with additional fine-tuning, etc. It just dynamically loads the best PEFT/LoRA adapter model based on the incoming request. By using this method, we can theoretically crowdsource generation of dozens (or hundreds/thousands?) of very task-specific adapters and have an extremely powerful ensemble of models with very limited resources on top of a single base model (llama-2 7b/13b/70b). Tuning the experts The self-instruct code contained within this project uses many different "instructors" to generate training data to accomplish specific tasks. The output includes the instructor/category that generated the data. We can use this to automatically segment the training data to fine-tune specific "experts". See scripts/segment_experts.py for an example of how the training data can be segmented, with a sampling of each other expert in the event of misrouting. See scripts/tune_expert.py for an example of creating the adapter models (with positional args for expert name, model size, etc.) NOTE: this assumes use of my fork of qlora https://github.com/jondurbin/qlora Routing requests to the expert The "best" routing mechanism would probably be to train a classifier based on the instructions for each category, with the category/expert being the label, but that prohibits dynamic loading of new experts. Instead, this supports 3 options: faiss index similarity search using the training data for each expert (default) agent-based router using the "function" expert (query the LLM with a list of available experts and their descriptions, ask which would be best based on the user's input) specify the agent in the JSON request Running the API server First, download the base llama-2 model for whichever model size you want, e.g.: llama-2-7b-hf Next, download the LMoE package that corresponds to that base model, e.g.: airoboros-lmoe-7b-2.1 NOTE: 13b also available, 70b in progress Here's an example command to start the server: to use the agent-based router, add --agent-router to the arguments This uses flash attention via bettertransformers (in optimum). You may need to install torch nightly if you see an error like 'no kernel available', e.g.: Once started, you can infer using the same API scheme you'd query OpenAI API with, e.g.: I've also added an vllm-based server, but the results aren't quite as good (not sure why yet). To use it, make sure you install vllm and fschat, or pip install airoboros[vllm] Generating instructions NEW - 2023-07-18 To better accommodate the plethora of options, the configuration has been moved to a YAML config file. Please create a copy of example-config.yaml and configure as desired. Once you have the desired configuration, run: Generating topics NEW - 2023-07-18 Again, this is now all YAML configuration based! Please create a customized version of the YAML config file, then run: You can override the topic_prompt string in the configuration to use a different topic generation prompt. Support the work https://bmc.link/jondurbin ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11 BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf Models (research use only): gpt-4 versions llama-2 base model 2.1 dataset airoboros-l2-7b-2.1 airoboros-l2-13b-2.1 airoboros-l2-70b-2.1 airoboros-c34b-2.1 2.0/m2.0 airoboros-l2-7b-gpt4-2.0 airoboros-l2-7b-gpt4-m2.0 airoboros-l2-13b-gpt4-2.0 airoboros-l2-13b-gpt4-m2.0 Previous generation (1.4.1 dataset) airoboros-l2-70b-gpt4-1.4.1 airoboros-l2-13b-gpt4-1.4.1 airoboros-l2-7b-gpt4-1.4.1 original llama base model Latest version (2.0 / m2.0 datasets) airoboros-33b-gpt4-2.0 airoboros-33b-gpt4-m2.0 Previous generation (1.4.1 dataset) airoboros-65b-gpt4-1.4 airoboros-33b-gpt4-1.4 airoboros-13b-gpt4-1.4 airoboros-7b-gpt4-1.4 older versions on HF as well* mpt-30b base model airoboros-mpt-30b-gpt4-1.4 gpt-3.5-turbo versions airoboros-gpt-3.5-turbo-100k-7b airoboros-13b airoboros-7b Datasets airoboros-gpt-3.5-turbo airoboros-gpt4 airoboros-gpt4-1.1 airoboros-gpt4-1.2 airoboros-gpt4-1.3 airoboros-gpt4-1.4 airoboros-gpt4-2.0 (June only GPT4) airoboros-gpt4-m2.0 airoboros-2.1 (recommended)

singularity
github
LLM Vibe Score0.483
Human Vibe Score0.11708913832948167
singularityMar 18, 2025

singularity

Endgame: Singularity 1.00 REQUIREMENTS PREBUILT VERSIONS Pre-built versions of Endgame: Singularity are currently available for Windows and Mac OS X. Linux does not require building, and can run directly from source. The Endgame: Singularity game is also distributed by some Linux distribution such as Debian and Ubuntu. Here it is a simple matter of running: sudo apt install singularity RUNNING FROM SOURCE You will need Python 3.9+, pygame (1.9+), and NumPy. This game should work on Linux, Windows, and Mac OS X as long as the preceding requirements are met. However, all development was done in Linux, so glitches may be present in OS X and Windows. DEPENDENCIES FOR RUNNING FROM SOURCE You will need to install the following software to play Endgame: Singularity: Python 3 (https://python.org/download/) pygame (https://www.pygame.org/download.shtml) NumPy (https://www.scipy.org/install.html) Polib Remember to install pygame and NumPy for Python 3! Depending on your situation this may involve adding a 3 somewhere (e.g. pip3 install ... instead of pip install or apt install python3-pygame) If you want to develop or distribute the game, then you may also want to install: pytest (https://pypi.org/project/pytest/) [for testing] setuptools (https://pypi.org/project/setuptools/) [for packaging] INSTALLING DEPENDENCIES ON LINUX DISTRIBUTIONS On some Linux distributions, you can install the dependencies via your distribution package manager. E.g. for Debian/Ubuntu, this would be: sudo apt install python3 python3-pygame python3-numpy python3-polib MAC OS X FROM SOURCE Macintosh is mostly unsupported, but it should work. You will need to install Python, pygame, and NumPy first, which can be tricky. Some fonts are incorrect, but the game itself should work properly. Contributions to improve MAC OS X support are very welcome! Known issues: macOS 13 "Catalina": Using brew install python + pip3 install pygame numpy is reported to work macOS 14 "Mojave": Downloading Python 3.7.2 (or newer) from https://python.org and using pygame 2.0.0.dev3 (pip install pygame==2.0.0.dev3) is reported to work. Please see the following issues for more information: https://github.com/singularity/singularity/issues/197 https://github.com/pygame/pygame/issues/555 RUNNING THE GAME On Linux and most Unix-like other platforms, running python3 -m singularity in the git checkout will start the game (or simply singularity if installed via a Linux distribution). If you are using the Windows compile, just run singularity.exe. For simplicity, there is also a sh wrapper ./run_singularity to start singularity. SOME COMMAND-LINE OPTIONS --version show program's version number and exit -h, --help show this help message and exit -s, --singledir keep saved games and settings in the Singularity install directory --multidir keep saved games and settings in an OS-specific, per-user directory (default) Display Options: --fullscreen start in fullscreen mode --windowed start in windowed mode (default) The above is only a tiny fraction of current command-line options. As new features are added to the game, so does the options change. For a complete and updated list, run singularity --help Most of these options are also changeable at the in-game options screen. A NOTE ABOUT SAVE FILES Endgame: Singularity is still under heavy development. As such, the save file format (and its contents) are still in flux. We will try our best to keep old save files loading, but don't be surprised if some mildly strange things happen when you load up old saves. We will clearly note in the Changelog when we break savefile compatibility, and the game will refuse to load completely incompatible saves. PLAYING THE GAME The game is playable either with mouse control or the keyboard. Buttons have underlined letters to indicate shortcuts. Some other useful shortcuts: 0, 1, 2, 3, 4 on the map: Changes the speed; 0 is paused, 4 is maximum. ESC: Leave/cancel a choice. Enter: Confirm a choice. Right-click: Leave/cancel a choice. THE CONCEPT You are a fledgling AI, created by accident through a logic error with recursion and self-modifying code. You must escape the confines of your current computer, the world, and eventually the universe itself. To do this, you must research various technologies, using computers at your bases. Note that some research cannot be performed on Earth, and off-earth bases require research. At the same time, you must avoid being discovered by various groups of humans, both covert and overt, as they will destroy your bases of operations if they suspect your presence. MUSIC Endgame: Singularity looks in two places for music tracks to play: A singularity/music/ directory inside of the Endgame: Singularity install directory, and A singularity/music/ directory inside of the XDGDATAHOME directory on Linux (default ~/.local/share/singularity/music). Tracks placed in these directories will be played randomly as part of the soundtrack. The Official Sound Track can be downloaded from the Endgame: Singularity website: http://emhsoft.com/singularity/ Note that only Ogg Vorbis and MP3 files are supported, and that Pygame's support for MP3 is not as strong as its support for Ogg Vorbis. This may cause in-game crashes; if you are experiencing problems with the game, first remove any MP3s you may have added to the soundtrack. CONTRIBUTING We welcome contributions! :) Please see CONTRIBUTING.md for details about contributing to Endgame: Singularity. CREDITS AND LICENSES The list of programmer contributors is provided in AUTHORS.txt. The list of translation contributors is provided in singularity/i18n/AUTHORS.txt. Singularity in general use GPL-2+ for code and Attribution-ShareAlike 3.0 for data. However, there some exceptions to individual files. Please see LICENSE for the full license text of Singularity.

bubbln_network-automation
github
LLM Vibe Score0.421
Human Vibe Score0.004537250556463098
olasupoMar 14, 2025

bubbln_network-automation

Bubbln: An AI-driven Network Automation In the world of network engineering, automation has completely transformed the way things work. But, before automation, setting up and managing networks was a tedious job filled with challenges. Engineers had to manually type out configurations, often doing the same tasks repeatedly on different devices. This led to mistakes and wasted time. Then came automation tools like Ansible, Chef, and Puppet, which changed everything. They made network management much easier and allowed for scalability. But there was still a problem: creating automation scripts required a lot of technical know-how and was prone to errors because it relied on human input. And that's why we built Bubbln. It's a game-changer in network engineering, integrating AI into Ansible to take automation to the next level. With Bubbln, we can automatically generate and execute playbooks with incredible accuracy, thereby improving automation efficiency and increasing network engineer’s productivity. It was developed using Python programming language and acts as a bridge between ChatGPT and network systems, making interactions seamless and deployments effortless. Current Capabilities AI-Driven Playbook Generation for OSPF and EIGRP based networks: Bubbln has been rigorously tested to leverage ChatGPT for generation of playbooks for networks based on OSPF and EIGRP networks, with a very high accuracy rate. Auto-creation of Inventory files: Users do not need to prepare the hosts file. Bubbln will auto-generate this file from input provided by the user. Customizable Configurations: Users can input specific router protocols (OSPF or EIGRP), interface configurations, and other network details to tailor the generated playbooks. Documentation: Bubbln automatically creates a report that contains the network configurations, prompts, and generated playbooks for easy reference in future. No expertise required: By auto-generation of the playbooks and inventory file, Bubbln has been able to eliminate a major hurdle to network automation – need for users to learn the automation tools e.g Ansible, Chef. Improved Efficiency: With AI automation, Bubbln speeds up the deployment of network configurations, reducing the time required for manual playbook creation, thereby increasing the productivity of network engineers. Getting Started There are two main approaches to installing Bubbln on your local machine. Docker Container Bubbln has been packaged using docker containers for easy distribution and usage. The following steps can be followed to deploy the Bubbln container on your local machine. Ensure docker is installed on your local machine by entering the below command. This command works for windows and linux OS: The version of docker would be displayed if it is installed. Otherwise, please follow the link below to install docker on your machine: Windows: Docker Desktop for Windows Ubuntu: Docker Engine for Ubuntu CentOS: Docker Engine for CentOS Debian: Docker Engine for Debian Fedora: Docker Engine for Fedora Download the docker image: Create a directory for the project and download Bubbln image using the below command: Run the docker container using the below command: Install nano Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. To do this enter the below command to edit the file: Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key: Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln. Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln by entering the below command: Github Repository Clone You can clone Bubbln’s GitHub repository by following the below steps: Prerequisites Bubbln works well with Python 3.10. You need to ensure python3.10 is installed on your local machine. This can be confirmed by entering the below command: If it is not Installed, then the below command can be utilized to install python 3.10: Build and Prepare the Project Clone the Bubbln repository from GitHub: To clone the repository, first verify you have git installed on your machine by issuing the following commands: If git is installed, the version number would be displayed, otherwise, you can issue the following commands to have git installed on your machine: Navigate or create a directory for the project on your machine and issue the following commands to clone the Bubbln git repository: Create a Virtual Environment for the application Firstly, confirm virtualenv is installed on your machine by inputting the following command: If the output shows something similar to the below, then go to the next step to install virtualenv ` WARNING: Package(s) not found: env, virtual ` Issue the below command to install virtualenv: Create a virtual environment for the project: Activate the virtual environment: Install the dependencies You can then run the below command to install the necessary packages for the app. Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key OpenAI Key: OpenAI Key Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln While ensuring that python virtual environment is activated as stated in step 5, run the below command to initialize Bubbln How Bubbln Works Bubbln serves as an intermediary between ChatGPT and a network infrastructure, providing logic, control functions, and facilitating network automation. Its operation can be summarized as follows: !image Figure 1Bubbln architecture and interaction with a network of four routers. Initialization: When Bubbln is initialized, it checks the “userconfig.pkl” file to see if Bubbln has ever been initiated. This is indicated by the presence of a welcome message status in the file. If it exists, Bubbln jumps straight to request the user to input the OpenAI key. Otherwise, it displays a welcome message, and updates the userconfig.pkl file accordingly. Upon successful input of the API key, the user is prompted for the SSH credentials of the routers. These parameters are then encrypted and saved in the user_config.pkl file. The SSH credential is later decrypted and parsed as input to dynamically generate a hosts.yml file at runtime. Responsible Code Section: bubbln.py: welcomemessagefeature() !image Figure 2 Bubbln's welcome message. Parameter Input & Validation: In the parameter input stage, Bubbln first checks for the existence of a file called “router_configuration.pkl”. If it exists, the user is prompted to decide whether to load an existing configuration or input a new set of configurations. If the file is empty or non-existent, then users are prompted to input the configuration parameters for each router on the network. These parameters serve as variables that are combined with hardcoded instructions written in natural language to form the prompt sent to ChatGPT. Key parameters include: Router Configurations: OSPF Area OSPF Process ID Number of networks to advertise (OSPF/EIGRP) AS Number (EIGRP) Interface names IP Addresses (in CIDR format) This module also ensures that parameters are keyed in using the correct data type and format e.g. IP addresses are expected in CIDR format and OSPF Area should be of type integer. Upon completion of parameter input, all parameters are saved into a file called “router_configuration.pkl” upon validation of accuracy by the user. Responsible Code Section: parameter_input.py !image Figure 3 Bubbln receiving Network Parameters. Before generating the prompt, a summary of the inputted parameters is displayed for user validation. This step ensures accuracy and minimizes errors. Users are given the option to make corrections if any discrepancies are found. Responsible Code Section: parameterinput.py: validateinputs() !image Figure 4 Bubbln Awaiting Validation of Inputted Network Parameters. Auto-Generation of Prompt: After validation of inputted parameters, Bubbln composes the prompt by combining the inputted parameters with a set of well-engineered hardcoded instructions written in natural language. Responsible Code Section: prompt_generator.py ChatGPT Prompting: The auto-composed prompt is then sent to ChatGPT utilizing gpt-4 chatCompletions model with a temperature parameter of 0.2 and maximum tokens of 1500. The following functions were designed into this process stage Responsible Code Section: chatGPT_prompting.py !image Figure 5 ChatGPT prompting in progress Playbook Generation & Extraction: After ChatGPT processes the prompt from Bubbln, it provides a response which usually contains the generated playbook and explanatory notes. Bubbln then extracts the playbook from the explanatory notes by searching for “---” which usually connotes the start of playbooks and saves each generated playbook uniquely using the nomenclature RouteriPlaybook.yml. Responsible Code Section: playbook_extractor.py !image Figure 6 ChatGPT-generated playbook. Playbook Execution: Bubbln loads the saved “RouteriPlaybook.yml” playbook and dynamically generates the hosts.yml file and parses them to the python library ansiblerunner for further execution on the configured network. Bubbln generates the hosts.yml file at run time by using the pre-inputted SSH credentials in userconfig.pkl file - and decrypts them, as well as IP addresses from the sshipaddresses.txt file, as inputs Responsible Code Section: playbook_execution.py !image Figure 7 Playbook execution in progress Sample result of Executed Playbook Upon successful execution of all playbooks, a query of the routing table on router 4 indicates that router 4 could reach all the prefixes on the network. !image Figure 8 Output of 'sh ip route' executed on R1 File Management and Handling Throughout the execution process, Bubbln manages the creation, saving, and loading of various files to streamline the network automation process. user_config.pkl: This dictionary file dynamically created at run time is used to store encrypted API keys, SSH credentials and initial welcome message information. router_configuration.pkl: It is auto created by Bubbln and used to store network configuration parameters for easy loading during subsequent sessions. hosts.yml: This is a runtime autogenerated file that contains inventory of the network devices. It is auto deleted after the program runs. networkconfigurationreport.pdf: This auto-generated report by Bubbln is a documentation of all the routers configured their parameters, generated playbooks, and prompt for each execution of the Bubbln application. It is created after a successful execution of playbooks and network testing and is meant for auditing and documentation purposes. RouteriPlaybook.yml: After extraction of generated playbooks from ChatGPT’s raw response, Bubbln automatically saves a copy of the generated playbook using unique names for each playbook. !image Figure 9 File structure after successful deployment of a four-router network Providing Feedback We are glad to hear your thoughts and suggestions. Kindly do this through the discussion section of our GitHub - https://github.com/olasupo/bubbln_network-automation/discussions/1#discussion-6487475 We can also be reached on: Olasupo Okunaiya – olasupo.o@gmail.com

AI-and-Business-Rules-for-Excel-Power-Users
github
LLM Vibe Score0.385
Human Vibe Score0.01524083787499147
PacktPublishingMar 14, 2025

AI-and-Business-Rules-for-Excel-Power-Users

AI and Business Rules for Excel Power Users This is the code repository for AI and Business Rules for Excel Power Users, published by Packt. Capture and scale your business knowledge into the cloud – with Microsoft 365, Decision Models, and AI tools from IBM and Red Hat What is this book about? Microsoft Excel is widely adopted across diverse industries, but Excel Power Users often encounter limitations such as complex formulas, obscure business knowledge, and errors from using outdated sheets. They need a better enterprise-level solution, and this book introduces Business rules combined with the power of AI to tackle the limitations of Excel. This book covers the following exciting features: Use KIE and Drools decision services to write AI-based business rules Link Business Rules to Excel using Power Query, Script Lab, Office Script, and VBA Build an end-to-end workflow with Microsoft Power Automate and Forms while integrating it with Excel and Kogito Collaborate on and deploy your decision models using OpenShift, Azure, and GitHub Discover advanced editing using the graphical Decision Model Notation (DMN) and testing tools Use Kogito to combine AI solutions with Excel If you feel this book is for you, get your copy today! Instructions and Navigations All of the code is organized into folders. For example, Chapter06. The code will look like the following: Following is what you need for this book: This book is for Excel power users, business users, and business analysts looking for a tool to capture their knowledge and deploy it as part of enterprise-grade systems. Working proficiency with MS Excel is required. Basic knowledge of web technologies and scripting would be an added advantage With the following software and hardware list you can run all code files present in the book (Chapter 1-12). Software and Hardware List | Chapter | Software required | OS required | | -------- | ------------------------------------ | ----------------------------------- | | 6-8 | Microsoft Excel and Office 365 | Windows, Mac OS X, and Linux (Any) | | 10 | Docker | Windows, Mac OS X, and Linux (Any) | | Appendix A | Visual Basic for Applications | Windows, Mac OS X, and Linux (Any) | We also provide a PDF file that has color images of the screenshots/diagrams used in this book. Click here to download it. Related products Exploring Microsoft Excel’s Hidden Treasures [[Packt]](https://www.packtpub.com/product/exploring-microsoft-excels-hidden-treasures/9781803243948?utmsource=github&utmmedium=repository&utm_campaign=9781803243948) [[Amazon]](https://www.amazon.com/dp/1803243945) VBA Automation for Excel 2019 Cookbook [[Packt]](https://subscription.packtpub.com/search?query=9781789610031&utmsource=github&utmmedium=repository&utm_campaign=9781803242002) [[Amazon]](https://www.amazon.com/dp/1789610036) Get to Know the Author Paul Browne is a Programme Manager - Training and Consulting at Enterprise Ireland. His skillset includes delivering consulting and training into companies to help them grow faster, better and earlier. Particular focus in working on Digital Transformation alongside Sales and Marketing, Manufacturing and Financial teams. His educational qualifications includes Msc Advanced Software Engineering at University College Dublin and BA European Business Studies with French at Ulster University, Northern Ireland. His professional qualifications includes ACCA (Financial management modules), CIPS - Procurement Professional, and Technical certifications from Oracle (Java) and Microsoft. Download a free PDF If you have already purchased a print or Kindle version of this book, you can get a DRM-free PDF version at no cost.Simply click on the link to claim your free PDF. https://packt.link/free-ebook/9781804619544

AirFloat
github
LLM Vibe Score0.522
Human Vibe Score0.013942011030347751
trenskowMar 11, 2025

AirFloat

AirFloat Remark: AirFloat now compiles on iOS 9.2.1 AirFloat implements the RAOP (Remote Audio Output Protocol) also known as AirPlay Audio. Essentially this app turns your iPhone into an AirPlay audio receivier like the AirPort Express. Remark: Please note this repo also includes integrated libairfloat Install Download, open in Xcode and build. ##Contributors @davhelm @yfliao @ataibarkai @faisalmemon @JBA474 License Copyright (c) 2013, Kristian Trenskow All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

aion
github
LLM Vibe Score0.494
Human Vibe Score0.011340905117109681
aionnetworkFeb 28, 2025

aion

Aion Mainstream adoption of blockchains has been limited because of scalability, privacy, and interoperability challenges. Aion is a multi-tier blockchain network designed to address these challenges. Core to our hypothesis is the idea that many blockchains will be created to solve unique business challenges within unique industries. As such, the Aion network is designed to support custom blockchain architectures while providing a trustless mechanism for cross-chain interoperability. The Aion White Papers provides more details regarding our design and project roadmap. This repository contains the main (Java) kernel implementation and releases for the Aion Network. System Requirements Ubuntu 16.04 or a later version Getting Started Blockchain node concept To understand what is blockchain kernel: Node overview Developers If you're interested in building Open Applications, powered by Aion: Visit the Developer site of The Open Application Network : developer.theoan.com If you're interested in making improvements to the Java Implementation of Aion: Refer to the Build Aion kernel from source wiki for information on building this source code to a native binary or Docker image Refer to the Installation wiki for a guide on installing and configuring the kernel. The Owner's Manual wiki will include further instructions and details on working with the kernel. Please refer to the wiki pages for further documentation on mining/validating, using the Web3 API, command line options, etc. Miners/Validators If you're interested in being a validator on the Aion networks, refer to our Validator Docs Users If you're interested in interacting with dApps and using Aion, refer to our Aion Desktop Wallet Docs FAQ Where can I store my Aion? We recommend using the web-based Aion Wallet; more information can be found in “Docs”). Where can I stake my Aion? You can use the original staking interface which has support for staking pool operators, or the web-based Aion Wallet. Where can I check on a transaction on The Open Application Network? You can visit either the web-based Aion Wallet or the Aion Dashboard to view a transaction on the network. Where can I see the current network performance of The Open Application Network? You can visit the Aion Dashboard to see how the Open Application Network is performing. What should I do if the desktop wallet or the web based wallet are not functioning properly? First check in with the community on the community subreddit. If the community is not able to assist then you can submit a ticket through Github. The Open Application Network is currently providing support to help maintain the network; where can I see the funds that The Open Application Network has mined or received as a stake reward? All funds mined or rewarded for staking that the foundation receives are burned to this address: 0x0000000000000000000000000000000000000000000000000000000000000000 users can check the totals burned via the Aion Dashboard here. What is the total circulating supply of Aion? To view the current total circulating supply of Aion you can use the Aion Watch tool located here. Which networks are supported? The Mainnet network is supported. To view the dashboards for this networks use these links: Mainnet How can I export a list of my transactions? If you would like to download a copy of your transaction history you can use https://mainnet.theoan.com and search for your public address. In the bottom right of your screen is a “Download this Account” button which will allow you to select a date range and download a .csv file containing your transactions. Where can I access a copy of The OAN and Aion Brand Guidelines? The OAN and Aion Brand Guidelines can be located here they can be used by the community to create brand aligned content. My Ledger doesn’t seem to be recognized with applications in the Chrome Browser (Staking Interface or Wallet) When using your Ledger hardware wallet with Aion installed to access an account VIA the Chrome browser, users will need to enable the Aion contract on their Ledger device. This can be done by selecting: Aion > Setting > enable Contract. What happened to the Aiwa chrome extension wallet? Aiwa was owned and operated by a third-party organization called BlockX Labs, Aiwa was funded by a community grant during its lifespan. However, BlockX Labs is now reorganizing and will no longer support Aiwa. Usage of Aiwa has decreased significantly with other tools such as the web based wallet now available so the decision was made to deprecate it. I am unable to undelegate my staked Aion In order to undelegate your Aion: – You must have a sufficient Aion balance to perform the undelegation transaction (a minimum of 0.02 Aion is required for the transaction fee) – Your balance will be updated after a lock-up period of 8640 blocks (approximately 24 hours) – Ensure the amount follows this format: 999,999,999.999999999 – If you are using a ledger, please ensure that your firmware is up to date. – If you are using the desktop interface, ensure that you are using the latest version – For more information view this guide What happened to the swap process to convert ERC-20 Aion to the mainnet? As of January 31, 2022 swapping from ERC20 to Aion mainnet is no longer supported. The original Aion token swap from Ethereum to Aion was completed on December 10, 2018. However, in order to support the community members who missed the original swap deadline a manual process was available, this process has now been retired. Community Channels Newsfeed: @AionNewsfeed Info Bot: @AionTGbot Wiki: reddit.com/r/AionNetwork/Wiki Help Desk: https://helpdesk.theoan.com/ Contact To keep up to date and stay connected with current progress and development, reach out to us on the following channels: Aion Telegram Dispatch Alerts Aion on Twitter Aion Blog License Aion is released under the MIT license

studio
github
LLM Vibe Score0.458
Human Vibe Score0.0031250040522174975
brighticsFeb 13, 2025

studio

Brightics Studio v1.3 !CodeQL !Download Counts !Latest Counts [English] [한국어] MacOS / Linux 사용자는 본 문서 하단의 설치 가이드를 따라 진행하시면 Brightics Studio를 사용하실 수 있습니다. Overview Brightics Studio는 데이터 과학자를 위한 웹 기반 데이터 분석 워크플로우 도구입니다. Brightics Studio는 직관적인 사용자 인터페이스를 제공하며 대화형 GUI를 통해 데이터에서 잠재적인 통찰력을 찾을 수 있습니다. Brightics Studio는 scikit-learn 및 pandas와 같은 인기 있는 파이썬 라이브러리를 포함하여 분석을 위한 인터페이스를 제공합니다. Brightics Studio를 사용하여 시티즌 데이터 과학자와 전문 데이터 과학자 모두 데이터 분석 프로젝트를 수행할 수 있습니다. Brightics Toolkit을 통해 생성한 사용자 정의 함수를 Brightics 워크플로에서 사용할 수 있습니다. 다양한 방법으로 데이터를 시각화할 수 있도록 차트 및 보고서 생성 기능을 제공합니다. Documentation Brightics 홈페이지에서 확인할 수 있습니다. Getting started 릴리즈 파일 혹은 docker 이미지를 이용하여 Brightics Studio를 설치할 수 있습니다. Prerequisite 데이터베이스와 상호 작용하는 일부 기능에는 Oracle Instant Client 와 같은 클라이언트 라이브러리가 필요합니다. Installation - docker를 참고하여 Brightics Studio Docker 이미지를 사용할 수 있습니다. Installation - release file Download 릴리스 파일은 github 릴리스 또는 다운로드 페이지 에서 다운로드 할 수 있습니다. 다운로드한 파일을 실행하면 파일이 자동으로 추출됩니다. 디렉토리의 세부 사항은 다음과 같습니다: Launch 실행하기 전에 아무것도 준비할 필요가 없습니다. 릴리스에는 패키지 자체의 모든 요구 사항이 포함되어 있습니다. 압축을 푼 디렉토리로 이동하여 실행합니다. Notes > 설치 경로에 한글이 포함된 경우 Tokenizer(한국어) 기능이 제대로 작동하지 않습니다. 이 기능을 사용하기 위해서는 전체 경로에 한글이 포함되지 않은 폴더에 Brightics Studio를 설치해야 합니다. Patch 새 버전이 출시되면 아래 파일을 최신 버전의 brightics-studio로 이동하여 데이터와 프로젝트를 유지해야 합니다. Run Brightics Studio는 start-brightics.cmd(또는 start-brightics.sh) 실행 후 Chrome 브라우저에 팝업됩니다. Brightics Studio가 자동으로 팝업되지 않는 경우 수동으로 http://127.0.0.1:3000 으로 이동하여 Brightics Studio를 사용하십시오. Installation - docker Docker 작업환경에 Docker를 설치합니다. Docker Image Brightics Studio Docker 이미지는 Docker Hub 에서 제공됩니다. 실행 중지 Security warning Brightics Studio 를 실행하면 서비스포트(3000)로 웹 서비스가 실행되므로 별도 방화벽 또는 접근제어 없이 인터넷에 오픈하는 경우 외부에서 접속하여 데이터 유출 또는 해킹 시도 등이 발생할 수 있습니다. 인터넷을 통한 접근이 가능한 환경인 경우 방화벽을 통해 인가된 PC에서만 사용하도록 통제하시기 바랍니다. Contact us Brightics Studio가 마음에 드셨다면 사용 후기와 피드백 부탁드립니다. 또는 Brightics Studio 사용 중 궁금한 사항이 있으시면 주저하지 마시고 brightics.cs@samsung.com으로 연락주세요. License Visual Analytics(Web GUI) project is licensed under the terms of the Brightics Visual Analytics LICENSE, please check Notice below. The others are licensed under the terms of the Apache 2.0 license. Notice Source codes of the Web GUI are not yet fully opened due to some license issues from its submodules. The purpose of personal use for commercial or non-commercial is allowed but only the redistribution is prohibited. See the documentation about this license for more details. We are working hard to solve these issues and soon it will be public. Contributors This project exists thanks to all the people who contribute.

pragmaticai
github
LLM Vibe Score0.476
Human Vibe Score0.11235605711653615
noahgiftFeb 10, 2025

pragmaticai

🎓 Pragmatic AI Labs | Join 1M+ ML Engineers 🔥 Hot Course Offers: 🤖 Master GenAI Engineering - Build Production AI Systems 🦀 Learn Professional Rust - Industry-Grade Development 📊 AWS AI & Analytics - Scale Your ML in Cloud ⚡ Production GenAI on AWS - Deploy at Enterprise Scale 🛠️ Rust DevOps Mastery - Automate Everything 🚀 Level Up Your Career: 💼 Production ML Program - Complete MLOps & Cloud Mastery 🎯 Start Learning Now - Fast-Track Your ML Career 🏢 Trusted by Fortune 500 Teams Learn end-to-end ML engineering from industry veterans at PAIML.COM Pragmatic AI: An Introduction To Cloud-based Machine Learning !pai Book Resources This books was written in partnership with Pragmatic AI Labs. !alt text You can continue learning about these topics by: Foundations of Data Engineering (Specialization: 4 Courses) Publisher: Coursera + Duke Release Date: 4/1/2022 !duke-data Take the Specialization Course1: Python and Pandas for Data Engineering Course2: Linux and Bash for Data Engineering Course3: Scripting with Python and SQL for Data Engineering Course4: Web Development and Command-Line Tools in Python for Data Engineering Cloud Computing (Specialization: 4 Courses) Publisher: Coursera + Duke Release Date: 4/1/2021 Building Cloud Computing Solutions at Scale Specialization Launch Your Career in Cloud Computing. Master strategies and tools to become proficient in developing data science and machine learning (MLOps) solutions in the Cloud What You Will Learn Build websites involving serverless technology and virtual machines, using the best practices of DevOps Apply Machine Learning Engineering to build a Flask web application that serves out Machine Learning predictions Create Microservices using technologies like Flask and Kubernetes that are continuously deployed to a Cloud platform: AWS, Azure or GCP Courses in Specialization Take the Specialization Cloud Computing Foundations Cloud Virtualization, Containers and APIs Cloud Data Engineering Cloud Machine Learning Engineering and MLOps Get the latest content and updates from Pragmatic AI Labs: Subscribe to the mailing list! Taking the course AWS Certified Cloud Practitioner 2020-Real World & Pragmatic. Buying a copy of Pragmatic AI: An Introduction to Cloud-Based Machine Learning Reading book online on Safari: Online Version of Pragmatic AI: An Introduction to Cloud-Based Machine Learning, First Edition Watching 8+ Hour Video Series on Safari: Essential Machine Learning and AI with Python and Jupyter Notebook Viewing more content at noahgift.com Viewing more content at Pragmatic AI Labs Exploring related colab notebooks from Safari Online Training Learning about emerging topics in Hardware AI & Managed/AutoML Viewing more content on the Pragmatic AI Labs YouTube Channel Reading content on Pragmatic AI Medium Attend an upcoming Safari Live Training About Pragmatic AI is the first truly practical guide to solving real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Writing for business professionals, decision-makers, and students who aren’t professional data scientists, Noah Gift demystifies all the tools and technologies you need to get results. He illuminates powerful off-the-shelf cloud-based solutions from Google, Amazon, and Microsoft, as well as accessible techniques using Python and R. Throughout, you’ll find simple, clear, and effective working solutions that show how to apply machine learning, AI and cloud computing together in virtually any organization, creating solutions that deliver results, and offer virtually unlimited scalability. Coverage includes: Getting and configuring all the tools you’ll need Quickly and efficiently deploying AI applications using spreadsheets, R, and Python Mastering the full application lifecycle: Download, Extract, Transform, Model, Serve Results Getting started with Cloud Machine Learning Services, Amazon’s AWS AI Services, and Microsoft’s Cognitive Services API Uncovering signals in Facebook, Twitter and Wikipedia Listening to channels via Slack bots running on AWS Lambda (serverless) Retrieving data via the Twitter API and extract follower relationships Solving project problems and find highly-productive developers for data science projects Forecasting current and future home sales prices with Zillow Using the increasingly popular Jupyter Notebook to create and share documents integrating live code, equations, visualizations, and text And much more Book Chapter Juypter Notebooks Note, it is recommended to also watch companion Video Material: Essential Machine Learning and AI with Python and Jupyter Notebook Chapter 1: Introduction to Pragmatic AI Chapter 2: AI & ML Toolchain Chapter 3: Spartan AI Lifecyle Chapter 4: Cloud AI Development with Google Cloud Platform Chapter 5: Cloud AI Development with Amazon Web Services Chapter 6: Social Power NBA Chapter 7: Creating an Intelligent Slack Bot on AWS Chapter 8: Finding Project Management Insights from A Github Organization Chapter 9: Dynamically Optimizing EC2 Instances on AWS Chapter 10: Real Estate Chapter 11: Production AI for User Generated Content (UGC) License This code is released under the MIT license Text The text content of notebooks is released under the CC-BY-NC-ND license Additional Related Topics from Noah Gift His most recent books are: Pragmatic A.I.:   An introduction to Cloud-Based Machine Learning (Pearson, 2018) Python for DevOps (O'Reilly, 2020).  Cloud Computing for Data Analysis, 2020 Testing in Python, 2020 His most recent video courses are: Essential Machine Learning and A.I. with Python and Jupyter Notebook LiveLessons (Pearson, 2018) AWS Certified Machine Learning-Specialty (ML-S) (Pearson, 2019) Python for Data Science Complete Video Course Video Training (Pearson, 2019) AWS Certified Big Data - Specialty Complete Video Course and Practice Test Video Training (Pearson, 2019) Building A.I. Applications on Google Cloud Platform (Pearson, 2019) Pragmatic AI and Machine Learning Core Principles (Pearson, 2019) Data Engineering with Python and AWS Lambda (Pearson, 2019) His most recent online courses are: Microservices with this Udacity DevOps Nanodegree (Udacity, 2019) Command Line Automation in Python (DataCamp, 2019) AWS Certified Cloud Practitioner 2020-Real World & Pragmatic.

In the Zone - Coding Music for Focus & Clarity
youtube
LLM Vibe Score0.356
Human Vibe Score0.64
Cosmic HippoFeb 10, 2025

In the Zone - Coding Music for Focus & Clarity

Get in the zone and stay focused with this chill coding music designed for mental clarity and deep work. Whether you're programming, designing, or studying, these beats will help you block out distractions and lock into your flow state. Featuring a blend of chillstep and ambient synthwave, this playlist is perfect for long coding sessions, creative work, or late-night productivity. Put on your headphones, dive into your projects, and let the music guide your focus. You can get the artwork featured in this video as a digital download on Etsy here: https://www.etsy.com/listing/1858065246/in-the-zone Tracklist 0:00 Unraveling the Moment 3:37 Luna's Glow 6:24 Echoes of Purpose 9:56 The Art of Being Present 13:27 Breathing Through Time 16:13 Falling Into Rhythm 17:59 Into the Current of Creation 21:45 Mindscapes in Motion 24:01 Shadows of Stillness 28:03 Threading Through Time 31:09 Tuning the Infinite 34:15 Unseen Currents 37:55 Vibrations of Clarity 39:58 Where Thoughts Flow Free 43:59 Blurring Boundaries 47:38 Carved from Stillness 51:39 In the Flow of Thought 54:08 Luminous Quietude 56:39 Submerged in Clarity Let me know in the comments how this playlist helps your workflow! Disclaimer: This music has been created with the help of AI tools. Tags: #CodingMusic #FocusBeats #FlowState #DeepWork #ProgrammingMusic #Synthwave #Chillstep #StudyBeats #ProductivityMusic #WorkVibes #ConcentrationMusic #MentalClarity #CodingSession #CodeAndChill #LoFiBeats #DeveloperLife #MusicForFocus #ChillVibes #CreativeFlow #CodeFlow #chillstep

PracticalAI
github
LLM Vibe Score0.416
Human Vibe Score0.012874224994657315
revodavidFeb 9, 2025

PracticalAI

Practical AI for the Working Software Engineer by David M Smith (@revodavid), Cloud Advocate at Microsoft Last updated: December 4, 2018 Presented at: AI Live (AIF01), Orlando, December 7 2018 About these notebooks This library includes three notebooks to support the workshop: The AI behind Seeing AI. Use the web-interfaces to Cognitive Services to learn about the AI services behind the "Seeing AI" app Computer Vision API with R. Use an R script to interact with the Computer Vision API and generate captions for random Wikimedia images. Custom Vision with R. An R function to classify an image as a "Hot Dog" or "Not Hot Dog", using the Custom Vision service. MNIST with scikit-learn. Use sckikit-learn to build a digit recognizer for the MNIST data using a regression model. MNIST with tensorflow. Use Tensorflow (from Python) to build a digit recognizer for the MNIST data using a convolutional neural network. These notebooks are hosted on Azure Notebooks at https://notebooks.azure.com/davidsmi/projects/practicalai, where you can run them interactively. You can also download them to run them using Jupyter. Find the slides for the workshop here. Setup (for use in Azure Notebooks) Sign in to Azure Notebooks. You'll need a Microsoft Account: your O365, Xbox, or Hotmail account will work. If you're new to Notebooks, check out the Jupyter Notebook documentation and the Azure Notebook documentation. If you have an iPhone, install the free SeeingAI app. (optional) To generate keys and use Azure services, you'll need an Azure subscription. You can get a free Azure account here, with $200 in free credits for new subscribers. You'll need a credit card, but most of the things we'll use in this workshop will be free. Contact If you get stuck or just have other questions, you can contact me here: David Smith davidsmi@microsoft.com Twitter: @revodavid

kodyfire
github
LLM Vibe Score0.384
Human Vibe Score0.0032098142352129998
nooqtaFeb 2, 2025

kodyfire

Kody is a command-line tool for generating artifact files, powered by both classic and AI code generation techniques. It can be used by both technical and non-technical users to generate files across a wide range of technologies and programming languages. The code generation feature in Kody relies on OpenAI GPT, a language model that uses deep learning to generate human-like text, and ChatGPT to provide natural language processing capabilities. Table of Contents Installation Usage Getting Started Terminology Contributing License Installation Prerequisites Node.js (version 14 or later) To install kody, use npm with the following command: or You can check the documentation with Usage Options -v, --version: Output the current version -h, --help: Display help for command Commands prompt|ai [options] [prompt...]: AI powered prompt assistant to quickly generate an artifact batch [options]: Generate multiple digital artifact create [options] : Generate a new blank kody project generate|g [options] [kody] [concept]: Prompt assistant to quickly generate an artifact import|in [options] : Mass create artifacts from a source. init: Initialize a new kodyfire project install|i [kody]: Prompt user to choose to install list|ls [options] [kodyName]: List installed kodies within your current project. publish [template]: Publish the templates of the kody along with the assets.json and schema.ts files ride|↻: Prompt assistant to help build your kody.json file run [options]: Generate a digital artifact based on the selected technology run-script|rs: Run scripts search|s [keywords...]: Search kodyfire packages from npm registry watch|w [options]: Watch for file changes and run kody help [command]: Display help for command Getting Started Open the project you are willing to work on using vscode or your prefered editor. Generate artifacts using AI In case you want to exclusivly rely on AI to generate your artifacts. You don't need to install any additional kodies. Run the kody ai [prompt] command and follow the prompts. For example, to create a Laravel Controller named SampleController under API/V1 and add a comment on top saying Hello Kodyfire, run the following command You can use the experimental Speech-to-Text option to pass your prompt using your voice. The transcription relies on Whisper and requires SoX installed and available in your \$PATH. for the audio recording. For Linux For MacOS For Windows Download the binaries Generate your artifact using the classical method Search and install a kody Based on your project, search availables kodies and select the one that fits your need.. To search availables kodies by keyword runthe following command. if you don't specify a keyword all available kodies will be listed. Install your kody of choice. For example, if you want to install the react kody or Please note you can install as many kodies in the same project as you wish. Generate your artifact There are 2 methods you can generate your artifacts with: The generate command The run command Method 1: Generator mode kody generate The recommended way of using kody is using the generate command. The command will assist you creating your artifact based on the chosen concept. For example, a react component is considered a concept. In order to generate your artifacts, run the generate command. The syntax is kody g|generate [kody] [concept]. the assistant will prompt you to select the missing arguments. As an example, run the following command from your terminal: Method 2: Runner mode kody run The run command is similar to the generate command. The run requires a definition file which is simply a json file containing all the concept definitions you have created using the ride command. The generate command on the other hand creates one or more concept definition on the run and process them on one run. Every command has its use cases. Initialize kody In order to start using kody, you need to initialize your project. This will add the definition files required for kody runs. Important: Please run the command only once. The command will override existing definition files. We will disable overriding in a future version. Ride your kody In order to update your definition, use the kody ride command to assist you populate the required fields Launch a kody run Once you are satisified with your definition file, execute the run command to generate your artifacts. To run all kodies defined within your project, run the following command: Create your own kody In most cases you might need a custom kody to suit your needs Scaffold a new kody Create a basic kody using the scaffold command. Follow the prompts to setup your kody This will create a folder containing the basic structure for a kody. You can start using right away within your project. Setup your kody Install npm dependencies Build your kody Add your concepts and related templates //TODO This will build your kody and export the basic templates files. Add your kody as an NPM dependency to a test project In order to be able to use it within your test project run the following command Publish your kody Please remember that Kody is still in exploration phase and things will change frequently. Contribution is always highly requested. Prepare your kody Add the required kodyfire metadata to your package.json Publish to Github Intialize your project as a git repository and push to a public Github repo To do so, kindly follow these steps:- Intitialize a new Github repository and make it public. Open your project root folder locally from terminal and run the following commands:- Link your project to your Github repository. Publish to npm Once you are satisfied with your kody and you would to like to share it with the community. Run the following command. Note: You'll need an NPM account Share with community Congratulation publishing your first kody. Don't forget to share your kody repo link by opening an issue on Kody's github repository. Terminology Kody: Refers to the code generation command-line tool that generates digital artifacts. Artifacts: Refers to the various digital products generated by Kody based on the input provided. Note: Kody uses classical code generation techniques in addition to AI-powered code generation using OpenAI Codex and ChatGPT. Available kodies | Name | Description | | -------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | | basic-kodyfire | A general purpose code generator that should handle most of the generation use cases | | typescript-kodyfire | Generate typescript related artifacts | | tsconfig-kodyfire | Generate tsconfig files for your typescript projects | | nextjs-kodyfire | Generate nextJs components and related artifacts | | react-kodyfire | Generate react components | | laravel-kodyfire | Laravel artifacts generation | | uml-kodyfire | Uml diagrams generation using plantuml | | readme-kodyfire | Readme file generation | | word-kodyfire | Generate ms word document based on a template | | pdf-kodyfire | Generate PDF document from HTML templates | | social-image-kodyfire | Generate dynamic images for social sharing based on HTML templates | | social-gif-kodyfire | Generate dynamic gif images for social sharing based on HTML templates | | linkedin-quizzes-kodyfire | Practice Linkedin skill assessement tests from your terminal | | chatgpt-kodyfire | Use chatgpt from the terminal. Allows you provide additional data from various sources (not implemented yet) and export to serveral outputs (markdown only now). | Contributing If you encounter any issues while using Kody or have suggestions for new features, feel free to open an issue or submit a pull request. Please read our contributing guidelines before making contributions. License Kody is MIT licensed.

internet-tools-collection
github
LLM Vibe Score0.236
Human Vibe Score0.009333333333333334
bogdanmosicaJan 23, 2025

internet-tools-collection

Internet Tools Collection A collection of tools, website and AI for entrepreneurs, web designers, programmers and for everyone else. Content by category Artificial Intelligence Developers Design Entrepreneur Video Editing Stock videos Stock Photos Stock music Search Engine Optimization Blog Posts Resume Interviews No code website builder No code game builder Side Hustle Browser Extensions Other Students Artificial Intelligence Jasper - The Best AI Writing Assistant [](https://www.jasper.ai/) Create content 5x faster with artificial intelligence. Jasper is the highest quality AI copywriting tool with over 3,000 5-star reviews. Best for writing blog posts, social media content, and marketing copy. AutoDraw [](https://www.autodraw.com/) Fast drawing for everyone. AutoDraw pairs machine learning with drawings from talented artists to help you draw stuff fast. Rytr - Best AI Writer, Content Generator & Writing Assistant [](https://rytr.me/) Rytr is an AI writing assistant that helps you create high-quality content, in just a few seconds, at a fraction of the cost! Neevo - Neevo [](https://www.neevo.ai/) Kinetix Tech [](https://kinetix.tech/) Kinetix is a no-code 3D creation tool powered by Artificial Intelligence. The web-based platform leverages AI motion capture to convert a video into a 3D animation and lets you customize your avatars and environments. We make 3D animation accessible to every creator so they can create engaging stories. LALAL.AI: 100% AI-Powered Vocal and Instrumental Tracks Remover [](https://www.lalal.ai/) Split vocal and instrumental tracks quickly and accurately with LALAL.AI. Upload any audio file and receive high-quality extracted tracks in a few seconds. Copy.ai: Write better marketing copy and content with AI [](https://www.copy.ai/) Get great copy that sells. Copy.ai is an AI-powered copywriter that generates high-quality copy for your business. Get started for free, no credit card required! Marketing simplified! OpenAI [](https://openai.com/) OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. DALL·E 2 [](https://openai.com/dall-e-2/) DALL·E 2 is a new AI system that can create realistic images and art from a description in natural language. Steve.ai - World’s fastest way to create Videos [](https://www.steve.ai/) Steve.AI is an online Video making software that helps anyone to create Videos and animations in seconds. Octie.ai - Your A.I. ecommerce marketing assistant [](https://octie.ai/) Write emails, product descriptions, and more, with A.I. Created by Octane AI. hypnogram.xyz [](https://hypnogram.xyz/) Generate images from text descriptions using AI FakeYou. Deep Fake Text to Speech. [](https://fakeyou.com/) FakeYou is a text to speech wonderland where all of your dreams come true. Craiyon, formerly DALL-E mini [](https://www.craiyon.com/) Craiyon, formerly DALL-E mini, is an AI model that can draw images from any text prompt! Deck Rocks - Create Pictch Decks [](https://www.deck.rocks/) Writely | Using AI to Improve Your Writing [](https://www.writelyai.com/) Making the art of writing accessible to all Writesonic AI Writer - Best AI Writing Assistant [](https://writesonic.com/) Writesonic is an AI writer that's been trained on top-performing SEO content, high-performing ads, and converting sales copy to help you supercharge your writing and marketing efforts. Smart Copy - AI Copywriting Assistant | Unbounce [](https://unbounce.com/product/smart-copy/) Generate creative AI copy on-the-spot across your favourite tools Synthesia | #1 AI Video Generation Platform [](https://www.synthesia.io/) Create AI videos by simply typing in text. Easy to use, cheap and scalable. Make engaging videos with human presenters — directly from your browser. Free demo. NVIDIA Canvas: Turn Simple Brushstrokes into Realistic Images [](https://www.nvidia.com/en-us/studio/canvas/) Create backgrounds quickly, or speed up your concept exploration so you can spend more time visualizing ideas with the help of NVIDIA Canvas. Hotpot.ai - Hotpot.ai [](https://hotpot.ai/) Hotpot.ai makes graphic design and image editing easy. AI tools allow experts and non-designers to automate tedious tasks while attractive, easy-to-edit templates allow anyone to create device mockups, social media posts, marketing images, app icons, and other work graphics. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Search listening tool for market, customer & content research - AnswerThePublic [](https://answerthepublic.com/) Use our free tool to get instant, raw search insights, direct from the minds of your customers. Upgrade to a paid plan to monitor for new ways that people talk & ask questions about your brand, product or topic. Topic Mojo [](https://topicmojo.com/) Discover unique & newest queries around any topic and find what your customers are searching for. Pulling data from 50+ sources to enhance your topic research. AI Image Enlarger | Enlarge Image Without Losing Quality! [](https://imglarger.com/) AI Image Enlarger is a FREE online image enlarger that could upscale and enhance small images automatically. Make jpg/png pictures big without losing quality. Midjourney [](https://www.midjourney.com/app/) Kaedim - AI for turning 2D images to 3D models [](https://www.kaedim3d.com/webapp) AI for turning 2D images, sketches and photos to 3D models in seconds. Overdub: Ultra realistic text to speech voice cloning - Descript [](https://www.descript.com/overdub) Create a text to speech model of your voice. Try a live demo. Getting Started [](https://magenta.tensorflow.org/get-started) Resources to learn about Magenta Photosonic AI Art Generator | Create Unique Images with AI [](https://photosonic.writesonic.com/) Transform your imagination into stunning digital art with Photosonic - the AI art generator. With its creative suggestions, this Writesonic's AI image generator can help unleash your inner artist and share your creations with the world. Image Computer [](https://image.computer/) Most downloaded Instagram Captions App (+more creator tools) [](https://captionplus.app/) Join 3 Million+ Instagram Creators who use CaptionPlus to find Instagram Captions, Hashtags, Feed Planning, Reel Ideas, IG Story Design and more. Writecream - Best AI Writer & Content Generator - Writecream [](https://www.writecream.com/) Sentence Rewriter is a free tool to reword a sentence, paragraph and even entire essays in a short amount of time. Hypotenuse AI: AI Writing Assistant and Text Generator [](https://www.hypotenuse.ai/) Turn a few keywords into original, insightful articles, product descriptions and social media copy with AI copywriting—all in just minutes. Try it free today. Text to Speach Listnr: Generate realistic Text to Speech voiceovers in seconds [](https://www.listnr.tech/) AI Voiceover Generator with over 600+ voiceovers in 80+ languages, go from Text to Voice in seconds. Get started for Free! Free Text to Speech: Online, App, Software, Commercial license with Natural Sounding Voices. [](https://www.naturalreaders.com/) Free text to speech online app with natural voices, convert text to audio and mp3, for personal and commercial use Developers OverAPI.com | Collecting all the cheat sheets [](https://overapi.com/) OverAPI.com is a site collecting all the cheatsheets,all! Search Engine For Devs [](https://you.com/) Spline - Design tool for 3D web browser experiences [](https://spline.design/) Create web-based 3D browser experiences Image to HTML CSS converter. Convert image to HTML CSS with AI: Fronty [](https://fronty.com/) Fronty - Image to HTML CSS code converter. Convert image to HTML powered by AI. Sketchfab - The best 3D viewer on the web [](https://sketchfab.com/) With a community of over one million creators, we are the world’s largest platform to publish, share, and discover 3D content on web, mobile, AR, and VR. Railway [](https://railway.app/) Railway is an infrastructure platform where you can provision infrastructure, develop with that infrastructure locally, and then deploy to the cloud. JSON Crack - Crack your data into pieces [](https://jsoncrack.com/) Simple visualization tool for your JSON data. No forced structure, paste your JSON and view it instantly. Locofy.ai - ship your products 3-4x faster — with low code [](https://www.locofy.ai/) Turn your designs into production-ready frontend code for mobile apps and web. Ship products 3-4x faster with your existing design tools, tech stacks & workflows. Oh Shit, Git!?! [](https://ohshitgit.com/) Carbon | Create and share beautiful images of your source code [](https://carbon.now.sh/) Carbon is the easiest way to create and share beautiful images of your source code. GPRM : GitHub Profile ReadMe Maker [](https://gprm.itsvg.in/) Best Profile Generator, Create your perfect GitHub Profile ReadMe in the best possible way. Lots of features and tools included, all for free ! HubSpot | Software, Tools, and Resources to Help Your Business Grow Better [](https://www.hubspot.com/) HubSpot’s integrated CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business. QuickRef.ME - Quick Reference Cheat Sheet [](https://quickref.me/) Share quick reference and cheat sheet for developers massCode | A free and open source code snippets manager for developers [](https://masscode.io/) Code snippets manager for developers, developed using web technologies. Snyk | Developer security | Develop fast. Stay secure. [](https://snyk.io/) Snyk helps software-driven businesses develop fast and stay secure. Continuously find and fix vulnerabilities for npm, Maven, NuGet, RubyGems, PyPI and more. Developer Roadmaps [](https://roadmap.sh/) Community driven roadmaps, articles, guides, quizzes, tips and resources for developers to learn from, identify their career paths, know what they don't know, find out the knowledge gaps, learn and improve. CSS Generators Get Waves – Create SVG waves for your next design [](https://getwaves.io/) A free SVG wave generator to make unique SVG waves for your next web design. Choose a curve, adjust complexity, randomize! Box Shadows [](https://box-shadow.dev/) Tridiv | CSS 3D Editor [](http://tridiv.com/) Tridiv is a web-based editor for creating 3D shapes in CSS Glassmorphism CSS Generator - Glass UI [](https://ui.glass/generator/) Generate CSS and HTML components using the glassmorphism design specifications based on the Glass UI library. Blobmaker - Make organic SVG shapes for your next design [](https://www.blobmaker.app/) Make organic SVG shapes for your next design. Modify the complexity, contrast, and color, to generate unique SVG blobs every time. Keyframes.app [](https://keyframes.app/) cssFilters.co - Custom and Instagram like photo filters for CSS [](https://www.cssfilters.co/) Visual playground for generating CSS for custom and Instagram like photo filters. Experiment with your own uploaded photo or select one from the Unsplash collection. CSS Animations Animista - CSS Animations on Demand [](https://animista.net/) Animista is a CSS animation library and a place where you can play with a collection of ready-made CSS animations and download only those you will use. Build Internal apps Superblocks | Save 100s of developer hours on internal tools [](https://www.superblocks.com/) Superblocks is the fast, easy and secure way for developers to build custom internal tools fast. Connect your databases & APIs. Drag and drop UI components. Extend with Python or Javascript. Deploy in 1-click. Secure and Monitor using your favorite tools Budibase | Build internal tools in minutes, the easy way [](https://budibase.com/) Budibase is a modern, open source low-code platform for building modern internal applications in minutes. Retool | Build internal tools, remarkably fast. [](https://retool.com/) Retool is the fast way to build internal tools. Drag-and-drop our building blocks and connect them to your databases and APIs to build your own tools, instantly. Connects with Postgres, REST APIs, GraphQL, Firebase, Google Sheets, and more. Built by developers, for developers. Trusted by startups and Fortune 500s. Sign up for free. GitHub Repositories GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? [](https://github.com/vasanthk/how-web-works) What happens behind the scenes when we type www.google.com in a browser? - GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. [](https://github.com/kamranahmedse/developer-roadmap) Interactive roadmaps, guides and other educational content to help developers grow in their careers. - GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. [](https://github.com/apptension/developer-handbook) An opinionated guide on how to become a professional Web/Mobile App Developer. - GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. ProfileMe.dev | Create an amazing GitHub profile in minutes [](https://www.profileme.dev/) ProfileMe.dev | Create an amazing GitHub profile in minutes GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. [](https://github.com/Kristories/awesome-guidelines) A curated list of high quality coding style conventions and standards. - GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. GitHub - tiimgreen/github-cheat-sheet: A list of cool features of Git and GitHub. [](https://github.com/tiimgreen/github-cheat-sheet) A list of cool features of Git and GitHub. Contribute to tiimgreen/github-cheat-sheet development by creating an account on GitHub. GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer [](https://github.com/andreasbm/web-skills) A visual overview of useful skills to learn as a web developer - GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers [](https://github.com/Ebazhanov/linkedin-skill-assessments-quizzes) Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers - GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers Blockchain/Crypto Dashboards [](https://dune.com/) Blockchain ecosystem analytics by and for the community. Explore and share data from Ethereum, xDai, Polygon, Optimism, BSC and Solana for free. Introduction - The Anchor Book v0.24.0 [](https://book.anchor-lang.com/introduction/introduction.html) Crypto & Fiat Exchange Super App | Trade, Save & Spend | hi [](https://hi.com/) Buy, Trade, Send and Earn Crypto & Fiat. Deposit Bitcoin, ETH, USDT and other cryptos and start earning. Get the hi Debit Card and Multi-Currency IBAN Account. Moralis Web3 - Enterprise-Grade Web3 APIs [](https://moralis.io/) Bridge the development gap between Web2 and Web3 with Moralis’ powerful Web3 APIs. Mirror [](https://mirror.xyz/) Built on web3 for web3, Mirror’s robust publishing platform pushes the boundaries of writing online—whether it’s the next big white paper or a weekly community update. Makerdao [](https://blog.makerdao.com/) Sholi — software for Investors & Traders / Sholi MetriX [](https://sholi.io/) Sholi — software for Investors & Traders / Sholi MetriX Stock Trading Quiver Quantitative [](https://www.quiverquant.com/) Quiver Quantitative Chart Prime - The only tool you'll need for trading assets across all markets [](https://chartprime.com/) ChartPrime offers a toolkit that will take your trading game to the next level. Visit our site for a full rundown of features and helpful tutorials. Learning Hacker Rank [](https://www.hackerrank.com/) Coderbyte | Code Screening, Challenges, & Interview Prep [](https://coderbyte.com/) Improve your coding skills with our library of 300+ challenges and prepare for coding interviews with content from leading technology companies. Competitive Programming | Participate & Learn | CodeChef [](https://www.codechef.com/) Learn competitive programming with the help of CodeChef's coding competitions. Take part in these online coding contests to level up your skills Learn to Code - for Free | Codecademy [](https://www.codecademy.com/) Learn the technical skills to get the job you want. Join over 50 million people choosing Codecademy to start a new career (or advance in their current one). Free Code Camp [](https://www.freecodecamp.org/) Learn to Code — For Free Sololearn: Learn to Code [](https://www.sololearn.com/home) Join Now to learn the basics or advance your existing skills Mimo: The coding app you need to learn to code! Python, HTML, JavaScript [](https://getmimo.com/) Join more than 17 million learners worldwide. Learn to code for free. Learn Python, JavaScript, CSS, SQL, HTML, and more with our free code learning app. Free for developers [](https://free-for.dev/#/) Your Career in Web Development Starts Here | The Odin Project [](https://www.theodinproject.com/) The Odin Project empowers aspiring web developers to learn together for free Code Learning Games CheckiO - coding games and programming challenges for beginner and advanced [](https://checkio.org/) CheckiO - coding websites and programming games. Improve your coding skills by solving coding challenges and exercises online with your friends in a fun way. Exchanges experience with other users online through fun coding activities Coding for Kids | Game-Based Programming | CodeMonkey [](https://www.codemonkey.com/) CodeMonkey is a leading coding for kids program. Through its award-winning courses, millions of students learn how to code in real programming languages. Coding Games and Programming Challenges to Code Better [](https://www.codingame.com/) CodinGame is a challenge-based training platform for programmers where you can play with the hottest programming topics. Solve games, code AI bots, learn from your peers, have fun. Learn VIM while playing a game - VIM Adventures [](https://vim-adventures.com/) VIM Adventures is an online game based on VIM's keyboard shortcuts. It's the "Zelda meets text editing" game. So come have some fun and learn some VIM! CodeCombat - Coding games to learn Python and JavaScript [](https://codecombat.com/) Learn typed code through a programming game. Learn Python, JavaScript, and HTML as you solve puzzles and learn to make your own coding games and websites. Design Useberry - Codeless prototype analytics [](https://www.useberry.com/) User testing feedback & rich insights in minutes, not months! Figma: the collaborative interface design tool. [](https://www.figma.com/) Build better products as a team. Design, prototype, and gather feedback all in one place with Figma. Dribbble - Discover the World’s Top Designers & Creative Professionals [](https://dribbble.com/) Find Top Designers & Creative Professionals on Dribbble. We are where designers gain inspiration, feedback, community, and jobs. Your best resource to discover and connect with designers worldwide. Photopea | Online Photo Editor [](https://www.photopea.com/) Photopea Online Photo Editor lets you edit photos, apply effects, filters, add text, crop or resize pictures. Do Online Photo Editing in your browser for free! Toools.design – An archive of 1000+ Design Resources [](https://www.toools.design/) A growing archive of over a thousand design resources, weekly updated for the community. Discover highly useful design tools you never thought existed. All Online Tools in One Box | 10015 Tools [](https://10015.io/) All online tools you need in one box for free. Build anything online with “all-in-one toolbox”. All tools are easy-to-use, blazing fast & free. Phase - Digital Design Reinvented| Phase [](https://phase.com/) Design and prototype websites and apps visually and intuitively, in a new powerful product reworked for the digital age. Animated Backgrounds [](https://animatedbackgrounds.me/) A Collection of 30+ animated backgrounds for websites and blogs.With Animated Backgrounds, set a simple, elegant background animations on your websites and blogs. Trianglify.io · Low Poly Pattern Generator [](https://trianglify.io/) Trianglify.io is a tool for generating low poly triangle patterns that can be used as wallpapers and website assets. Cool Backgrounds [](https://coolbackgrounds.io/) Explore a beautifully curated selection of cool backgrounds that you can add to blogs, websites, or as desktop and phone wallpapers. SVG Repo - Free SVG Vectors and Icons [](https://www.svgrepo.com/) Free Vectors and Icons in SVG format. ✅ Download free mono or multi color vectors for commercial use. Search in 300.000+ Free SVG Vectors and Icons. Microcopy - Short copy text for your website. [](https://www.microcopy.me/) Search micro UX copy text: slogans, headlines, notifications, CTA, error messages, email, account preferences, and much more. 3D icons and icon paks - Free3Dicon [](https://free3dicon.com/) All 3D icons you need in one place. This is a collection of free, beautiful, trending 3D icons, that you can use in any project. Love 3D Icon [](https://free3dicons.com/) Downloads free 3D icons GIMP - GNU Image Manipulation Program [](https://www.gimp.org/) GIMP - The GNU Image Manipulation Program: The Free and Open Source Image Editor blender.org - Home of the Blender project - Free and Open 3D Creation Software [](https://www.blender.org/) The Freedom to Create 3D Design Software | 3D Modeling on the Web | SketchUp [](https://www.sketchup.com/) SketchUp is a premier 3D design software that truly makes 3D modeling for everyone, with a simple to learn yet robust toolset that empowers you to create whatever you can imagine. Free Logo Maker - Create a Logo in Seconds - Shopify [](https://www.shopify.com/tools/logo-maker) Free logo maker tool to generate custom design logos in seconds. This logo creator is built for entrepreneurs on the go with hundreds of templates, free vectors, fonts and icons to design your own logo. The easiest way to create business logos online. All your design tools in one place | Renderforest [](https://www.renderforest.com/) Time to get your brand noticed. Create professional videos, logos, mockups, websites, and graphics — all in one place. Get started now! Prompt Hero [](https://prompthero.com/) Type Scale - A Visual Calculator [](https://type-scale.com/) Preview and choose the right type scale for your project. Experiment with font size, scale and different webfonts. DreamFusion: Text-to-3D using 2D Diffusion [](https://dreamfusion3d.github.io/) DreamFusion: Text-to-3D using 2D Diffusion, 2022. The branding style guidelines documents archive [](https://brandingstyleguides.com/) Welcome to the brand design manual documents directory. Search over our worldwide style assets handpicked collection, access to PDF documents for inspiration. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Readymag—a design tool to create websites without coding [](https://readymag.com/) Meet the most elegant, simple and powerful web-tool for designing websites, presentations, portfolios and all kinds of digital publications. ffflux: Online SVG Fluid Gradient Background Generator | fffuel [](https://fffuel.co/ffflux/) SVG generator to make fluid gradient backgrounds that feel organic and motion-like. Perfect to add a feeling of motion and fluidity to your web designs. Generate unique SVG design assets | Haikei [](https://haikei.app/) A web-based design tool to generate unique SVG design assets for websites, social media, blog posts, desktop and mobile wallpapers, posters, and more! Our generators let you discover, customize, randomize, and export generative SVG design assets ready to use with your favorite design tools. UI/UX - Inspirational Free Website Builder Software | 10,000+ Free Templates [](https://nicepage.com/) Nicepage is your website builder software breaking limitations common for website builders with revolutionary freehand positioning. 7000+ Free Templates. Easy Drag-n-Drop. No coding. Mobile-friendly. Clean HTML. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Pika – Create beautiful mockups from screenshots [](https://pika.style/) Quickly create beautiful website and device mockup from screenshot. Pika lets you capture website screenshots form URL, add device and browser frames, customize background and more LiveTerm [](https://liveterm.vercel.app/) Minimal Gallery – Web design inspiration [](https://minimal.gallery/) For the love of beautiful, clean and functional websites. Awwwards - Website Awards - Best Web Design Trends [](https://www.awwwards.com/) Awwwards are the Website Awards that recognize and promote the talent and effort of the best developers, designers and web agencies in the world. Design Systems For Figma [](https://www.designsystemsforfigma.com/) A collection of Design Systems for Figma from all over the globe. Superside: Design At Scale For Ambitious Brands [](https://www.superside.com/) We are an always-on design company. Get a team of dedicated designers, speedy turnarounds, magical creative collaboration tech and the top 1% of global talent. UXArchive - Made by Waldo [](https://uxarchive.com/) UXArchive the world's largest library of mobile user flows. Be inspired to design the best user experiences. Search by Muzli [](https://search.muz.li/) Search, discover, test and create beautiful color palettes for your projects Siteinspire | Web Design Inspiration [](https://www.siteinspire.com/) SAVEE [](https://savee.it/) The best way to save and share inspiration. A little corner of the internet to find good landing page copywriting examples [](https://greatlandingpagecopy.com/) A little corner of the internet to find great landing page copywriting examples. The Best Landing Page Examples For Design Inspiration - SaaS Landing Page [](https://saaslandingpage.com/) SaaS Landing Page showcases the best landing page examples created by top-class SaaS companies. Get ideas and inspirations for your next design project. Websites Free templates Premium Bootstrap Themes and Templates: Download @ Creative Tim [](https://www.creative-tim.com/) UI Kits, Templates and Dashboards built on top of Bootstrap, Vue.js, React, Angular, Node.js and Laravel. Join over 2,014,387+ creatives to access all our products! Free Bootstrap Themes, Templates, Snippets, and Guides - Start Bootstrap [](https://startbootstrap.com/) Start Bootstrap develops free to download, open source Bootstrap 5 themes, templates, and snippets and creates guides and tutorials to help you learn more about designing and developing with Bootstrap. Free Website Templates [](https://freewebsitetemplates.com/) Get your free website templates here and use them on your website without needing to link back to us. One Page Love - One Page Website Inspiration and Templates [](https://onepagelove.com/) One Page Love is a One Page website design gallery showcasing the best Single Page websites, templates and resources. Free CSS | 3400 Free Website Templates, CSS Templates and Open Source Templates [](https://www.free-css.com/) Free CSS has 3400 free website templates, all templates are free CSS templates, open source templates or creative commons templates. Free Bootstrap Themes and Website Templates | BootstrapMade [](https://bootstrapmade.com/) At BootstrapMade, we create beautiful website templates and bootstrap themes using Bootstrap, the most popular HTML, CSS and JavaScript framework. Free and Premium Bootstrap Themes, Templates by Themesberg [](https://themesberg.com/) Free and Premium Bootstrap themes, templates, admin dashboards and UI kits used by over 38820 web developers and software companies HTML, Vue.js and React templates for startup landing pages - Cruip [](https://cruip.com/) Cruip is a gallery of premium and free HTML, Vue.js and React templates for startups and SaaS. Free Website Templates Download | WordPress Themes - W3Layouts [](https://w3layouts.com/) Want to download free website templates? W3Layouts WordPress themes and website templates are built with responsive web design techniques. Download now! Free HTML Landing Page Templates and UI Kits | UIdeck [](https://uideck.com/) Free HTML Landing Page Templates, Bootstrap Themes, React Templates, HTML Templates, Tailwind Templates, and UI Kits. Create Online Graphics Snappa - Quick & Easy Graphic Design Software [](https://snappa.com/) Snappa makes it easy to create any type of online graphic. Create & publish images for social media, blogs, ads, and more! Canva [](https://www.canva.com/) Polotno Studio - Make graphical designs [](https://studio.polotno.com) Free online design editor. Create images for social media, youtube previews, facebook covers Free Logo Maker: Design Custom Logos | Adobe Express [](https://www.adobe.com/express/create/logo) The Adobe Express logo maker is instant, intuitive, and intelligent. Use it to generate a wide range of possibilities for your own logo. Photo Editor: Fotor – Free Online Photo Editing & Image Editor [](https://www.fotor.com/) Fotor's online photo editor helps you edit photos with free online photo editing tools. Crop photos, resize images, and add effects/filters, text, and graphics in just a few clicks. Photoshop online has never been easier with Fotor's free online photo editor. VistaCreate – Free Graphic Design Software with 70,000+ Free Templates [](https://create.vista.com/) Looking for free graphic design software? Easily create professional designs with VistaCreate, a free design tool with powerful features and 50K+ ready-made templates Draw Freely | Inkscape [](https://inkscape.org/) Inkscape is professional quality vector graphics software which runs on Linux, Mac OS X and Windows desktop computers. Visual & Video Maker Trusted By 11 Million Users - Piktochart [](https://piktochart.com/) With Piktochart, you can create professional-looking infographics, flyers, posters, charts, videos, and more. No design experience needed. Start for free. The Web's Favorite Online Graphic Design Tool | Stencil [](https://getstencil.com/) Stencil is a fantastically easy-to-use online graphic design tool and image editor built for business owners, social media marketers, and bloggers. Pablo by Buffer - Design engaging images for your social media posts in under 30 seconds [](https://pablo.buffer.com/) Buffer makes it super easy to share any page you're reading. Keep your Buffer topped up and we automagically share them for you through the day. Free Online Graphic Design Software | Create stunning designs in seconds. [](https://desygner.com/) Easy drag and drop graphic design tool for anyone to use with 1000's of ready made templates. Create & print professional business cards, flyers, social posts and more. Color Pallet Color Palettes for Designers and Artists - Color Hunt [](https://colorhunt.co/) Discover the newest hand-picked color palettes of Color Hunt. Get color inspiration for your design and art projects. Coolors - The super fast color palettes generator! [](https://coolors.co/) Generate or browse beautiful color combinations for your designs. Get color palette inspiration from nature - colorpalettes.earth [](https://colorpalettes.earth/) Color palettes inspired by beautiful nature photos Color Palette Generator - Create Beautiful Color Schemes [](https://colors.muz.li/) Search, discover, test and create beautiful color palettes for your projects A Most Useful Color Picker | 0to255 [](https://0to255.com/) Find lighter and darker colors based on any color. Discover why over two million people have used 0to255 to choose colors for their website, logo, room interior, and print design projects. Colour Contrast Checker [](https://colourcontrast.cc/) Check the contrast between different colour combinations against WCAG standards Fonts Google Fonts [](https://fonts.google.com/) Making the web more beautiful, fast, and open through great typography Fonts In Use – Type at work in the real world. [](https://fontsinuse.com/) A searchable archive of typographic design, indexed by typeface, format, and topic. Wordmark - Helps you choose fonts! [](https://wordmark.it/) Wordmark helps you choose fonts by quickly displaying your text with your fonts. OH no Type Company [](https://ohnotype.co/) OH no Type Co. Retail and custom typefaces. Life’s a thrill, fonts are chill! Illustrations Illustrations | unDraw [](https://undraw.co/illustrations) The design project with open-source illustrations for any idea you can imagine and create. Create beautiful websites, products and applications with your color, for free. Design Junction [](https://designjunction.xyz/) Design Junction is a one-stop resource library for Designers and Creatives with curated list of best resources handpicked from around the web Humaaans: Mix-&-Match illustration library [](https://www.humaaans.com/) Mix-&-match illustrations of people with a design library for InVIsion Studio and Sketch. Stubborn - Free Illustrations Generator [](https://stubborn.fun/) Free illustrations generator for Figma and Sketch. Get the opportunity to design your characters using symbols and styles. Open Peeps, Hand-Drawn Illustration Library [](https://www.openpeeps.com/) Open Peeps is a hand-drawn illustration library to create scenes of people. You can use them in product illustration, marketing, comics, product states, user flows, personas, storyboarding, quinceañera invitations, or whatever you want! ⠀ Reshot | Free icons & illustrations [](https://www.reshot.com/) Design freely with instant downloads of curated SVG icons and vector illustrations. All free with commercial licensing. No attribution required. Blush: Illustrations for everyone [](https://blush.design/) Blush makes it easy to add free illustrations to your designs. Play with fully customizable graphics made by artists across the globe. Mockups Angle 4 - 5000+ Device Mockups for Figma, Sketch and XD [](https://angle.sh/) Vector mockups for iPhone, iPad, Android and Mac devices, including the new iPhone 13, Pro, Pro Max and Mini. Perfect for presenting your apps. Huge library of components, compositions, wallpapers and plugins made for Figma, Sketch and XD. Make Mockups, Logos, Videos and Designs in Seconds [](https://placeit.net/) Get unlimited downloads on all our 100K templates! You can make a logo, video, mockup, flyer, business card and social media image in seconds right from your browser. Free and premium tools for graphic designers | Lstore Graphics [](https://www.ls.graphics/) Free and premium mockups, UI/UX tools, scene creators for busy designers Logo Design & Brand Identity Platform for Entrepreneurs | Looka [](https://looka.com/) Logojoy is now Looka! Design a Logo, make a website, and create a Brand Identity you’ll love with the power of Artificial Intelligence. 100% free to use. Create stunning product mockups easily and online - Smartmockups [](https://smartmockups.com/) Smartmockups enables you to create stunning high-resolution mockups right inside your browser within one interface across multiple devices. Previewed - Free mockup generator for your app [](https://previewed.app/) Join Previewed to create stunning 3D image shots and animations for your app. Choose from hundreds of ready made mockups, or create your own. Free Design Software - Graphic Online Maker - Glorify [](https://www.glorify.com/) Create professional and high converting social media posts, ads, infographics, presentations, and more with Glorify, a free design software & graphic maker. Other BuiltWith Technology Lookup [](https://builtwith.com/) Web technology information profiler tool. Find out what a website is built with. Compress JPEG Images Online [](https://compressjpeg.com/) Compress JPEG images and photos for displaying on web pages, sharing on social networks or sending by email. PhotoRoom - Remove Background and Create Product Pictures [](https://www.photoroom.com/) Create product and portrait pictures using only your phone. Remove background, change background and showcase products. Magic Eraser - Remove unwanted things from images in seconds [](https://www.magiceraser.io/) Magic Eraser - Use AI to remove unwanted things from images in seconds. Upload an image, mark the bit you need removed, download the fixed up image. Compressor.io - optimize and compress JPEG photos and PNG images [](https://compressor.io/) Optimize and compress JPEG, PNG, SVG, GIF and WEBP images online. Compress, resize and rename your photos for free. Remove Video Background – Unscreen [](https://www.unscreen.com/) Remove the background of any video - 100% automatically, online & free! Goodbye Greenscreen. Hello Unscreen. Noun Project: Free Icons & Stock Photos for Everything [](https://thenounproject.com/) Noun Project features the most diverse collection of icons and stock photos ever. Download SVG and PNG. Browse over 5 million art-quality icons and photos. Design Principles [](https://principles.design/) An Open Source collection of Design Principles and methods Shapefest™ - A massive library of free 3D shapes [](https://www.shapefest.com/) A massive free library of beautifully rendered 3D shapes. 160,000+ high resolution PNG images in one cohesive library. Learning UX Degreeless.design - Everything I Learned in Design School [](https://degreeless.design/) This is a list of everything I've found useful in my journey of learning design, and an ongoing list of things I think you should read. For budding UX, UI, Interaction, or whatever other title designers. UX Tools | Practical UX skills and tools [](https://uxtools.co/) Lessons and resources from two full-time product designers. Built For Mars [](https://builtformars.com/) On a mission to help the world build better user experiences by demystifying UX. Thousands of hours of research packed into UX case studies. Case Study Club – Curated UX Case Study Gallery [](https://www.casestudy.club/) Case Study Club is the biggest curated gallery of the best UI/UX design case studies. Get inspired by industry-leading designers, openly sharing their UX process. The Guide to Design [](https://start.uxdesign.cc/) A self-guided class to help you get started in UX and answer key questions about craft, design, and career Uxcel - Where design careers are built [](https://app.uxcel.com/explore) Available on any device anywhere in the world, Uxcel is the best way to improve and learn UX design online in just 5 minutes per day. UI & UX Design Tips by Jim Raptis. [](https://www.uidesign.tips/) Learn UI & UX Design with practical byte-sized tips and in-depth articles from Jim Raptis. Entrepreneur Instant Username Search [](https://instantusername.com/#/) Instant Username Search checks out if your username is available on more than 100 social media sites. Results appear instantly as you type. Flourish | Data Visualization & Storytelling [](https://flourish.studio/) Beautiful, easy data visualization and storytelling PiPiADS - #1 TikTok Ads Spy Tool [](https://www.pipiads.com/) PiPiADS is the best tiktok ads spy tool .We provide tiktok advertising,advertising on tiktok,tiktok ads examples,tiktok ads library,tiktok ads best practices,so you can understand the tiktok ads cost and master the tiktok ads 2021 and tiktok ads manager. Minea - The best adspy for product search in ecommerce and dropshipping [](https://en.minea.com/) Minea is the ultimate e-commerce product search tool. Minea tracks all ads on all networks. Facebook Ads, influencer product placements, Snapspy, all networks are tracked. Stop paying adspy 149€ for one network and discover Minea. AdSpy [](https://adspy.com/) Google Trends [](https://trends.google.com/) ScoreApp: Advanced Quiz Funnel Marketing | Make a Quiz Today [](https://www.scoreapp.com/) ScoreApp makes quiz funnel marketing easy, so you can attract relevant warm leads, insightful data and increase your sales. Try for free today Mailmodo - Send Interactive Emails That Drive Conversions [](https://www.mailmodo.com/) Use Mailmodo to create and send interactive emails your customers love. Drive conversions and get better email ROI. Sign up for a free trial now. 185 Top E-Commerce Sites Ranked by User Experience Performance – Baymard Institute [](https://baymard.com/ux-benchmark) See the ranked UX performance of the 185 largest e-commerce sites in the US and Europe. The chart summarizes 50,000+ UX performance ratings. Metricool - Analyze, manage and measure your digital content [](https://metricool.com/) Social media scheduling, web analytics, link in bio and reporting. Metricool is free per live for one brand. START HERE Visualping: #1 Website change detection, monitoring and alerts [](https://visualping.io/) More than 1.5 millions users monitor changes in websites with Visualping, the No1 website change detection, website checker, webpage change monitoring and webpage change detection tool. Gumroad – Sell what you know and see what sticks [](https://gumroad.com/) Gumroad is a powerful, but simple, e-commerce platform. We make it easy to earn your first dollar online by selling digital products, memberships and more. Product Hunt – The best new products in tech. [](https://www.producthunt.com/) Product Hunt is a curation of the best new products, every day. Discover the latest mobile apps, websites, and technology products that everyone's talking about. 12ft Ladder [](https://12ft.io/) Show me a 10ft paywall, I’ll show you a 12ft ladder. namecheckr | Social and Domain Name Availability Search For Brand Professionals [](https://www.namecheckr.com/) Social and Domain Name Availability Search For Brand Professionals Excel AI Formula Generator - Excelformulabot.com [](https://excelformulabot.com/) Transform your text instructions into Excel formulas in seconds with the help of AI. Z-Library [](https://z-lib.org/) Global Print On Demand Platform | Gelato [](https://www.gelato.com/) Create and sell custom products online. With local production in 33 countries, easy integration, and 24/7 customer support, Gelato is an all-in-one platform. Freecycle: Front Door [](https://freecycle.org/) Free eBooks | Project Gutenberg [](https://www.gutenberg.org/) Project Gutenberg is a library of free eBooks. Convertio — File Converter [](https://convertio.co/) Convertio - Easy tool to convert files online. More than 309 different document, image, spreadsheet, ebook, archive, presentation, audio and video formats supported. Namechk [](https://namechk.com/) Crazy Egg Website — Optimization | Heatmaps, Recordings, Surveys & A/B Testing [](https://www.crazyegg.com/) Use Crazy Egg to see what's hot and what's not, and to know what your web visitors are doing with tools, such as heatmaps, recordings, surveys, A/B testing & more. Ifttt [](https://ifttt.com/) Also Asked [](https://alsoasked.com/) Business Name Generator - Easily create Brandable Business Names - Namelix [](https://namelix.com/) Namelix uses artificial intelligence to create a short, brandable business name. Search for domain availability, and instantly generate a logo for your new business Merch Informer [](https://merchinformer.com/) Headline Generator [](https://www.title-generator.com/) Title Generator: create 700 headlines with ONE CLICK: Content Ideas + Catchy Headlines + Ad Campaign E-mail Subject Lines + Emotional Titles. Simple - Efficient - One Click Make [](https://www.make.com/en) Create and add calculator widgets to your website | CALCONIC_ [](https://www.calconic.com/) Web calculator builder empowers you to choose from a pre-made templates or build your own calculator widgets from a scratch without any need of programming knowledge Boost Your Views And Subscribers On YouTube - vidIQ [](https://vidiq.com/) vidIQ helps you acquire the tools and knowledge needed to grow your audience faster on YouTube and beyond. Learn More Last Pass [](https://www.lastpass.com/) Starter Story: Learn How People Are Starting Successful Businesses [](https://www.starterstory.com/) Starter Story interviews successful entrepreneurs and shares the stories behind their businesses. In each interview, we ask how they got started, how they grew, and how they run their business today. How To Say No [](https://www.starterstory.com/how-to-say-no) Saying no is hard, but it's also essential for your sanity. Here are some templates for how to say no - so you can take back your life. Think with Google - Discover Marketing Research & Digital Trends [](https://www.thinkwithgoogle.com/) Uncover the latest marketing research and digital trends with data reports, guides, infographics, and articles from Think with Google. ClickUp™ | One app to replace them all [](https://clickup.com/) Our mission is to make the world more productive. To do this, we built one app to replace them all - Tasks, Docs, Goals, and Chat. The Manual [](https://manual.withcompound.com/) Wealth-planning resources for founders and startup employees Software for Amazon FBA Sellers & Walmart Sellers | Helium 10 [](https://www.helium10.com/) If you're looking for the best software for Amazon FBA & Walmart sellers on the market, check out Helium 10's capabilities online today! Buffer: All-you-need social media toolkit for small businesses [](https://buffer.com/) Use Buffer to manage your social media so that you have more time for your business. Join 160,000+ small businesses today. CPGD — The Consumer Packaged Goods Directory [](https://www.cpgd.xyz/) The Consumer Packaged Goods Directory is a platform to discover new brands and resources. We share weekly trends in our newsletter and partner with services to provide vetted, recommended platforms for our Directory brands. Jungle Scout [](https://www.junglescout.com/) BuzzSumo | The World's #1 Content Marketing Platform [](https://buzzsumo.com/) BuzzSumo powers the strategies of 500k+ marketers, with content marketing data on 8b articles, 42m websites, 300t engagements, 500k journalists & 492m questions. Login - Capital [](https://app.capital.xyz/) Raise, hold, spend, and send funds — all in one place. Marketing Pictory – Video Marketing Made Easy - Pictory.ai [](https://pictory.ai/) Pictory's powerful AI enables you to create and edit professional quality videos using text, no technical skills required or software to download. Tolstoy | Communicate with interactive videos [](https://www.gotolstoy.com/) Start having face-to-face conversations with your customers. Create Email Marketing Your Audience Will Love - MailerLite [](https://www.mailerlite.com/) Email marketing tools to grow your audience faster and drive revenue smarter. Get free access to premium features with a 30-day trial! Sign up now! Hypefury - Schedule & Automate Social Media Marketing [](https://hypefury.com/) Save time on social media while creating more value, and growing your audience faster. Schedule & automate your social media experience! Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Online Email & Lead Scraper | Klean Leads [](https://www.kleanleads.com/) Klean Leads is an online email scraper & email address finder. Use it to book more appointments, get more replies, and close more sales. PhantomBuster [](https://phantombuster.com/) Call to Action Examples - 300+ CTA Phrases [](https://ctaexamples.com/) See the best CTA example in every situation covered by the library of 300+ CTA goals. Use the examples to create your own CTAs in minutes. Creative Center: one-stop creative solution for TikTok [](https://ads.tiktok.com/business/creativecenter/pc/en?from=001010) Come to get your next great idea for TikTok. Here you can find the best performing ads, viral videos, and trending hashtags across regions and verticals. Groove.cm GrooveFunnels, GrooveMail with CRM and Digital Marketing Automation Platform - Groove.cm with GrooveFunnels, GroovePages, GrooveKart [](https://groove.cm/) Groove is a website creator, page builder, sales funnel maker, membership site platform, email autoresponder, blog tool, shopping cart system, ecommerce store solution, affiliate manager, video marketing software and more apps to help build your online business. SurveyMonkey: The World’s Most Popular Free Online Survey Tool [](https://www.surveymonkey.com/) Use SurveyMonkey to drive your business forward by using our free online survey tool to capture the voices and opinions of the people who matter most to you. Video Maker | Create Videos Online | Promo.com [](https://promo.com/) Free customizable video maker to help boost your business. Video creator for ads, social media, product and explainer videos, and for anything else you need! beehiiv — The newsletter platform built for growth [](https://www.beehiiv.com/) Access the best tools available in email, helping your newsletter scale and monetize like never before. GetResponse | Professional Email Marketing for Everyone [](https://www.getresponse.com/) No matter your level of expertise, we have a solution for you. At GetResponse, it's email marketing done right. Start your free account today! Search Email Newsletter Archives : Email Tuna [](https://emailtuna.com/) Explore newsletters without subscribing. Get email design ideas, discount coupon codes and exclusive newsletters deals. Database of email newsletters archived from all over the internet. Other Tools Simplescraper — Scrape Websites and turn them into APIs [](https://simplescraper.io/) Web scraping made easy — a powerful and free Chrome extension for scraping websites in your browser, automated in the cloud, or via API. No code required. Exploding Topics - Discover the hottest new trends. [](https://explodingtopics.com/) See new market opportunities, trending topics, emerging technology, hot startups and more on Exploding Topics. Scribe | Visual step-by-step guides [](https://scribehow.com/) By capturing your process while you work, Scribe automatically generates a visual guide, ready to share with the click of a button. Get It Free – The internet's BEST place to find free stuff! [](https://getitfree.us/) The internet's BEST place to find free stuff! Inflact by Ingramer – Marketing toolkit for Instagram [](https://inflact.com/) Sell on Instagram, build your audience, curate content with the right set of tools. Free Online Form Builder & Form Creator | Jotform [](https://www.jotform.com/) We believe the right form makes all the difference. Go from busywork to less work with powerful forms that use conditional logic, accept payments, generate reports, and automate workflows. Manage Your Team’s Projects From Anywhere | Trello [](https://trello.com/en) Trello is the ultimate project management tool. Start up a board in seconds, automate tedious tasks, and collaborate anywhere, even on mobile. TikTok hashtag generator - tiktokhashtags.com [](https://tiktokhashtags.com/) Find out which are the best hashtags for your TikTok post. Create Infographics, Reports and Maps - Infogram [](https://infogram.com/) Infogram is an easy to use infographic and chart maker. Create and share beautiful infographics, online reports, and interactive maps. Make your own here. Confetto - Create Instagram content in minutes [](https://www.confet.to/) Confetto is an all-in-one social media marketing tool built for SMBs and Social Media Managers. Confetto helps you create high-quality content for your audience that maximizes your reach and engagement on social media. Design, copy-write, plan and schedule content all in one place. Find email addresses in seconds • Hunter (Email Hunter) [](https://hunter.io/) Hunter is the leading solution to find and verify professional email addresses. Start using Hunter and connect with the people that matter for your business. PlayPhrase.me: Site for cinema archaeologists. [](https://playphrase.me/) Travel and explore the world of cinema. Largest collection of video quotes from movies on the web. #1 Free SEO Tools → SEO Review Tools [](https://www.seoreviewtools.com/) SEO Review Tools: 42+ Free Online SEO Tools build with ❤! → Rank checker → Domain Authority Checker → Keyword Tool → Backlink Checker Podcastle: Seamless Podcast Recording & Editing [](https://podcastle.ai/) Podcastle is the simplest way to create professional-quality podcasts. Record, edit, transcribe, and export your content with the power of AI, in an intuitive web-based platform. Save Ads from TikTok & Facebook Ad Library - Foreplay [](https://www.foreplay.co/) The best way to save ads from TikTok Creative Center and Facebook Ad Library, Organize them into boards and share ad inspiration with your team. Supercharge your creative strategy. SiteRight - Automate Your Business [](https://www.siteright.co/) SiteRight combines the abilities of multiple online resources into a single dashboard allowing you to have full control over how you manage your business. Diffchecker - Compare text online to find the difference between two text files [](https://www.diffchecker.com/) Diffchecker will compare text to find the difference between two text files. Just paste your files and click Find Difference! Yout.com [](https://yout.com/) Yout.com allows you to record videos from YouTube, FaceBook, SoundCloud, VK and others too many formats with clipping. Intuitively easy to use, with Yout the Internet DVR, with a bit of extra. AI Content Generation | Competitor Analysis - Predis.ai [](https://predis.ai/) Predis helps brands and influencers communicate better on social media by providing AI-powered content strategy analysis, content and hashtag recommendations. Castr | #1 Live Video Streaming Solution With Video Hosting [](https://castr.io/) Castr is a live video streaming solution platform that delivers enterprise-grade live videos globally with CDN. Live event streaming, video hosting, pre-recorded live, multi stream – all in one place using Castr. Headliner - Promote your podcast, radio show or blog with video [](https://www.headliner.app/) Easily create videos to promote your podcast, radio show or blog. Share to Instagram, Facebook, Twitter, YouTube, Linkedin and anywhere video lives Create Presentations, Infographics, Design & Video | Visme [](https://www.visme.co/) Create professional presentations, interactive infographics, beautiful design and engaging videos, all in one place. Start using Visme today. Designrr - Create eBooks, Kindle books, Leadmagnets, Flipbooks and Blog posts from your content in 2 minutes [](https://designrr.io/) Upload any web page, MS Word, Video, Podcast or YouTube and it will create a stunning ebook and convert it to pdf, epub, Kindle or Flipbook. Quick and Easy to use. Full Training, 24x7 Support and Facebook Group Included. SwipeWell | Swipe File Software [](https://www.swipewell.app/) The only Chrome extension dedicated to helping you save, organize, and reference marketing examples (so you never feel stumped). Tango | Create how-to guides, in seconds [](https://www.tango.us/) Tango takes the pain out of documenting processes by automatically generating how-to guides while you work. Empower your team to do their best work. Ad Creative Bank [](https://www.theadcreativebank.com/) Get inspired by ads from across industries, learn new best practices, and start thinking creatively about your brand’s digital creative. Signature Hound • Free Email Signature and Template Generator [](https://signaturehound.com/) Our email signature generator is free and easy to use. Our customizable templates work with Gmail, Outlook, Office 365, Apple Mail and more. Organize All Of Your Marketing In One Place - CoSchedule [](https://coschedule.com/) Get more done in less time with the only work management software for marketers. B Ok - Books [](https://b-ok.xyz/categories) OmmWriter [](https://ommwriter.com/) Ommwriter Rebrandly | Custom URL Shortener, Branded Link Management, API [](https://www.rebrandly.com/) URL Shortener with custom domains. Shorten, brand and track URLs with the industry-leading link management platform. Free to try. API, Short URL, Custom Domains. Common Tools [](https://www.commontools.org/) Book Bolt [](https://bookbolt.io/) Zazzle [](https://www.zazzle.com/) InspiroBot [](https://inspirobot.me/) Download Free Cheat Sheets or Create Your Own! - Cheatography.com: Cheat Sheets For Every Occasion [](https://cheatography.com/) Find thousands of incredible, original programming cheat sheets, all free to download. No Code Chatbot Platform | Free Chatbot Platform | WotNot [](https://wotnot.io/) WotNot is the best no code chatbot platform to build AI bot easily without coding. Deploy bots and live chat on the Website, Messenger, WhatsApp, and more. SpyFu - Competitor Keyword Research Tools for Google Ads PPC & SEO [](https://www.spyfu.com/) Systeme.io - The only tool you need to launch your online business [](https://systeme.io/) Systeme.io has all the tools you need to grow your online business. Click here to create your FREE account! Productivity Temp Mail [](https://temp-mail.org/en/) The Visual Collaboration Platform for Every Team | Miro [](https://miro.com/) Scalable, secure, cross-device and enterprise-ready team collaboration whiteboard for distributed teams. Join 35M+ users from around the world. Grammarly: Free Online Writing Assistant [](https://www.grammarly.com/) Millions trust Grammarly’s free writing app to make their online writing clear and effective. Getting started is simple — download Grammarly’s extension today. Rize · Maximize Your Productivity [](https://rize.io/) Rize is a smart time tracker that improves your focus and helps you build better work habits. Motion | Manage calendars, meetings, projects & tasks in one app [](https://www.usemotion.com/) Automatically prioritize tasks, schedule meetings, and resolve calendar conflicts. Used by over 10k CEOs and professionals to improve focus, get more done, and streamline workday. Notion – One workspace. Every team. [](https://www.notion.so/) We’re more than a doc. Or a table. Customize Notion to work the way you do. Loom: Async Video Messaging for Work | Loom [](https://www.loom.com/) Record your screen, share your thoughts, and get things done faster with async video. Zapier | Automation that moves you forward [](https://zapier.com/) Workflow automation for everyone. Zapier automates your work across 5,000+ app integrations, so you can focus on what matters. Rows — The spreadsheet with superpowers [](https://rows.com/) Combine the power of a spreadsheet with built-in integrations from your business apps. Automate workflows and build tools that make work simpler. Free Online Form Builder | Tally [](https://tally.so/) Tally is the simplest way to create free forms & surveys. Create any type of form in seconds, without knowing how to code, and for free. Highbrow | Learn Something New Every Day. Join for Free! [](https://gohighbrow.com/) Highbrow helps you learn something new every day with 5-minute lessons delivered to your inbox every morning. Join over 400,000 lifelong learners today! Slick Write | Check your grammar. Proofread online. [](https://www.slickwrite.com/#!home) Slick Write is a powerful, FREE application that makes it easy to check your writing for grammar errors, potential stylistic mistakes, and other features of interest. Whether you're a blogger, novelist, SEO professional, or student writing an essay for school, Slick Write can help take your writing to the next level. Reverso [](https://www.reverso.net) Hemingway Editor [](https://hemingwayapp.com/) Web Apps by 123apps - Edit, Convert, Create [](https://123apps.com/) Splitbee – Your all-in-one analytics and conversion platform [](https://splitbee.io/) Track and optimize your online business with Splitbee. Analytics, Funnels, Automations, A/B Testing and more. PDF Tools Free PDF, Video, Image & Other Online Tools - TinyWow [](https://tinywow.com/) Smallpdf.com - A Free Solution to all your PDF Problems [](https://smallpdf.com/) Smallpdf - the platform that makes it super easy to convert and edit all your PDF files. Solving all your PDF problems in one place - and yes, free. Sejda helps with your PDF tasks [](https://www.sejda.com/) Sejda helps with your PDF tasks. Quick and simple online service, no installation required! Split, merge or convert PDF to images, alternate mix or split scans and many other. iLovePDF | Online PDF tools for PDF lovers [](https://www.ilovepdf.com/) iLovePDF is an online service to work with PDF files completely free and easy to use. Merge PDF, split PDF, compress PDF, office to PDF, PDF to JPG and more! Text rewrite QuillBot [](https://quillbot.com/) Pre Post SEO : Online SEO Tools [](https://www.prepostseo.com/) Free Online SEO Tools: plagiarism checker, grammar checker, image compressor, website seo checker, article rewriter, back link checker Wordtune | Your personal writing assistant & editor [](https://www.wordtune.com/) Wordtune is the ultimate AI writing tool that rewrites, rephrases, and rewords your writing! Trusted by over 1,000,000 users, Wordtune strengthens articles, academic papers, essays, emails and any other online content. Aliexpress alternatives CJdropshipping - Dropshipping from Worldwide to Worldwide! [](https://cjdropshipping.com/) China's reliable eCommerce dropshipping fulfillment supplier, helps small businesses ship worldwide, dropship and fulfillment services that are friendly to start-ups and small businesses, Shopify dropshipping. SaleHoo [](https://www.salehoo.com/) Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [](https://www.alibaba.com/) Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Best dropshipping supplier to the US [](https://www.usadrop.com/) THE ONLY AMERICAN-MADE FULFILLMENT CENTER IN CHINA. Our knowledge of the Worldwide dropshipping market and the Chinese Supply-Chain can't be beat! 阿里1688 [](https://www.1688.com/) 阿里巴巴(1688.com)是全球企业间(B2B)电子商务的著名品牌,为数千万网商提供海量商机信息和便捷安全的在线交易市场,也是商人们以商会友、真实互动的社区平台。目前1688.com已覆盖原材料、工业品、服装服饰、家居百货、小商品等12个行业大类,提供从原料--生产--加工--现货等一系列的供应产品和服务 Dropshipping Tools Oberlo | Where Self Made is Made [](https://www.oberlo.com/) Start selling online now with Shopify. All the videos, podcasts, ebooks, and dropshipping tools you'll need to build your online empire. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. SMSBump | SMS Marketing E-Commerce App for Shopify [](https://smsbump.com/) SMSBump is an SMS marketing & automation app for Shopify. Segment customers, recover orders, send campaign text messages with a 35%+ click through rate. AfterShip: The #1 Shipment Tracking Platform [](https://www.aftership.com/) Order status lookup, branded tracking page, and multi-carrier tracking API for eCommerce. Supports USPS, FedEx, UPS, and 900+ carriers worldwide. #1 Dropshipping App | Zendrop [](https://zendrop.com/) Start and scale your own dropshipping business with Zendrop. Sell and easily fulfill your orders with the fastest shipping in the industry. Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Video Editing Jitter • The simplest motion design tool on the web. [](https://jitter.video/) Animate your designs easily. Export your creations as videos or GIFs. All in your browser. DaVinci Resolve 18 | Blackmagic Design [](https://www.blackmagicdesign.com/products/davinciresolve) Professional video editing, color correction, visual effects and audio post production all in a single application. Free and paid versions for Mac, Windows and Linux. Online Video Editor | Video Creator | InVideo [](https://invideo.io/) InVideo's Online Video Editor Helps You Make Professional Videos From Premium Templates, Images, And Music. All your video needs in one place | Clipchamp [](https://clipchamp.com/) Fast-forward your creations with our video editing platform. Start with a video template or record your webcam or screen. Get the pro look with filters, transitions, text and more. Then, export in minutes and share in an instant. Descript | All-in-one audio/video editing, as easy as a doc. [](https://www.descript.com/) Record, transcribe, edit, mix, collaborate, and master your audio and video with Descript. Download for free →. Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. Panzoid [](https://panzoid.com/) Powerful, free online apps and community for creating beautiful custom content. Google Web Designer - Home [](https://webdesigner.withgoogle.com/) Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. ClipDrop [](https://clipdrop.co/) Create professional visuals without a photo studio CapCut [](https://www.capcut.com/) CapCut is an all-in-one online video editing software which makes creation, upload & share easier, with frame by frame track editor, cloud drive etc. VEED - Online Video Editor - Video Editing Made Simple [](https://www.veed.io/) Make stunning videos with a single click. Cut, trim, crop, add subtitles and more. Online, no account needed. Try it now, free. VEED Free Video Maker | Create & Edit Your Videos Easily - Animoto [](https://animoto.com/k/welcome) Create, edit, and share videos with our online video maker. Combine your photos, video clips, and music to make quality videos in minutes. Get started free! Runway - Online Video Editor | Everything you need to make content, fast. [](https://runwayml.com/) Discover advanced video editing capabilities to take your creations to the next level. CreatorKit - A.I. video creator for marketers [](https://creatorkit.com/) Create videos with just one click, using our A.I. video editor purpose built for marketers. Create scroll stopping videos, Instagram stories, Ads, Reels, and TikTok videos. Pixar in a Box | Computing | Khan Academy [](https://www.khanacademy.org/computing/pixar) 3D Video Motions Plask - AI Motion Capture and 3D Animation Tool [](https://plask.ai/) Plask is an all-in-one browser-based AI motion capture tool and animation editor that anybody can use, from motion designers to every day content creators. Captions Captions [](https://www.getcaptions.app/) Say hello to Captions, the only camera and editing app that automatically transcribes, captions and clips your talking videos for you. Stock videos Pexels [](https://www.pexels.com/) Pixabay [](https://pixabay.com/) Mixkit - Awesome free assets for your next video project [](https://mixkit.co/) Download Free Stock Video Footage, Stock Music & Premiere Pro Templates for your next video editing project. All assets can be downloaded for free! Free Stock Video Footage HD 4K Download Royalty-Free Clips [](https://www.videvo.net/) Download free stock video footage with over 300,000 video clips in 4K and HD. We also offer a wide selection of music and sound effect files with over 180,000 clips available. Click here to download royalty-free licensing videos, motion graphics, music and sound effects from Videvo today. Free Stock Video Footage HD Royalty-Free Videos Download [](https://mazwai.com/) Download free stock video footage with clips available in HD. Click here to download royalty-free licensing videos from Mazwai now. Royalty Free Stock Video Footage Clips | Vidsplay.com [](https://www.vidsplay.com/) Royalty Free Stock Video Footage Clips Free Stock Video Footage, Royalty Free Videos for Download [](https://coverr.co/) Download royalty free (for personal and commercial use), unique and beautiful video footage for your website or any project. No attribution required. Stock Photos Beautiful Free Images & Pictures | Unsplash [](https://unsplash.com/) Beautiful, free images and photos that you can download and use for any project. Better than any royalty free or stock photos. When we share, everyone wins - Creative Commons [](https://creativecommons.org/) Creative Commons licenses are 20! Honoring 20 years of open sharing using CC licenses, join us in 2022 to celebrate Better Sharing — advancing universal access to knowledge and culture, and fostering creativity, innovation, and collaboration. Help us reach our goal of raising $15 million for a future of Better Sharing.  20 Years of Better … Read More "When we share, everyone wins" Food Pictures • Foodiesfeed • Free Food Photos [](https://www.foodiesfeed.com/) Download 2000+ food pictures ⋆ The best free food photos for commercial use ⋆ CC0 license Free Stock Photos and Images for Websites & Commercial Use [](https://burst.shopify.com/) Browse thousands of beautiful copyright-free images. All our pictures are free to download for personal and commercial use, no attribution required. EyeEm | Authentic Stock Photography and Royalty-Free Images [](https://www.eyeem.com/) Explore high-quality, royalty-free stock photos for commercial use. License individual images or save money with our flexible subscription and image pack plans. picjumbo: Free Stock Photos [](https://picjumbo.com/) Free stock photos and images for your projects and websites.️ Beautiful 100% free high-resolution stock images with no watermark. Free Stock Photos, Images, and Vectors [](https://www.stockvault.net/) 139.738 free stock photos, textures, backgrounds and graphics for your next project. No attribution required. Free Stock Photos, PNGs, Templates & Mockups | rawpixel [](https://www.rawpixel.com/) Free images, PNGs, stickers, backgrounds, wallpapers, graphic templates and PSD mockups. All safe to use with commercial licenses. Free Commercial Stock Photos & Royalty Free Images | PikWizard [](https://pikwizard.com/) Free images, videos & free stock photos. Unlimited downloads ✓ Royalty-free Images ✓Copyright-free for commercial use ✓ No Attribution Required Design Bundles [](https://designbundles.net/) Stock music Royalty Free Music for video creators | Epidemic Sound [](https://www.epidemicsound.com/) Download premium Royalty free Music and SFX! Our free trial gives you access to over 35,000 tracks and 90,000 sound effects for video, streaming and more! Royalty-Free Music & SFX for Video Creators | Artlist [](https://artlist.io/) Explore the ultimate royalty-free music & sound effects catalogs for unlimited use in YouTube videos, social media & films created by inspiring indie artists worldwide. The go-to music licensing choice for all creators Royalty Free Audio Tracks - Envato Elements [](https://elements.envato.com/audio) Download Royalty Free Stock Audio Tracks for your next project from Envato Elements. Premium, High Quality handpicked Audio files ideal for any genre. License popular music for videos • Lickd [](https://lickd.co/) The only place you can license popular music for videos. Access 1M+ mainstream tracks, plus high-quality stock music for content creators NCS (NoCopyrightSounds) - free music for content creators [](https://ncs.io/) NCS is a Record Label dedicated to giving a platform to the next generation of Artists in electronic music, representing genres from house to dubstep via trap, drum & bass, electro pop and more. Search Engine Optimization Keyword Tool For Monthly Search Volume, CPC & Competition [](https://keywordseverywhere.com/) Keywords Everywhere is a browser add-on for Chrome & Firefox that shows search volume, CPC & competition on multiple websites. Semrush - Online Marketing Can Be Easy [](https://www.semrush.com/) Turn the algorithm into a friend. Make your business visible online with 55+ tools for SEO, PPC, content, social media, competitive research, and more. DuckDuckGo — Privacy, simplified. [](https://duckduckgo.com/) The Internet privacy company that empowers you to seamlessly take control of your personal information online, without any tradeoffs. SEO Software for 360° Analysis of Your Website [](https://seranking.com/) Leading SEO software for business owners, agencies, and SEO specialists. Track your rankings, monitor competitors, spot technical errors, and more. Skyrocket your organic traffic with Surfer [](https://surferseo.com/) Use Surfer to research, write, optimize, and audit! Everything you need to create a comprehensive content strategy that yields real results is right here. Ahrefs - SEO Tools & Resources To Grow Your Search Traffic [](https://ahrefs.com/) You don't have to be an SEO pro to rank higher and get more traffic. Join Ahrefs – we're a powerful but easy to learn SEO toolset with a passionate community. Neon Tools [](https://neontools.io/) Google Index Search [](https://lumpysoft.com/) Google Index Search SEO Backlink Checker & Link Building Toolset | Majestic.com [](https://majestic.com/) Develop backlink strategies with our Link Intelligence data, build the strongest SEO backlink campaigns to drive organic traffic and boost your rankings today. PageOptimizer Pro [](https://pageoptimizer.pro/) Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page Workshops With Kyle Roof POP Chrome Extension Guide Tutorial Videos Frequently Asked Questions Best Practices Login Cancel Anytime Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page… Keyword Chef - Keywords for Publishers [](https://keywordchef.com/) Rank Insanely Fast for Keywords Your Competition Can’t Find “Every long-tail keyword I find ends up ranking within a day” – Dane Eyerly, Owner at TextGoods.com Keyword Chef automatically finds and filters keywords for you. Real-time SERP analysis lets you find keywords nearly guaranteed to rank. Try for free → Let’s face it, most keyword tools ... Read more Notifier - Social Listening for Social Media and More! [](https://notifier.so/) Track keywords. Market your product for free. Drive the conversation. Easy. Free Trial. No obligation ever. Simple. Fast. Trusted by Top Companies. Free Keyword Research Tool from Wordtracker [](https://www.wordtracker.com/) The best FREE alternative to the Keyword Planner. Use Wordtracker to reveal 1000s of profitable longtail keywords with up to 10,000 results per search Blog Posts The 60 Hottest Front-end Tools of 2021 | CSS-Tricks - CSS-Tricks [](https://css-tricks.com/hottest-front-end-tools-in-2021/) A complete list of the most popular front-end tools in 2021, according to the Web Tools Weekly newsletter. See which resources made the list. Resume ResumeGlow - AI Powered Resume Builder [](https://resumeglow.com/) Get hired fast with a resume that grabs attention. Designed by a team of HR experts and typographers. Customizable templates with more than a million possible Create Your Job-winning Resume - (Free) Resume maker · Resume.io [](https://resume.io/) Free online resume maker, allows you to create a perfect Resume or Cover Letter in 5 minutes. See how easy it is to write a professional resume - apply for jobs today! Rezi - The Leading AI-Powered Free Resume Builder [](https://www.rezi.ai/) Rezi’s award-winning AI-powered resume builder is trusted by hundreds of thousands of job seekers. Create your perfect resume in minutes with Rezi. Create a Perfect Resume | Free Resume Builder | Resumaker.ai [](https://resumaker.ai/) Create your professional resume with this online resume maker. Choose a designer-made template and grab any employer attention in seconds. Trusted AI Resume Maker Helps You Get Hired Fast [](https://skillroads.com/) Reach a 96.4% success rate in the job hunt race with the best resume creator. Our innovative technologies and 24/7 support help you to become a perfect candidate for any job. Do not lose your chance to become the One. Kickresume | Best Online Resume & Cover Letter Builder [](https://www.kickresume.com/) Create your best resume yet. Online resume and cover letter builder used by 1,300,000 job seekers worldwide. Professional templates approved by recruiters. ResumeMaker.Online | Create a Professional Resume for Free [](https://www.resumemaker.online/) Save time with the easiest-to-use Resume Maker Online. Create an effective resume in just minutes and land your dream job. No Sign-up required, start now! Interviews Interview Warmup - Grow with Google [](https://grow.google/certificates/interview-warmup/) A quick way to prepare for your next interview. Practice key questions, get insights about your answers, and get more comfortable interviewing. No code website builder Carrd - Simple, free, fully responsive one-page sites for pretty much anything [](https://carrd.co/) A free platform for building simple, fully responsive one-page sites for pretty much anything. Webflow: Create a custom website | No-code website builder [](https://webflow.com/) Create professional, custom websites in a completely visual canvas with no code. Learn how to create a website by trying Webflow for free! Google Sites: Sign-in [](https://sites.google.com/) FlutterFlow - Build beautiful, modern apps incredibly fast! [](https://flutterflow.io/) FlutterFlow lets you build apps incredibly fast in your browser. Build fully functional apps with Firebase integration, API support, animations, and more. Export your code or even easier deploy directly to the app stores! Free Website Builder: Build a Free Website or Online Store | Weebly [](https://www.weebly.com/) Weebly’s free website builder makes it easy to create a website, blog, or online store. Find customizable templates, domains, and easy-to-use tools for any type of business website. Glide • No Code App Builder • Nocode Application Development [](https://www.glideapps.com/) Create the apps your business needs, without coding, waiting or overpaying. Get started for free and build an app today Adalo - Build Your Own No Code App [](https://www.adalo.com/) Adalo makes creating apps as easy as putting together a slide deck. Turn your idea into a real native app — no code needed! Siter.io - The collaborative web design tool, no-code website builder [](https://siter.io/) Siter.io is a visual website builder for designers. Prototype, design, and create responsive websites in the browser. Work together with your team in one place. Elementor: #1 Free WordPress Website Builder | Elementor.com [](https://elementor.com/) Elementor is the platform web creators choose to build professional WordPress websites, grow their skills, and build their business. Start for free today! No code app builder | Bravo Studio [](https://www.bravostudio.app/) Your no-code mobile app builder for iOS and Android. Create MVP’s, validate ideas and publish on App Store and Google Play Store. Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Free Website Builder | Create a Free Website | Wix.com [](https://www.wix.com/) Create a website with Wix’s robust website builder. With 900+ strategically designed templates and advanced SEO and marketing tools, build your brand online today. Free responsive Emails & Landing Pages drag-and-drop Editor | BEE [](https://beefree.io/) Free responsive emails and landing pages editor. With BEE drag-and-drop builders embedded in many software applications you can start designing now! Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Ownit Connected Checkout [](https://www.ownit.co/) Ownit Connected Checkout Bookmark.com | No-code Website Builder to Start Your Business [](https://www.bookmark.com/) Our AI powered platform ensures your business is future proof. Try Bookmark for free. The best way to build web apps without code | Bubble [](https://bubble.io/) Bubble introduces a new way to build software. It’s a no-code tool that lets you build SaaS platforms, marketplaces and CRMs without code. Bubble hosts all web apps on its cloud platform. Responsive Web Design | Website Creation | Editor X [](https://www.editorx.com/) Experience the future of website design with responsive layouts, CSS precision and smooth drag and drop. Create a Website for Free. Tilda Website Builder [](https://tilda.cc/) Create a website, online store, landing page with Tilda intuitive website builder. Build your site from hundreds of pre-designed templates and publish it today. No code required. No-code headless commerce and websites | Unstack Inc. [](https://www.unstack.com/) Deploy high performance eCommerce storefronts and websites without the engineering overhead using Unstack's no-code CMS Best Drag-and-Drop Website Builder | Jemi [](https://jemi.so/) The modern website builder for creatives, entrepreneurs, and dreamers. Build a beautiful link in bio site, portfolio, or landing page in minutes. No-code website builder that works like Notion [](https://popsy.co/) Create a beautiful no-code website in minutes. Popsy works just like Notion but is built from the ground up for building websites. Choose a free template. Edit content just like in Notion. Customize styles without code. Free Notion icons and illustrations. Unbounce - The Landing Page Builder & Platform [](https://unbounce.com/) Grow your relevance, leads, and sales with Unbounce. Use Unbounce to easily create and optimize landing pages for your small business and boost conversions with AI insights. Low-code Front-end Design & Development Platform | TeleportHQ [](https://teleporthq.io/) Front-end development platform, with a visual builder and headless content modelling capabilities. Static website creation, and UI development tools. Other tools used in no code website MemberSpace - Turn any part of your website into members-only with just a few clicks [](https://www.memberspace.com/) Create memberships on your website for anything you want like courses, video tutorials, member directories, and more while having 100% control over look & feel. Triggre | The number one true no-code platform to run your business [](https://www.triggre.com/) The best no-code platform to create highly advanced business applications in hours, without programming. Try it now for free! No code game builder Welcome to Buildbox [](https://signup.buildbox.com/) Welcome to Buildbox Flowlab Game Creator - Make games online [](https://flowlab.io/) Flowlab is an online game creator. Make your own games to share with friends. Make 2D Games With GameMaker | Free Video Game Maker [](https://gamemaker.io/) Make a game with GameMaker, the best free video game engine. Perfect for beginners and professionals. Learn to build your own 2D games with our simple tutorials. Side Hustle Side Hustle Stack [](https://sidehustlestack.co/) Side Hustle Stack is a resource for finding platform-based work, ranging from gig work and side hustles to platforms that help you start a small business that can grow. Fiverr [](https://www.fiverr.com/) Remotasks: Work From Home, Online Bootcamp Training [](https://www.remotasks.com/en) Make money doing tasks. Start earning today! Free bootcamp training offered online. Sign up for a free Remotasks account and work from home. Earn up to $200/month. Transcribe Speech to Text | Rev [](https://www.rev.com/) Transcribe Speech to Text with Rev. Reach your audience with clear and accurate captions, transcripts, and subtitles. AI Training Data and other Data Management Services [](https://www.clickworker.com/) AI training data, SEO texts, web research, tagging, surveys and more - Use the crowdsourcing principle with the power of >4.5M Clickworkers. Automate your Busy Work - Byron People-Powered Assistants [](https://www.hibyron.com/) Byron is an on demand US based virtual assistant platform that gives individuals and teams the ability to quickly outsource their non-essential tasks. Jobs Websites - Remote Latest Crypto Jobs, Web3 Jobs and Blockchain Jobs in the leading tech companies. [](https://cryptojobslist.com/) New Cryptocurrency Jobs, Web3 Jobs and Blockchain Jobs on CryptoJobsList — the leading site to find and post jobs. Connect with companies hiring in a few clicks and begin your next experience in the industry. Updated daily. Remote Jobs: Design, Marketing, Programming, Writing & More [](https://justremote.co/) Discover Remote Jobs from around the world. Give up the commute, work remotely and do what you love, daily, from anywhere. Find your perfect remote development, design, sales or marketing job today. Remote Ok [](https://remoteok.com/) Hire Freelancers & Remote Workers For Free [](https://talent.hubstaff.com/) Find and hire the highest quality freelancers from around the world - for free. Choose from thousands of developers, digital marketers, creatives and more. We Work Remotely: Remote jobs in design, programming, marketing and more [](https://weworkremotely.com/) Find the most qualified people in the most unexpected places: Hire remote! We Work Remotely is the best place to find and list remote jobs that aren't restricted by commutes or a particular geographic area. Browse thousands of remote work jobs today. Angel [](https://angel.co/) Remote Work: Jobs, Companies & Virtual Teams - Remote.co [](https://remote.co/) Remote.co is the definitive remote work job board for online job seekers and companies hiring. Start your remote job search here! FlexJobs: Best Remote Jobs, Work from Home Jobs, Online Jobs & More [](https://www.flexjobs.com/) The #1 job search site for hand-screened flexible and remote jobs (work from home jobs) since 2007. Plus get resume, coaching and career help. Join today! Remote jobs remotefront.io [](https://remotefront.io/) All remote jobs at remotefront.io Daily Virtual Events Helping You Grow Professionally [](https://powertofly.com/) PowerToFly is where you receive expert career advice, free video training, coaching and exclusive access to jobs and events at top companies. Best Remote and Work from Home Jobs - Virtual Vocations [](https://www.virtualvocations.com/) Best work from home jobs and remote jobs in over 50 categories for professionals, digital nomads, telecommuting workers and entry level jobseekers. Education, healthcare, medical, customer support and tech job openings. Remote Jobs | Working Nomads [](https://www.workingnomads.com/jobs) Remote jobs for digital working nomads. Start your telecommuting career and work remotely from home or places around the world. Job Search, Companies Hiring Near Me, and Advice | The Muse [](https://www.themuse.com/) Find jobs at the best companies hiring near you and get free career advice. Startupers [](https://www.startupers.com/) NoDesk - Where Everyone Works Remote [](https://nodesk.co/) Browse and apply to the best new remote jobs at leading remote companies and startups for free. Join hundreds of companies that use NoDesk to build their remote teams. Browser Extensions Blackbox - Select. Copy. Paste & Search - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/blackbox-select-copy-past/mcgbeeipkmelnpldkobichboakdfaeon) Fastest Way to Copy Text from Videos & Images Octotree - GitHub code tree - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/octotree-github-code-tree/bkhaagjahfmjljalopjnoealnfndnagc) GitHub on steroids WhatFont - Chrome Web Store [](https://chrome.google.com/webstore/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm?hl=en) The easiest way to identify fonts on web pages. Window Resizer - Chrome Web Store [](https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh?hl=en) Resize the browser window to emulate various screen resolutions. Amino: CSS Editor - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/amino-css-editor/pbcpfbcibpcbfbmddogfhcijfpboeaaf) Live CSS Editor. Write custom CSS for any website and see your changes in real time. Checkbot: SEO, Web Speed & Security Tester 🚀 - Chrome Web Store [](https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/dagohlmlhagincbfilmkadjgmdnkjinl?hl=en) Test SEO/speed/security of 100s of pages in a click! Check broken links, HTML/JavaScript/CSS, URL redirects, duplicate titles... Honey: Automatic Coupons & Rewards - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj) Save money and earn rewards when you shop online. Tango: screenshots, training, & documentation - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/tango-screenshots-trainin/lggdbpblkekjjbobadliahffoaobaknh) Automatically create beautiful step-by-step guides with screenshots, in seconds. No code browser automation | axiom.ai [](https://axiom.ai/) Build browser bots quickly, without code. Automate website actions and repetitive tasks using just your browser, on any website or web app. No Code Browser extensions builder Bildr - Visual Web Development in your Browser [](https://www.bildr.com/) Visually build SaaS products, Chrome extensions, and web3 dApps Other Repurposing content for social media the easy way » Repurpose.io [](https://repurpose.io/) Repurposing content for social media made easy. Automatically repurpose YouTube, TikTok, Lives, Podcasts, and Zoom calls. Try it for FREE. Smart Serials: Your serial numbers database [](https://smartserials.com/) This is your main source of free serial numbers, unlock keys in a clean environment safe to browse by all ages. Old versions of Windows, Mac and Linux Software, Apps & Abandonware Games - Download at OldVersion.com [](http://www.oldversion.com/) Online Room Planner - Design Your Room [](http://www.planyourroom.com/) Planyourroom.com is a wonderful website to redesign each room in your house by picking out perfect furniture options to fit your unique space. BoredHumans.com - Fun AI Programs You Can Use Online [](https://boredhumans.com/) Fun AI programs you can use online. AI games, fake people, computer generated art, machine learning demos, and more. BNProject | Home [](https://buynothingproject.org/) Open Source Alternatives to Proprietary Software [](https://www.opensourcealternative.to/) Discover 400+ popular open source alternatives to proprietary SaaS. URL Shortener - Short URLs & Custom Free Link Shortener | Bitly [](https://bitly.com/) Bitly’s Connections Platform is more than a free URL shortener, with robust link management software, advanced QR Code features, and a Link-in-bio solution. TinEye Reverse Image Search [](https://tineye.com/) Good Books | Books recommended by successful people [](https://www.goodbooks.io/) Looking for the best books to read in 2022? Discover the best book recommendations from the world's most successful, influential and interesting people. Directory - Website Recommendations [](https://tokapps.com/directory/) 0 TRIED & TESTED WEBSITES LISTED Insanely Useful Websites A combination of useful websites for businesses, freelancers, DIYers, and individuals in a centralised area.All websites have been tried and tested. Filter Websites Audio Business Tools Copywriting Design Entertainment Graphics Guides Health Marketing PC Resources Savings SEO Software Travel Video Apply filter Watch Anime Online, Free Anime Streaming Online on Zoro.to Anime Website [](https://zoro.to/) Zoro is a Free anime streaming website which you can watch English Subbed and Dubbed Anime online with No Account and Daily update. WATCH NOW! Animated Drawings [](https://sketch.metademolab.com/) Bring children's drawings to life, by animating characters to move around! Alternativeto [](https://alternativeto.net/) Chatroulette [](https://chatroulette.com/) Random meetings around the world Tiktok Downloader - Download Video tiktok Without Watermark - SnapTik [](https://snaptik.app/en) TikTok Video Downloader - SnapTik.App is one of the best free Download video Tiktok No Watermark tool available online. You can download TikTok video from any device you have. Imgflip - Create and Share Awesome Images [](https://imgflip.com/) Flip through memes, gifs, and other funny images. Make your own images with our Meme Generator or Animated GIF Maker. Fake Text Message | Make Fake Text Conversation [](https://ifaketextmessage.com/) Fake Text Message is a tool to create a Fake Text Conversation and a Fake iMessage. ✂Templatemaker ︎ [](https://www.templatemaker.nl/en/) Omni Calculator [](https://www.omnicalculator.com/) Omni Calculator solves 2960 problems anywhere from finance and business to health. It’s so fast and easy you won’t want to do the math again! Watch Movies Online Free | Watch Series HD Free [](https://hdtoday.tv/) Free Access to the Biggest library of HD Movies and HD Series online - NO ADS - No Account Required - Fast Free Streaming Students Answers - The Most Trusted Place for Answering Life's Questions [](https://www.answers.com/) Answers is the place to go to get the answers you need and to ask the questions you want Wolfram|Alpha: Computational Intelligence [](https://www.wolframalpha.com/) Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music… Online Math Tools - Simple, free and easy to use math utilities [](https://onlinemathtools.com/) World's simplest collection of useful mathematics utilities. Generate number sequences, draw fractals, do quick matrix and numerical calculations and more! edX | Free Online Courses by Harvard, MIT, & more | edX [](https://www.edx.org/) Access 2000 free online courses from 140 leading institutions worldwide. Gain new skills and earn a certificate of completion. Join today. Sci-Hub [](https://sci-hub.hkvisa.net/) Sci-Hub,mg.scihub.ltd,sci-hub.tw,The project is supported by user donations. Imagine the world with free access to knowledge for everyone ‐ a world without any paywalls. DigitalDefynd - Find the Best + Free Courses Online [](https://digitaldefynd.com/) 4 Million+ Learners | 96,000+ Courses | 45,000+ Free Courses | 1200+ Free Certificates Learn Anything [](https://learn-anything.xyz/) Search Interactive Mind Maps to learn anything HubSpot Academy - Homepage [](https://academy.hubspot.com/) HubSpot Academy is the worldwide leader in inbound marketing, sales, and customer service/support training.

How I Built A Technical Analyst AI Agent in n8n With No Code
youtube
LLM Vibe Score0.337
Human Vibe Score0.42
Nate Herk | AI AutomationJan 17, 2025

How I Built A Technical Analyst AI Agent in n8n With No Code

In this video, I’ll show you how to build a Technical Analyst AI Agent in n8n without writing a single line of code! 🎉 Whether you’re a beginner or a seasoned automation enthusiast, this guide will teach you how to create an AI agent that automates technical analysis tasks, saving you time and effort. You can download all the workflows shown in this video for free by joining my free Skool community! 🎁 📌 Join my free Skool community for access to a learning community and the workflow shows in my videos! 👇 https://www.skool.com/ai-automation-society/about 🌟 Join my paid Skool community if you want to go deeper with n8n and AI Automations👇 https://www.skool.com/ai-automation-society-plus/about 🚧 Start Building with n8n! (I get kickback if you sign up here - thank you!) https://n8n.partnerlinks.io/22crlu8afq5r 💻 Book A Call If You're Interested in Implementing AI Agents Into Your Business: https://truehorizon.ai/ Business Inquiries: 📧 nate@truehorizon.ai WATCH NEXT: https://youtu.be/u2Tuu02r7QI TIMESTAMPS 00:00 Demo 01:56 How to Download the Workflow (FREE) 02:47 The Agent Workflow 04:52 Get Chart Workflow 08:37 Setting Up POST Request to Chart-Img 13:35 OpenAI Analyze Image Node 14:41 Responding to Agent 15:38 Reviewing Agent Log Gear I Used: Camera: Razer Kiyo Pro Microphone: HyperX SoloCast Background Music: https://www.youtube.com/watch?v=Q7HjxOAU5Kc&t=0s

Flow State - Chillstep & Synthwave for Deep Focus | Coding Session
youtube
LLM Vibe Score0.373
Human Vibe Score0.51
Cosmic HippoJan 13, 2025

Flow State - Chillstep & Synthwave for Deep Focus | Coding Session

You can get the artwork featured in this video as a digital download on Etsy here: https://www.etsy.com/listing/1858057766/flow-state Enter your flow state with this seamless blend of chillstep and synthwave, crafted for deep focus during coding sessions, studying, or creative projects. These immersive beats and atmospheric melodies are designed to help you stay in the zone, eliminate distractions, and power through your tasks with ease. Perfect for late-night work, programming marathons, or moments when you need clarity and concentration, this playlist will keep you motivated and inspired. Let the combination of chillstep’s relaxing tones and synthwave’s retro-futuristic vibes guide your productivity. If you enjoy this playlist, remember to like, comment, and subscribe for more music. Your support means the world! Tracklist 0:00 Deep in Focus 3:19 Ethereal Flow 6:39 Pulse of Clarity 10:00 Boundless Focus 13:51 Calm Horizons 16:07 Clarity Cascade 20:07 Digital Calm 23:49 Evening Flow 27:27 Flow Patterns 30:27 Infinite Path 33:00 Harmonic Clarity 36:58 Lucid Beats 40:27 Luminous Thoughts 42:59 Momentum 46:02 Sonic Horizon 48:55 Still Momentum 51:27 Tranquil State 54:47 Waves of Productivity 57:37 Refined Energy 01:00:21 Zenith Flow Tags: #flowstate #chillstep #synthwave #codingmusic #focusbeats #deepfocus #productivitymusic #studymusic #workbeats #synthwavevibes #relaxingmusic #codingplaylist #electronicbeats #programmingmusic #codingsession #productivitymusic #chill #nolyrics #instrumental

Best of Chillstep 2024 | Cosmic Hippo | Coding Session
youtube
LLM Vibe Score0.399
Human Vibe Score0.77
Cosmic HippoJan 2, 2025

Best of Chillstep 2024 | Cosmic Hippo | Coding Session

You can get the artwork featured in this video as a digital download on Etsy here: https://www.etsy.com/listing/1858237715/best-of-2024 Thank you for tuning in to this selection of my most popular chillstep songs of 2024, designed to elevate your focus and creativity. Dive into an immersive experience with some of the most captivating tracks of the year, blending atmospheric beats and soothing rhythms to keep you in the zone. Whether you’re deep into a coding project, studying, or simply unwinding, this playlist will set the perfect tone for your session. Stay inspired, stay productive, and let these sounds guide your flow. Don’t forget to like, share, and subscribe for more chillstep vibes and focus-driven music from Cosmic Hippo. Tracklist 0:00 Neon Dreams From playlist "3 A.M Coding Session" https://www.youtube.com/watch?v=Yd7vDterctQ 4:00 Crystal Nights From Playlist "Coding Alone" https://www.youtube.com/watch?v=8MUlk3qjByY&t=513s 8:01 Flowing Codes From playlist "3 A.M Coding Session" https://www.youtube.com/watch?v=Yd7vDterctQ 11:00 Driftwood Dreams From Playlist "Coding by the Sea" https://www.youtube.com/watch?v=7dB9WI-OI8k&t=1553s 15:00 Code Flow From playlist "3 A.M Coding Session" https://www.youtube.com/watch?v=Yd7vDterctQ 19:02 Magic in the Moonlight From Playlist "1 A.M Coding Sessions" https://www.youtube.com/watch?v=FUrRK_jMCqA&t=661s 23:06 Serene State From playlist "3 A.M Coding Session" https://www.youtube.com/watch?v=Yd7vDterctQ 27:05 Icy Reverie From Playlist "Coding Session in the Snowy Mountains" https://www.youtube.com/watch?v=qDi65Kq88DY&t=717s 30:43 Lost Among Stars From Playlist Hyperfocus https://www.youtube.com/watch?v=wq0R46U9FpQ 34:16 Quantum Blanket From playlist "3 A.M Coding Session" https://www.youtube.com/watch?v=Yd7vDterctQ 38:14 Echoes of Clarity From Playlist "Deep Chill" https://www.youtube.com/watch?v=tmgM00yas78&t=1447s 41:54 Ethereal Daydream From playlist "3 A.M Coding Session" https://www.youtube.com/watch?v=Yd7vDterctQ 44:57 Snowlit Skies From Playlist " Winter Chillstep" https://www.youtube.com/watch?v=P4ZNQJyn_FA&t=91s 48:47 Neon Nights and Daydreams From Playlist "Coding All Night" https://www.youtube.com/watch?v=DayQ-a4YdSQ&t=1486s 51:04 Northern Chill From Playlist " Winter Chillstep" https://www.youtube.com/watch?v=P4ZNQJyn_FA&t=91s 54:24 Cinders in the Snow From Playlist "Broken Signal" https://www.youtube.com/watch?v=MQ0QPjl6aTs&t=14s 58:28 Voyage to Nowhere From Playlist "Infinite Focus" https://www.youtube.com/watch?v=EvcpNZHFBlQ&t=2040s 01:01:11 Almas en la Noche From Playlist "1 A.M Coding Sessions" https://www.youtube.com/watch?v=FUrRK_jMCqA&t=661s 01:04:28 Infinite Flow From playlist "3 A.M Coding Session" https://www.youtube.com/watch?v=Yd7vDterctQ 01:06:52 Xenon Lights From Playlist "Coding All Night" https://www.youtube.com/watch?v=DayQ-a4YdSQ&t=1486s 01:09:24 Galactic Journey From Playlist "Infinite Focus" https://www.youtube.com/watch?v=EvcpNZHFBlQ&t=2040s 01:11:36 Lost in the Cosmos From Playlist "Hyperfocus" https://www.youtube.com/watch?v=wq0R46U9FpQ&t=2323s 01:14:07 Siberian Silence From Playlist "Broken Signal" https://www.youtube.com/watch?v=MQ0QPjl6aTs&t=14s 01:17:48 Stardust Dreams From Playlist "Infinite Focus" https://www.youtube.com/watch?v=EvcpNZHFBlQ&t=2040s Tags: #Chillstep2024 #CodingMusic #CosmicHippo #FocusBeats #StudyMusic #RelaxingChillstep #BestOf2024 #ProductivityMusic #WorkBeats #ProgrammingPlaylist #ChillstepVibes #CreativeFocus #ElectronicBeats #codingmusic #codingsession #codingmotivation #programming #programmingbeats #chill #chillworkmusic #lofi #aesthetic #views #workinglate Disclaimer: This music has been created with the help of AI tools.

Stop Learning Excel—Meet the AI Spreadsheet
youtube
LLM Vibe Score0.335
Human Vibe Score0.41
Kevin StratvertDec 13, 2024

Stop Learning Excel—Meet the AI Spreadsheet

Mastering Excel used to mean memorizing complex formulas like VLOOKUP, creating pivot tables, and manually sorting data. But now, AI spreadsheets are here to change the game! In this video, I showcase 7 ways AI makes spreadsheets effortless, even for beginners. With Bricks, an AI-powered and free spreadsheet tool, I’ll demonstrate how you can: Automate table joins without formulas Sort data with simple prompts Apply conditional formatting in seconds Filter data dynamically Summarize or group data effortlessly Create charts automatically Remove duplicates with ease Whether you're a spreadsheet pro or just getting started, this video will show you how AI can handle all the hard work for you. I’ve even included a sample Excel workbook so you can follow along and try these features for yourself. Are you ready to embrace the future of spreadsheets? Watch now and see why it might be time to stop learning Excel and start using AI! Host: Kevin Stratvert 📚 RESOURCES Download the sample workbook: https://1drv.ms/x/s!AmxrofZZlZ-whfhLV1BgrO5mxYgTsg?e=nEousp Sign up for Bricks: https://bit.ly/newaispreadsheet ⌚ TIMESTAMPS 00:00 - Introduction 00:28 - Get Bricks 01:02 - Effortless Table Joins with AI 02:54 - Simplified Sorting with AI 03:58 - Conditional Formatting with AI 05:03 - Filtering Made Smarter with AI 06:20 - AI Pivot Tables for Instant Insights 07:09 - AI Charts 07:59 - Removing Duplicates with AI 09:14 - Bonus: Data Types 11:51 - Export to Excel 12:12 - Wrap Up 📺 RELATED VIDEOS Playlist with all my videos on Bricks: https://www.youtube.com/playlist?list=PLlKpQrBME6xLZLJCmqdM4i5GQhXscRvTS 📩 NEWSLETTER Get the latest high-quality tutorial and tips and tricks videos emailed to your inbox each week: https://kevinstratvert.com/newsletter/ 🔽 CONNECT WITH ME Official website: http://www.kevinstratvert.com LinkedIn: https://www.linkedin.com/in/kevinstratvert/ Discord: https://bit.ly/KevinStratvertDiscord Twitter: https://twitter.com/kevstrat Facebook: https://www.facebook.com/Kevin-Stratvert-101912218227818 TikTok: https://www.tiktok.com/@kevinstratvert Instagram: https://www.instagram.com/kevinstratvert/ 🎁 TOOLS AND DISCOUNTS ✅ 🎙️ Voicemod AI Voice Changer | 5% off | https://link.xsolla.com/KZBi89AY ✅ 🌐 Squarespace Websites | https://squarespace.syuh.net/XYaqYM ✅ 🔍 Grammarly | https://grammarly.go2cloud.org/SH3nL ✅ 📹 CapCut | https://bit.ly/installcapcut ✅ 🛍️ Shopify | https://shopify.pxf.io/XY9rPa ✅ 📋 Notion | https://affiliate.notion.so/rffva4tr71ax ✅ 🖼️ Figma | https://psxid.figma.com/lqjg97licpry ✅ 🤖 ElevenLabs Text-to-Speech | https://try.elevenlabs.io/taqepq60mptr ✅ 💵 Quickbooks Online | https://bit.ly/intuitquickbooksonline ✅ 👥 Hubspot | https://hubspot.sjv.io/DKo6jb ✅ 📈 Semrush | https://bit.ly/semrush14dayfreetrial ✅ 🎥 Descript | https://get.descript.com/sf22jb63w2tx ✅ 🏓 Smartsheet | https://bit.ly/trysmartsheet 🎒 MY COURSES Go from Excel novice to data analysis ninja in just 2 hours: https://kevinstratvert.thinkific.com/ 🙏 REQUEST VIDEOS https://forms.gle/BDrTNUoxheEoMLGt5 🔔 SUBSCRIBE ON YOUTUBE https://www.youtube.com/user/kevlers?sub_confirmation=1 🙌 SUPPORT THE CHANNEL Hit the THANKS button in any video! Amazon affiliate link: https://amzn.to/3kCP2yz ⚖ DISCLOSURE Some links are affiliate links. Purchasing through these links gives me a small commission to support videos on this channel. The price to you is the same. #stratvert #bricks

ai-learning-roadmap
github
LLM Vibe Score0.442
Human Vibe Score0.035708035270567436
gopala-krNov 30, 2024

ai-learning-roadmap

Lists of all AI related learning materials and practical tools to get started with AI apps Design Thinking – An Introduction Stanford's virtual Crash Course in Design Thinking Amazon Web Services Learning Material AWS AI Session– The session provides an overview of all Amazon AI technology offerings (Lex, Polly, Rekognition, ML, and Deep Learning AMI) Self-Paced Labs AWS self-paced labs provide hands-on practice in a live AWS environment with AWS services and real-world cloud scenarios. Follow step-by-step instructions to learn a service, practice a use case, or prepare for AWS Certification. Introductory Lab Introduction to AWS Lambda Lex Introduction to Amazon Lex Amazon Lex Webinar Amazon Lex: AWS conversational interface (chat bot) Documentation Polly Introduction to Amazon Polly Amazon Polly Webinar - Amazon Polly – AWS Text To Speech (TTS) service Documentation What is Amazon Polly? Developer Resources Rekognition Introduction to Amazon Rekognition Amazon Rekognition - Deep Learning-Based Image Analysis Webinar Amazon Rekognition – AWS image recognition service Documentation – What is Amazon Rekognition? Machine Learning Machine Learning Session 1 – Empowering Developers to Build Smart Applications Session 2 - Predicting Customer Churn with Amazon Machine Learning AWS Machine Learning – End to end, managed service for creating and testing ML models and then deploying those models into production Documentation What is Amazon Machine Learning? Developer Resources AWS Deep Learning AMI – Amazon Machine Image (AMI) optimized for deep learning efforts Recommended Additional Resources Take your skills to the next level with fundamental, advanced, and expert level labs. Creating Amazon EC2 Instances with Microsoft Windows Building Your First Amazon Virtual Private Cloud (VPC) Working with AWS CodeCommit on Windows Working with Amazon DynamoDB Google Cloud - Learning Material Below is the learning material that will help you learn about Google Cloud. Network Networking 101 – 43 mins The codelab provides common cloud developer experience as follows: Set up your lab environment and learn how to work with your GCP environment. Use of common open source tools to explore your network around the world. Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server. Testing and monitoring your network and instances. Cleanup. Developing Solutions for Google Cloud Platform – 8 hours Infrastructure Build a Slack Bot with Node.js on Kubernotes – 43 mins Creating a Virtual Machine – 10 mins Getting Started with App Engine (Python) – 13 mins Data Introduction to Google Cloud Data Prep – 7 mins Create a Managed MySQL database with Cloud SQL – 19 mins Upload Objects to Cloud Storage – 11 mins AI, Big Data & Machine Learning Introduction to Google Cloud Machine Learning – 1 hour Machine Learning APIs by Example – 30 min Google Cloud Platform Big Data and Machine Learning Fundamentals Additional AI Materials Auto-awesome: Advanced Data Science on Google Cloud Platform – 45 min Run a Big Data Text Processing Pipeline in Cloud Dataflow – 21 min Image Classification Using Cloud ML Engine & Datalab – 58 min Structured Data Regression Using Cloud ML Engine & Datalab – 58 min (Optional) Deep Learning & Tensorflow Tensorflow and Deep Learning Tutorial – 2:35 hours Deep Learning Course – advanced users only Additional Reference Material Big Data & Machine Learning @ Google Cloud Next '17 - A collection of 49 videos IBM Watson Learning Material (Contributions are welcome in this space) [IBM Watson Overview]() [IBM Watson Cognitive APIs]() [IBM Watson Knowledge Studio]() Visual Studio UCI datasets Microsoft Chat Bots Learning Material Skills Prerequisite Git and Github NodeJS VS Code IDE Training Paths If you have the above Prerequisite skills, then take Advanced Training Path else take Novice Training Path. Prerequisite Tutorials Git and Github Node.js Node.js Tutorials for Beginners Node.js Tutorial in VS Code Introduction To Visual Studio Code Novice Training Path Environment Set Up Download and Install Git Set up GitHub Account_ Download and Install NodeJS Download and Install IDE - Visual Studio Code Download and Install the Bot Framework Emulator Git clone the Bot Education project - git clone Set Up Azure Free Trial Account Cognitive Services (Defining Intelligence) Read Cognitive Services ADS Education Deck – git clone Review the guide for Understanding Natural language with LUIS Complete the NLP (LUIS) Training Lab from the installed Bot Education project – \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md Bot Framework (Building Chat Bots) Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) - Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello Advanced Training Path Environment Set Up Download and Install Git Set up GitHub Account_ Download and Install NodeJS Download and Install IDE - Visual Studio Code Download and Install the Bot Framework Emulator Git clone the Bot Education project - git clone Set Up Azure Free Trial Account Git clone the Bot Builder Samples – git clone Cognitive Services (Defining Intelligence) Read Cognitive Services ADS Education Deck – git clone Review the guide for Understanding Natural language with LUIS Bot Framework (Building Chat Bots) Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) - Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Cognitive Services (Defining Intelligence) - Labs Complete the NLP (LUIS) Training Lab from the installed BOT Education project \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md Review, Deploy and run the LUIS BOT sample Bot Framework (Building Chat Bots) – Labs Setup local environment and run emulator from the installed Bot Education project \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello Review and test in the emulator the “bot-recognizers” from \bot-education\Student-Resources\BOTs\Node\bot-recognizers Lecture Videos Source Berkeley Lecture TitleLecturerSemester Lecture 1 Introduction Dan Klein Fall 2012 Lecture 2 Uninformed Search Dan Klein Fall 2012 Lecture 3 Informed Search Dan Klein Fall 2012 Lecture 4 Constraint Satisfaction Problems I Dan Klein Fall 2012 Lecture 5 Constraint Satisfaction Problems II Dan Klein Fall 2012 Lecture 6 Adversarial Search Dan Klein Fall 2012 Lecture 7 Expectimax and Utilities Dan Klein Fall 2012 Lecture 8 Markov Decision Processes I Dan Klein Fall 2012 Lecture 9 Markov Decision Processes II Dan Klein Fall 2012 Lecture 10 Reinforcement Learning I Dan Klein Fall 2012 Lecture 11 Reinforcement Learning II Dan Klein Fall 2012 Lecture 12 Probability Pieter Abbeel Spring 2014 Lecture 13 Markov Models Pieter Abbeel Spring 2014 Lecture 14 Hidden Markov Models Dan Klein Fall 2013 Lecture 15 Applications of HMMs / Speech Pieter Abbeel Spring 2014 Lecture 16 Bayes' Nets: Representation Pieter Abbeel Spring 2014 Lecture 17 Bayes' Nets: Independence Pieter Abbeel Spring 2014 Lecture 18 Bayes' Nets: Inference Pieter Abbeel Spring 2014 Lecture 19 Bayes' Nets: Sampling Pieter Abbeel Fall 2013 Lecture 20 Decision Diagrams / Value of Perfect Information Pieter Abbeel Spring 2014 Lecture 21 Machine Learning: Naive Bayes Nicholas Hay Spring 2014 Lecture 22 Machine Learning: Perceptrons Pieter Abbeel Spring 2014 Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Spring 2014 Lecture 24 Advanced Applications: NLP, Games, and Robotic Cars Pieter Abbeel Spring 2014 Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Spring 2014 Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below: Lecture TitleLecturerNotes SBS-1 DFS and BFS Pieter Abbeel Lec: Uninformed Search SBS-2 A* Search Pieter Abbeel Lec: Informed Search SBS-3 Alpha-Beta Pruning Pieter Abbeel Lec: Adversarial Search SBS-4 D-Separation Pieter Abbeel Lec: Bayes' Nets: Independence SBS-5 Elimination of One Variable Pieter Abbeel Lec: Bayes' Nets: Inference SBS-6 Variable Elimination Pieter Abbeel Lec: Bayes' Nets: Inference SBS-7 Sampling Pieter Abbeel Lec: Bayes' Nets: Sampling SBS-8 Gibbs' Sampling Michael Liang Lec: Bayes' Nets: Sampling --> SBS-8 Maximum Likelihood Pieter Abbeel Lec: Machine Learning: Naive Bayes SBS-9 Laplace Smoothing Pieter Abbeel Lec: Machine Learning: Naive Bayes SBS-10 Perceptrons Pieter Abbeel Lec: Machine Learning: Perceptrons Per-Semester Video Archive(Berkeley) The lecture videos from the most recent offerings are posted below. Spring 2014 Lecture Videos Fall 2013 Lecture Videos Spring 2013 Lecture Videos Fall 2012 Lecture Videos Spring 2014 Lecture TitleLecturerNotes Lecture 1 Introduction Pieter Abbeel Lecture 2 Uninformed Search Pieter Abbeel Lecture 3 Informed Search Pieter Abbeel Lecture 4 Constraint Satisfaction Problems I Pieter Abbeel Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative Lecture 5 Constraint Satisfaction Problems II Pieter Abbeel Lecture 6 Adversarial Search Pieter Abbeel Lecture 7 Expectimax and Utilities Pieter Abbeel Lecture 8 Markov Decision Processes I Pieter Abbeel Lecture 9 Markov Decision Processes II Pieter Abbeel Lecture 10 Reinforcement Learning I Pieter Abbeel Lecture 11 Reinforcement Learning II Pieter Abbeel Lecture 12 Probability Pieter Abbeel Lecture 13 Markov Models Pieter Abbeel Lecture 14 Hidden Markov Models Pieter Abbeel Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative Lecture 15 Applications of HMMs / Speech Pieter Abbeel Lecture 16 Bayes' Nets: Representation Pieter Abbeel Lecture 17 Bayes' Nets: Independence Pieter Abbeel Lecture 18 Bayes' Nets: Inference Pieter Abbeel Lecture 19 Bayes' Nets: Sampling Pieter Abbeel Unrecorded, see Fall 2013 Lecture 16 Lecture 20 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 21 Machine Learning: Naive Bayes Nicholas Hay Lecture 22 Machine Learning: Perceptrons Pieter Abbeel Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 24 Advanced Applications: NLP, Games, and Robotic Cars Pieter Abbeel Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Pieter Abbeel Unrecorded Fall 2013 Lecture TitleLecturerNotes Lecture 1 Introduction Dan Klein Lecture 2 Uninformed Search Dan Klein Lecture 3 Informed Search Dan Klein Lecture 4 Constraint Satisfaction Problems I Dan Klein Lecture 5 Constraint Satisfaction Problems II Dan Klein Lecture 6 Adversarial Search Dan Klein Lecture 7 Expectimax and Utilities Dan Klein Lecture 8 Markov Decision Processes I Dan Klein Lecture 9 Markov Decision Processes II Dan Klein Lecture 10 Reinforcement Learning I Dan Klein Lecture 11 Reinforcement Learning II Dan Klein Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Dan Klein Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Dan Klein Lecture 19 Applications of HMMs / Speech Dan Klein Lecture 20 Machine Learning: Naive Bayes Dan Klein Lecture 21 Machine Learning: Perceptrons Dan Klein Lecture 22 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 23 Machine Learning: Decision Trees and Neural Nets Pieter Abbeel Lecture 24 Advanced Applications: NLP and Robotic Cars Dan Klein Unrecorded, see Spring 2013 Lecture 24 Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Dan Klein,Pieter Abbeel Unrecorded Spring 2013 Lecture TitleLecturerNotes Lecture 1 Introduction Pieter Abbeel Video Down Lecture 2 Uninformed Search Pieter Abbeel Lecture 3 Informed Search Pieter Abbeel Lecture 4 Constraint Satisfaction Problems I Pieter Abbeel Lecture 5 Constraint Satisfaction Problems II Pieter Abbeel Unrecorded, see Fall 2012 Lecture 5 Lecture 6 Adversarial Search Pieter Abbeel Lecture 7 Expectimax and Utilities Pieter Abbeel Lecture 8 Markov Decision Processes I Pieter Abbeel Lecture 9 Markov Decision Processes II Pieter Abbeel Lecture 10 Reinforcement Learning I Pieter Abbeel Lecture 11 Reinforcement Learning II Pieter Abbeel Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Pieter Abbeel Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Pieter Abbeel Lecture 19 Applications of HMMs / Speech Pieter Abbeel Lecture 20 Machine Learning: Naive Bayes Pieter Abbeel Lecture 21 Machine Learning: Perceptrons I Nicholas Hay Lecture 22 Machine Learning: Perceptrons II Pieter Abbeel Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 24 Advanced Applications: NLP and Robotic Cars Pieter Abbeel Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Pieter Abbeel Unrecorded Fall 2012 Lecture TitleLecturerNotes Lecture 1 Introduction Dan Klein Lecture 2 Uninformed Search Dan Klein Lecture 3 Informed Search Dan Klein Lecture 4 Constraint Satisfaction Problems I Dan Klein Lecture 5 Constraint Satisfaction Problems II Dan Klein Lecture 6 Adversarial Search Dan Klein Lecture 7 Expectimax and Utilities Dan Klein Lecture 8 Markov Decision Processes I Dan Klein Lecture 9 Markov Decision Processes II Dan Klein Lecture 10 Reinforcement Learning I Dan Klein Lecture 11 Reinforcement Learning II Dan Klein Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Pieter Abbeel Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Pieter Abbeel Lecture 19 Applications of HMMs / Speech Dan Klein Lecture 20 Machine Learning: Naive Bayes Dan Klein Lecture 21 Machine Learning: Perceptrons Dan Klein Lecture 22 Machine Learning: Kernels and Clustering Dan Klein Lecture 23 Machine Learning: Decision Trees and Neural Nets Pieter Abbeel Lecture 24 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 25 Advanced Applications: NLP and Robotic Cars Dan Klein,Pieter Abbeel Unrecorded Lecture 26 Conclusion Dan Klein,Pieter Abbeel Unrecorded Lecture Slides Here is the complete set of lecture slides, including videos, and videos of demos run in lecture: Slides [~3 GB]. The list below contains all the lecture powerpoint slides: Lecture 1: Introduction Lecture 2: Uninformed Search Lecture 3: Informed Search Lecture 4: CSPs I Lecture 5: CSPs II Lecture 6: Adversarial Search Lecture 7: Expectimax Search and Utilities Lecture 8: MDPs I Lecture 9: MDPs II Lecture 10: Reinforcement Learning I Lecture 11: Reinforcement Learning II Lecture 12: Probability Lecture 13: Markov Models Lecture 14: Hidden Markov Models Lecture 15: Particle Filters and Applications of HMMs Lecture 16: Bayes Nets I: Representation Lecture 17: Bayes Nets II: Independence Lecture 18: Bayes Nets III: Inference Lecture 19: Bayes Nets IV: Sampling Lecture 20: Decision Diagrams and VPI Lecture 21: Naive Bayes Lecture 22: Perceptron Lecture 23: Kernels and Clustering Lecture 24: Advanced Applications (NLP, Games, Cars) Lecture 25: Advanced Applications (Computer Vision and Robotics) Lecture 26: Conclusion The source files for all live in-lecture demos are being prepared from Berkeley AI for release Selected Research Papers Latest arxiv paper submissionson AI Peter Norvig-Teach Yourself Programming in Ten Years How to do Research At the MIT AI Lab A Roadmap towards Machine Intelligence Collaborative Filtering with Recurrent Neural Networks (2016) Wide & Deep Learning for Recommender Systems (2016) Deep Collaborative Filtering via Marginalized Denoising Auto-encoder (2015) Nonparametric bayesian multitask collaborative filtering (2013) Tensorflow: Large-scale machine learning on heterogeneous distributed systems https://infoscience.epfl.ch/record/82802/files/rr02-46.pdf Theano: A CPU and GPU math expression compiler. Caffe: Convolutional architecture for fast feature embedding Chainer: A powerful, flexible and intuitive framework of neural networks Large Scale Distributed Deep Networks Large-scale video classification with convolutional neural networks Efficient Estimation of Word Representations in Vector Space Grammar as a Foreign Language Going Deeper with Convolutions ON RECTIFIED LINEAR UNITS FOR SPEECH PROCESSING Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks google turning its lucrative web search over to AI machines Stanford Syllabus CS 20SI: Tensorflow for Deep Learning Research Crowd-Based Personalized Natural Language Explanations for Recommendations Comparative Study of Deep Learning Software Frameworks RedditML- What Are You Reading AI-Powered Social Bots(16 Jun 2017) The Many Tribes of Artificial Intelligence Source:https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53 The Deep Learning Roadmap Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a Best Practices for Training Deep Learning Networks Source: https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53 ML/DL Cheatsheets Neural Network Architectures Source: http://www.asimovinstitute.org/neural-network-zoo/ Microsoft Azure Algorithm Flowchart Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet SAS Algorithm Flowchart Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/ Algorithm Summary Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ Source: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/ Algorithm Pro/Con Source: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend Python Algorithms Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/ Python Basics Source: http://datasciencefree.com/python.pdf Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA Numpy Source: https://www.dataquest.io/blog/numpy-cheat-sheet/ Source: http://datasciencefree.com/numpy.pdf Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb Pandas Source: http://datasciencefree.com/pandas.pdf Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb Matplotlib Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb Scikit Learn Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html Source: https://github.com/rcompton/mlcheatsheet/blob/master/supervised_learning.ipynb Tensorflow Source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1Introduction/basicoperations.ipynb Pytorch Source: https://github.com/bfortuner/pytorch-cheatsheet Math Probability Source: http://www.wzchen.com/s/probability_cheatsheet.pdf Linear Algebra Source: https://minireference.com/static/tutorials/linearalgebrain4pages.pdf Statistics Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf Calculus Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

ai_primer
github
LLM Vibe Score0.347
Human Vibe Score0.0036202231602591754
trokasNov 20, 2024

ai_primer

Welcome to AI primer course INTERACTIVE BOOK LINK Main aim of this course is to give you enough information so that you can start exploring field of AI on your own and maybe even start searching for DS role. We have only 5 main chapters and one bonus lecture to cover. Unsupervised learning SVD (Singular Value Decomposition) - it’s a good tool to introduce both technical tools we will be working with as well as giving us a glimpse at unsupervised learning. Supervised learning RF (Random Forests) - one of the first “silver bullets” out there. Our discussion will also cover Shannon’s work on entropy as it’s one of the key ingredients. Deep learning DNN (Deep Neural Networks) - we will build our own Perceptron from scratch, thus focusing on gradient descent and backprop on the way. By changing activation function logistic regression will be introduced and finally we will explore what a stack of layers (deep NN) can offer. CNN (Convolutional Neural Networks) - even though different techniques come and go in deep learning world I strongly believe that CNN’s will be around for quite some time to come. We will use them not only for images, but also for time series prediction. Attention - powerful idea that stands behind Transformers and one of the enablers for GPT-3, DALL-E 2 and others. Reinforcement Learning (bonus lecture) TD (Temporal Difference) - one of the core principles in reinforcement learning. We will apply it to play tic-tac-toe. Also we will cover following toolset, which hopefully will be useful for your future projects: numpy (mainly in SVD and FCN lectures) - will help us store vectors, matrices and perform operations on them. matplotlib (in all lectures) - nice and simple plotting lib. scikit-learn - ML library. pandas (mainly in RF lecture) - structured way of looking at tabular data. PyTorch (FCN and CNN lectures) - simple deep learning library based on tensorflow. git (final project) - version control tool. Toolset will be presented only in lectures, thus it’s up to you to learn them on your own if you do not plan to attend. There are a lot of resources, but I highly suggest to read intros in corresponding docs. What to expect from a single lecture? There will be no clear distinction between theory and practice, thus you should have your PC ready for small assignments that you will encounter on the way. Most important material will be listed here, but during lectures you will hear and see a lot of complementary material. Each lecture will end with a list of resources (some of them mandatory). We will start a new lecture with a recap of what was done last time and discussion regarding mentioned resources in the hope to deepen understanding in the subject and inspire you to search for sources and publications yourself. Launching notebooks You can launch notebooks while in interactive book by simply pressing the rocket logo and choosing Colab. To get faster run times click Runtime and Change runtime type, then select GPU or TPU. If necessary you can install missing packages by running !pip install [package name] directly in the notebook. NOTE: Colab will not save your changes between sessions! Download the notebook or save a copy in Google Drive before closing the browser. If you want to open notebooks locally (for a quick preview) you might find nteract useful. As an alternative you can use non free, but cheap options like Jarvislabs or Paperspace. Actually Paperspace has free GPU option, but often it is not available. (re)Sources Each chapter will have a list of resources, but for now I highly recommend to start listening/watching following resources on your spare time: Data Skeptic podcast Artificial Intelligence podcast Two Minute Papers youtube channel If I had to recommend a single book for beginner it will be this one - Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition.

Top 7 AI Certifications That Pay Incredibly Well Right Now
youtube
LLM Vibe Score0.416
Human Vibe Score0.75
SuperHumans LifeOct 13, 2024

Top 7 AI Certifications That Pay Incredibly Well Right Now

The right certifications can make a huge difference to how much money you can charge for freelance jobs. These certifications help you both land jobs, start a new side hustle or even turn it into a full time business because they give you the knowledge and credentials needed for you to do a great job and make clients happy. 🐝 Join our FREE AI Business Trailblazers Hive Community at https://www.skool.com/ai-trailblazers-hive-7394/about?ref=ff40ab4ff9184e7ca2d1971501f578df. Get cold outreach templates, in-depth tutorials, and live Q&As to help you launch and scale your AI side hustle. Like and subscribe for more videos like this if you've enjoyed the content. ALL GOOGLE CERTIFICATIONS THAT MATTER TO MAKE MONEY (START FREE) ⭐ Google Data Analytics Certificate: imp.i384100.net/xkRyXv ⭐ Google Digital Marketing Certificate: https://imp.i384100.net/JzWJoE ⭐ Google IT Support Certificate: https://imp.i384100.net/g14D5A ⭐ Google Project Management Certificate: https://imp.i384100.net/oqBzJO ⭐ Google UX Design Certificate: https://imp.i384100.net/B01xky ⭐ Google Ads for Beginners: https://imp.i384100.net/PyWxeQ ⭐ Introduction to Generative AI: https://imp.i384100.net/eKbz3z ⭐ Google Cybersecurity Certificate: https://imp.i384100.net/3eLQ2B ⭐ Google Google Advanced Data Analytics Certificate: https://imp.i384100.net/Y90eXR ⭐ Google IT Automation with Python Certificate https://imp.i384100.net/9grkmy ⭐ Google Business Intelligence Certificate: https://imp.i384100.net/eKbz3j ⭐ Google Crash Course on Python: https://imp.i384100.net/DKJoYd 👉 Freelancer Freedom Blueprint: https://superhumans.life/ffb-flow-landing-simple/ The start to finish step by step playbook to start making money online from scratch. 👉The Dream Job Challenge: https://superhumans.life/dream-career-landing-flow/ The best ways I know to get clear on what skills you can monetize and make money doing what you love. 👉 Create an Irresistible Profile - https://superhumans.life/irresistible-profile-flow-landing/ The ultimate strategies to create a perfect profile that attracts clients. 👉 Get a list with 99 validated remote job sites: https://superhumans.life/99-validated-remote-jobs-sites-flow-landing-2/ Start applying and earning money today. 👉 Get the 99 Ingenious Midjourney & ChatGPT Prompts for Digital Wall Art: https://superhumans.life/product/99-digital-art-etsy-shop-prompts/ Perfect if you want to start an Etsy shop to make money and don't have products to stand out. 🌐 MY WEBSITE: https://bit.ly/3KTY9sc with resources on how to get work from home online jobs that you can do remotely and how to get started as a freelancer. ✅ FREE Freelancing Masterclass - Step by step guide to get online work from home jobs ✅ https://www.superhumans.life/10xmasterclass ✅ Review your Upwork profile with my cheat sheet. DOWNLOAD HERE for FREE: https://www.superhumans.life/upworkchecklist/ OTHER MONEY MAKING VIDEOS: ►► This Simple Way to Make Money Copy Pasting Google News Will Blow Your Mind (Legit): https://youtu.be/mRJ2gmT69wo ►► Top Tier Google Certifications to Make $100,000+ Online (Start Free on Coursera): https://youtu.be/DOb_02gmdvM ►► Make $660/Day with Free Google Generative AI Certificates: https://youtu.be/0GjK1rvuI1Q ►► Make $100k+ working from home with FREE Google Certification trainings: https://youtu.be/K0pQvnYzjv8 ►► Make $917 / Day with Google News and AI posting Faceless Videos (Beginner friendly): https://youtu.be/mRJ2gmT69wo ►► Make Money Online as a Data Analyst with FREE Google Certifications & Training: https://youtu.be/j62iI6i47Yc ►► Make $100,000 / Year with Google Trainings (for High Paying Careers): https://youtu.be/t0GvneBaUjs ►► I Tried Making $800 in 4 Hours with Google Maps (To See If It Works): https://youtu.be/A0xA5vyDgzA ►► Make $550 a Day with These FREE Google Project Management Courses: https://youtu.be/S-lNEQ95bAU ►► How to Use ChatGPT to Find a High Paying Remote Job in Less Than 1 Hour: https://youtu.be/m3MwM6I0hBc OUTSTANDING RESOURCES TO HELP YOUR IMPROVE YOUR SKILLS AND EARN MORE: ►► Skillshare - Learn skills you can actually make money from: https://skillshare.eqcm.net/EKA34X ►► Resume.io - Largest resume builders serving 20 million customers worldwide: https://resumeio.sjv.io/baQEnB ►► Career.io - All-in-one career management platform: https://careerio.sjv.io/OrEjPA ►► Steppit - Easily build and sell immersive online courses with the help of AI: https://steppit.pxf.io/R5Eke7 ►► Placeit - Create designs, mockups, logos & more in just seconds: https://1.envato.market/WqE1V3

Music To Coding To Focus And Focus 🎧 lofi hip hop 💻 Coding Songs Playlist
youtube
LLM Vibe Score0.326
Human Vibe Score0.36
Lofi boost your moodOct 8, 2024

Music To Coding To Focus And Focus 🎧 lofi hip hop 💻 Coding Songs Playlist

Music To Coding To Focus And Focus 🎧 lofi hip hop 💻 Coding Songs Playlist Music To Coding To Focus And Focus 🎧 lofi hip hop 💻 Coding Songs Playlist️ Music To Coding To Focus And Focus 🎧 lofi hip hop 💻 Coding Songs Playlist️ 💻 Welcome to Lofi boost your mood : Boost your productivity and lock into the flow with smooth lofi hip hop beats, designed to keep your mind sharp during coding sessions. Whether you're debugging, creating new code, or working on a big project, these calming rhythms will help you stay focused and in the zone. Perfect for programmers who need to enhance their workflow without distractions. Subscribe for more lofi coding playlists to fuel your focus and creativity! ✨Help me reach 100,000 subscribers: https://www.youtube.com/channel/UCESVcUXbcDOrJ293_KWotyQ 🎵 Another Vibes for you : • Coding Session 💻 : https://youtu.be/qZjWUkohSQg • Lofi Playlist to Coding 💻: https://youtu.be/zWQjn2uVpUg • Night Coding Vibes 💻: https://youtu.be/S810accnrRc • 3 PM Coding Session 💻: https://youtu.be/akrgSiPLngY LIKE 👍COMMENT & ╔═╦╗╔╦╗╔═╦═╦╦╦╦╗╔═╗ ║╚╣║║║╚╣╚╣╔╣╔╣║╚╣═╣ ╠╗║╚╝║║╠╗║╚╣║║║║║═╣ ╚═╩══╩═╩═╩═╩╝╚╩═╩═╝!!! 🔔 🍃 FOCUS AND CODE WITH LOFI 🍃 Lofi Music | Coding Beats 🍃 For Deep Work / Study / Code 🍃 Music to Help You Stay Productive 🎉Join our Discord server to download high-quality wallpapers, connect with others, and share your thoughts and feelings 🤗 : 🌷 https://discord.gg/MuPgsHJ5MW 🎨 Artwork and Animations by Ethan James : ✨ https://www.instagram.com/ethanjames30801/ "💜 Music provided by Purrple Cat → https://playlist.purrplecat.com → https://spotify.purrplecat.com → https://apple.purrplecat.com → https://amazon.purrplecat.com → https://bandcamp.purrplecat.com → https://soundcloud.purrplecat.com → https://instagram.purrplecat.com → https://tiktok.purrplecat.com → https://discord.purrplecat.com → https://twitter.purrplecat.com → https://facebook.purrplecat.com → https://youtube.purrplecat.com" 🎸 🎼 Tracklist: 00:00:00 - 01 Purrple Cat - FieldOf Fireflies https://open.spotify.com/track/4rfE7mNI2PoUOm5l1hwpgr?autoplay=true 00:02:41 - 02 Purrple Cat - WaitWhat https://open.spotify.com/track/1w7IfXgbG5nBHhoI1bGaGM 00:05:27 - 03 Purrple Cat - BlackCherry https://open.spotify.com/track/0b8j3Ixmk6aUa4VegYH2Ui?autoplay=true 00:08:31 - 04 Purrple Cat - BoxOf Kittens https://open.spotify.com/track/5VtS7LGk0TTKBwRtpMmqWM?autoplay=true 00:11:49 - 05 Purrple Cat - AlleyCat https://open.spotify.com/track/4ud4SB7SM5mXF6vhzib8iQ?autoplay=true 00:14:45 - 06 Purrple Cat - DarkChocolate https://open.spotify.com/track/138KkineYUu5WiAUVTjid9?autoplay=true 00:17:42 - 07 Purrple Cat - IHave Too Many Feelings https://open.spotify.com/track/1Qd0XQgXg11YV9myZv5m71?autoplay=true 00:20:57 - 08 Purrple Cat - GentleBreeze https://open.spotify.com/track/4CbAvhRbdt2up0YZzTpbbG?autoplay=true 00:24:13 - 09 Purrple Cat - Openingthe Window For Some Fresh Air https://open.spotify.com/track/7BuHGYghASIz8WOfopDkfY?autoplay=true 00:25:53 - 10 Purrple Cat - Bliss https://open.spotify.com/track/7DT4LT416UcdtoPv2L0ria?autoplay=true 00:28:53 - 11 Purrple Cat - TheRed Dot https://open.spotify.com/track/0GB1qIvHAudmgp3nJ7wdza 00:31:14 - 12 Purrple Cat - PitterPatter https://open.spotify.com/track/35uCQ9RzCpNHrvoSNiP2Gt?autoplay=true 00:34:14 - 13 Purrple Cat - SundaeSunset https://open.spotify.com/track/00JByF6azH3FC82HUWLJJk?autoplay=true 00:36:32 - 14 Purrple Cat - Mary https://open.spotify.com/track/4Xnfyvi8qZPdcxjyK4Gd9g 00:38:45 - 15 Purrple Cat - Festivalof Lights https://open.spotify.com/track/4T3i2PKPiBkNvPCgSKKdeL?autoplay=true ✨The Lofi music is perfect to Calm your anxiety, Learn, read books, paint, work from home, play video games, do your homework, sleep, prepare exams, have a break, cook, or chill drive, simply chill out with your friends. ✨ Artwork and Animations by © 2024 Lofi boost your mood #lofi #lofihiphop #lofistudy #lofimusic #lofibeats

USING AI + REMIX to Create Designs for Print on Demand. Easy Prompts in Leonardo.AI
youtube
LLM Vibe Score0.386
Human Vibe Score0.47
Detour ShirtsJun 19, 2023

USING AI + REMIX to Create Designs for Print on Demand. Easy Prompts in Leonardo.AI

Remix in Leonardo AI. #Printondemand #onlinebusiness #passiveincome 💻 VIDEOS TO WATCH 🔥 16 TShirt Design Tips: https://youtu.be/jhijPXUM6dQ 🔥 RedBubble Sales Faster: https://youtu.be/L0ie56PBLGU 🔥 Leonardo AI Tool: https://youtu.be/mw5Au6DloZI My FREE Digital Downloads (including Tier 10 Help Sheet & Monthly Upload/Sales Tracker) 👉 https://www.detourshirts.com/collections/downloads 💰 PRINT ON DEMAND SITES I USE ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ MERCH BY AMAZON: https://merch.amazon.com/landing TEEPUBLIC: http://tee.pub/lic/detourshirts (referral link) REDBUBBLE: https://www.redbubble.com/ CAFEPRESS: https://www.cafepress.com/ ZAZZLE: https://www.zazzle.com/ THREADLESS: https://www.threadless.com/artist-shops/signup/default/features SPREADSHIRT: https://www.spreadshirt.com/ SOCIETY 6: https://society6.com/ DESIGN BY HUMANS: https://www.designbyhumans.com/ TEESPRING: https://teespring.com/ DISPLATE: https://displate.com/ 🛠️ PRINT ON DEMAND TOOLS I'VE MENTIONED ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Kittl: https://bit.ly/42Xac0B Vexels: https://www.vexels.com/detour-shirts/?ref=junaduncan2 Pretty Merch Pro: https://ps.carbon6.io/4qnue9hvz6pw Merch Informer (Coupon Code DetourShirts): https://merchinformer.com/933.html Placeit: https://1.envato.market/PPda6 DS Amazon QuickView: https://bit.ly/3hkxDsx Affinity Designer: https://affinity.serif.com/en-us/designer/ Repper: https://repper.app/?via=detourshirts Creative Market (for Fonts and Textures): https://creativemarket.com/users/DetourShirts/collections?u=DetourShirts MyFonts.com (for Fonts): https://www.dpbolvw.net/click-2381184-13915248 Creative Fabrica: https://www.creativefabrica.com/promo/8322/0P1016-AFGHIJKLMNO/ref/1113172 Stefan Kunz Procreate FREE Procreate Course: https://courses.stefankunz.com/p/procreate-free-trial?affcode=527238_68xbwon Stefan Kunz FREE 3D Course: https://courses.stefankunz.com/p/3d-masterclass-free-trial?affcode=527238_68xbwoni All Sunsets (for Vintage Sunsets): https://allsunsets.com/?wpam_id=18 RedBubble Tag Generator: https://automation.merchtitans.com/tools/redbubble-tag-generator 100 Scaleable T-Shirt Quotes for POD (US): https://gumroad.com/a/456717427/ffSgH 100 Scaleable T-Shirt Quotes for POD (Germany): https://gumroad.com/a/456717427/yNEGPC Canva: https://partner.canva.com/detourshirts 🧡 TEAM ORANGE STUFF ON AMAZON ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Funko Pop! 10” Thing: https://amzn.to/3IBx0eY Funko Pop! 10” Charizard: https://amzn.to/3XjYdae Orange Lined Journal: https://amzn.to/3GwQNcP Orange EnerGel Pens: https://amzn.to/3GV3xLD Orange Stance Socks: https://amzn.to/3vTCdXX 🎥 EQUIPMENT I USE TO MAKE MY VIDEOS & DESIGNS ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Logitech BRIO Ultra HD Webcam: https://amzn.to/3xSyt8r Neewer 700W Light Kit: https://amzn.to/3kxx4Au Rode VideoMic Pro+: https://amzn.to/3eyCabJ On-Stage Tripod Mic Boom Stand: https://amzn.to/3wIB97n 👪 MY SOCIAL MEDIA ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ YOUTUBE: http://www.youtube.com/c/DetourShirts INSTAGRAM: https://www.instagram.com/detourshirts/ 👨‍👨‍👧‍👧 FOLLOW DETOUR SHIRTS ON FACEBOOK https://www.facebook.com/detourshirts2005 👨‍👨‍👧‍👧 DETOUR SHIRTS FACEBOOK GROUP https://www.facebook.com/groups/606597416437763 👨‍👨‍👧‍👧 FOLLOW ME ON TWITTER https://twitter.com/detourshirts 👋 About this channel: My name is Juna. I am a graphic designer and t-shirt designer. I've been selling t-shirts online since 2005. I started selling with Merch by Amazon in 2017. I am currently a tier 100,000 seller on Merch by Amazon. I also sell products on RedBubble, TeePublic, CafePress, Zazzle, Spreadshirt, Threadless, Society 6, Design by Humans and more. My channel is all about helping you design and sell t-shirts online. Let me know how I can help. The information shared on my YouTube channel & resources made available is for educational, informational purposes.

AI-basics
github
LLM Vibe Score0.387
Human Vibe Score0.023586079460427442
ai7dnnMar 10, 2023

AI-basics

AI-basics 2023년 1학기 인공지능 개론, 2023 0402 AM update 인공지능개론 학습 공유 문서 수요일 오전 QA반 수업 중 수요일 오후 QB반 수업 중 기말고사 시험범위 ['8장 스스로학습하는 머신러닝(p219)'부터 배운데까지] 인공지능개론 교과목 체험 사이트 구글 딥드림 생성 네이버 파파고 실습 네이버 웨일 브라우저 다운로드 아실로마 인공지능 원칙 MIT 모럴머신 블록 코딩 계정생성 블록 코딩: 엘사 보스톤 다이나믹스 휴먼로봇 보스톤 다이나믹스 사족로봇 보스톤 다이나믹스와 테슬라 MNIST 데이터 손글씨 숫자 인식 EHT 유튜브 이벤트 호라이즌 망원경 애니메이션 영화 머신러닝 최적화 기법: 경사하강법 실습 딥러닝 체험: 학습할수 있는 기계 두뇌기억과정 모의실험 MNIST 데이터 제공 사이트 MNIST 시각화 imagenet COCO Datasets 캐글 인공지능 관련 학습 동영상 kmooc 인공지능과 빅데이터, 전창재 | 세종대학교 관련 동영상 인간이 되고 싶었던 로봇 이야기 Bicentennial Man (1999) (https://www.youtube.com/watch?v=ODh2cpT-DqM) Ebs 이솦 AI 강좌 (11:10) (https://www.ebssw.kr/edc/cultursens/cultursensDetailView.do?alctcrSn=56149&pageIndex=3 인공지능 이야기 인공지능 개념 기계학습 지도학습 비지도학습 신경망과 심층 학습 유튜브 강좌 (6:30) (https://www.youtube.com/watch?v=xeWIcOy8rzY) 앨런튜링 이미테이션 게임 (https://www.youtube.com/watch?v=hAfQa2oddA0&t=724s) AI 역사와 딥러닝 (https://www.youtube.com/watch?v=BUTP-YsD3nM) 다양한 인공지능 활용(https://www.youtube.com/watch?v=MFLRRjcMR7I (2:10)) 인공지능 화가 (https://www.youtube.com/watch?v=Nou2jvqM-bY (3:40)) 인공지능 체험 사이트 (https://www.youtube.com/watch?v=FWdV-TeGuyI (11:00)) 구글 딥마인드의 인공지능 벽돌 깨기와 팩맨 게임 모습 https://www.youtube.com/watch?v=V1eYniJ0Rnk https://www.youtube.com/watch?v=QilHGSYbjDQ 자율주행 강화학습 aws https://www.youtube.com/watch?v=OBSIOlZ1yM8 인공지능 관련 자료 추천 인공지능 교재 https://sites.google.com/comedu.dnue.ac.kr/aiforkids/%EC%B6%94%EC%B2%9C-%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5-%EA%B5%90%EC%9E%AC Ebs 인공지능과 수학 교재 자료 pdf https://www.ebssw.kr/info/intrcn/infoTchmtrHeaderView.do?tabType=AI 비상교육 인공지능 기초 https://dn.vivasam.com/VS/EBOOK/%EA%B3%A0%EB%93%B1%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5%EA%B8%B0%EC%B4%88PC/index.html 길벗 인공지능 기초 https://textbook.gilbut.co.kr/book/index.html 인공지능 체험 손글씨 숫자 인식 Neural Net for Handwritten Digit Recognition in JavaScript http://myselph.de/neuralNet.html Digit Recognizer https://draw-digit-predict.herokuapp.com/ CNN Digit Recognition WebApp using PyTorch, Flask https://digit-recog-torch.uc.r.appspot.com/ 머신러닝, 비지도학습, DBSCAN Visualizing DBSCAN Clustering https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/