VibeBuilders.ai Logo
VibeBuilders.ai

Ai Driven

Explore resources related to ai driven to help implement AI solutions for your business.

10 Must-Try AI Tools For Your Business (2025)
youtube
LLM Vibe Score0.368
Human Vibe Score0.48
Hostinger AcademyNov 7, 2024

10 Must-Try AI Tools For Your Business (2025)

Unlock the power of AI with these 10 must-try tools that can transform your business in 2024! 👉 https://bit.ly/4ffsvUV 💥 Use the discount code WB10 for 10% OFF! Whether you're looking to boost productivity, automate tasks, or improve decision-making, this video covers the top AI tools that will give your business a competitive edge. Watch to find out how each tool works and which one suits your business needs the best! 📌 Handy Links 10 Powerful Prompts to Elevate Your ChatGPT Experience https://www.youtube.com/watch?v=W7aPrXlVRO8 BEST AI Content Generation Tools for Content Creators (2024) https://www.youtube.com/watch?v=bUB5JEJEvI8&t=347s Join the Hostinger Referral Program: https://www.hostinger.com/referral-program Join the Hostinger Affiliate Program: https://www.hostinger.com/affiliates Join our team at Hostinger: https://www.hostinger.com/career ⭐Follow Us⭐ TikTok: https://www.tiktok.com/@hostingeracademy Instagram: https://www.instagram.com/hostingeracademy/ Twitter: https://twitter.com/Hostinger Facebook: https://www.facebook.com/Hostinger/ Reddit: https://www.reddit.com/r/Hostinger Hostinger Tutorials: https://www.hostinger.com/tutorials Subscribe to our channel: https://www.youtube.com/c/HostingerAcademy/?sub_confirmation=1 🕒 Timestamps 00:00 - Introduction 00:50 - Presentations.ai 01:51 - CoralAI 02:37 - Hostinger Website Builder 04:28 - Zapier 05:22 - Do not pay (AI lawyer) 06:08 - Adobe Firefly 07:05 - Twain 07:46 - ChatGPT 09:05 - ocean.io 09:58 - Autopod _ 🚀10 Must-Try AI Tools For Your Business (2024) Discover the top AI tools that can transform the way you work, boost productivity, and streamline your business operations! 📌 Why These Tools Matter These tools can help you: 👉 Automate time-consuming tasks 👉 Enhance your creative output 👉 Streamline communication and operations 👉 Improve business decision-making 📌 Featured AI Tools Here’s a quick look at the must-try AI tools for 2024: 👉 Gamma – Create stunning presentations with ease. 👉 ChatPDF – Ask questions and get insights from PDFs. 👉 Hostinger Website Builder – Build websites with AI-powered ease. 👉 Zapier – Automate your workflows seamlessly. 👉 Do Not Pay (AI Lawyer) – Get legal advice with AI support. 👉 Adobe Firefly – Create incredible visuals using generative AI. 👉 Twain – AI-driven insights for business decisions. 👉 ChatGPT – Revolutionize how you interact with AI chat. 👉 Ocean.io – Discover leads and grow your business. 👉 Autopod – Automate your podcast editing effortlessly. Watch the full video to dive deeper into how these AI tools can elevate your business in 2024! _ ▶ Want to see more awesome tutorials like this in the future? Consider subscribing 😁 https://www.youtube.com/c/HostingerAcademy/?sub_confirmation=1 Thank you for watching! Let us know in the comments below if you have any questions. Good luck on your online journey. 🚀 #AItoolsforbusiness #AIwebsiteBuilder #HostingerAcademy

10 Best AI Business Ideas 2024
youtube
LLM Vibe Score0.408
Human Vibe Score0.48
AI UncoveredMar 3, 2024

10 Best AI Business Ideas 2024

10 Best AI Business Ideas 2024 🔒 Keep Your Digital Life Private and Be Safe Online: https://nordvpn.com/safetyfirst Are you curious about the future of business in the exciting realm of Artificial Intelligence (AI)? Look no further! In this captivating video, we unveil the top 10 AI business ideas that are set to revolutionize the entrepreneurial landscape in 2024. From cutting-edge technology to innovative solutions, we delve into the most promising ventures that harness the power of AI to drive success and growth. Discover how AI is reshaping traditional business models and opening up endless possibilities for aspiring entrepreneurs. Whether you're a seasoned professional or a budding visionary, these handpicked AI business ideas offer a gateway to prosperity in the ever-evolving digital age. Join us as we explore groundbreaking concepts that blend creativity with computational intelligence, paving the way for unprecedented innovation and profitability. From automated customer service to personalized marketing strategies, AI is poised to transform every aspect of modern business operations. Dive deep into the realm of AI-powered startups and witness firsthand how these groundbreaking ideas are shaping the future of commerce. With our expert insights and comprehensive analysis, you'll gain invaluable knowledge to embark on your own AI-driven entrepreneurial journey. Don't miss out on the opportunity to stay ahead of the curve and capitalize on the transformative potential of AI in business. Join us as we unveil the 10 best AI business ideas for 2024 and embark on a journey towards success in the dynamic world of artificial intelligence. Subscribe now and stay tuned for more cutting-edge content that empowers you to thrive in the digital economy of tomorrow! #ai #artificialintelligence #aibusiness Subscribe for more! Welcome to AI Uncovered, your ultimate destination for exploring the fascinating world of artificial intelligence! Our channel delves deep into the latest AI trends and technology, providing insights into cutting-edge AI tools, AI news, and breakthroughs in artificial general intelligence (AGI). We simplify complex concepts, making AI explained in a way that is accessible to everyone. At AI Uncovered, we're passionate about uncovering the most captivating stories in AI, including the marvels of ChatGPT and advancements by organizations like OpenAI. Our content spans a wide range of topics, from science news and AI innovations to in-depth discussions on the ethical implications of artificial intelligence. Our mission is to enlighten, inspire, and inform our audience about the rapidly evolving technology landscape. Whether you're a tech enthusiast, a professional seeking to stay ahead of AI trends, or someone curious about the future of artificial intelligence, AI Uncovered is the perfect place to expand your knowledge. Join us as we uncover the secrets behind AI tools and their potential to revolutionize our world. Subscribe to AI Uncovered and stay tuned for enlightening content that bridges the gap between AI novices and experts, covering AI news, AGI, ChatGPT, OpenAI, artificial intelligence, and more. Together, let's explore the limitless possibilities of technology and AI. Disclaimer: Some links included in this description might be affiliate links. If you purchase a product or service through the links that we provide, we may receive a small commission. There is no additional charge for you. Thank you for supporting AI Uncovered so we can continue to provide you with free, high-quality content. _ 🌟 Contact: ai.uncovered.ai@gmail.com

How To Start A Business Using Only AI
youtube
LLM Vibe Score0.362
Human Vibe Score0.56
Learn With ShopifySep 2, 2024

How To Start A Business Using Only AI

How to Use AI to Start a Business in 2024. ► Shopify Free Trial https://utm.io/uhpKC ► YouTube takes on TikTok Shop with expanded Shopify partnership https://youtube.com/shorts/XdzbDOak9BI?si=eNUZL8AgZK6f0XJg Unlock Your Entrepreneurial Potential with AI! Ever dreamed of starting a business but felt overwhelmed by the complexity? AI is here to revolutionize the way we work! In this video, we'll guide you through the exciting process of launching your own venture using artificial intelligence. Discover how to: Identify profitable niche ideas using AI-powered market research tools Create compelling content with AI-driven writing assistants Design stunning visuals effortlessly using AI design platforms Build and manage your online store without technical expertise Expand your reach by easily adding your products to social media networks like Instagram, YouTube, and TikTok Whether you're a seasoned entrepreneur or just starting out, this video will equip you with the knowledge and tools to turn your business dreams into reality. Get ready to harness the power of AI and embark on a successful entrepreneurial journey! –––––––––––––––––––––––––––––––––––––––––––– Watch More Learn with Shopify Video Tutorials: ► How to Connect Your Shopify Store To Your YouTube Channel https://youtu.be/ymD5M8w-drk?si=tLt52iNd0VKrL5eW ► YouTube Shopping Tutorial: The Best Way To Sell Your Shopify Products on YouTube LIVE https://youtu.be/AUtEP7LTNeg?si=imvS2pUTsLvhcZmT ► How To Create Beautiful Presentations With AI https://youtu.be/BZ_ObFC7NVA ► What is Shopify Magic and Shopify Sidekick? (And How To Use It) https://youtu.be/Y7Rlr5gxPp4 ► Prompt Engineering Tutorial Part 1: An Introduction to AI Prompting https://youtu.be/zBaa8Ct2C-k?si=ZshSj72IdgpGrAN5 ► Prompt Engineering Tutorial Part 2: Text-to-Text https://youtu.be/ZlQHPt86h6s ► Prompt Engineering Tutorial Part 3: Text-to-Image https://youtu.be/6RAStep_3OI ► Prompt Engineering Tutorial Part 4: Text to Video https://youtu.be/QgjL0fNTwHc ► How to Sell on Instagram https://youtu.be/cqmUWuA2w2U –––––––––––––––––––––––––––––––––––––––––––– 🔔 Subscribe to @learnwithshopify for more productivity tutorials and tips for entrepreneurs of all stages. Here's what we'll cover in this video: 0:00 Intro 0:48 Idea generation using AI 2:20 How to market research using AI 3:14 Naming your business using AI 4:44 AI Logo Generator 6:10 AI Product Creation 9:48 How to upload products to your website 12:15 How to list your items on Instagram 13:06 How to list your items on YouTube 13:40 How to list your items on TikTok 14:04 Marketing using AI 15:30 Legalization –––––––––––––––––––––––––––––––––––––––––––– 📈 Related Videos: 20 Mobile AI Apps https://youtu.be/OSAFKU8FL44 TikTok Marketing Tutorial (Organic Strategy) https://youtu.be/SeWNUUEtZOY TikTok Marketing Tutorial (Paid Ads) https://youtu.be/RIy9ZN3B5CA Reddit for Business Tutorial https://youtu.be/FcYtZg1uGMA LinkedIn Ads Tutorial https://youtu.be/WMKldiJ8mEw 🔗 Useful Resources: ► 64 Best Small Business Ideas To Start in 2024 https://utm.io/uhpKB ► Free Shopify Business Course https://utm.io/uhpKE ► Join our Shopify community https://utm.io/uhpKC –––––––––––––––––––––––––––––––––––––––––––– -- TOOLS & RESOURCES – ► Sign Up To Shopify Today https://utm.io/uhpKC ► Shopify Masters Podcast @shopifymasters ► Shopify Podcast https://utm.io/uhlvZ ► 10 Amazing AI Tools For Your Business In 2024 https://youtu.be/TKAO1ykK994 ► 10 ChatGPT Tips & Tricks https://youtu.be/88tVeKj0-7k ► How to make money with Instagram Reels https://youtu.be/U831lmASZRY ► The OFFICIAL Shopify Tutorial - The COMPLETE GUIDE https://youtu.be/ferhOYx1NMo –––––––––––––––––––––––––––––––––––––––––––– #Shopify #aitools #businesscoaching #businessideas

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Online Reputation AI - Startup got stuck
reddit
LLM Vibe Score0
Human Vibe Score0.6
kyr0x0This week

Online Reputation AI - Startup got stuck

Hi, I‘m one of 3 co-founders of a startup that built an AI-driven SaaS and App product this year. We‘re coming from an SaaS background, two of us senior developers (in the 3% of highest earning freelancers in Germany) and expert in our fields. The third is a seasoned sales strategist. We have a minor 4th co-founder (legal advisor). The company is self-funded, no investors. Our tech is owned by us, built by us and the product was already operational after a few months. We basically solve three data science/NLP issues in a generalized way: understand customer feedback to improve your business. Analyzes online review with context and explains it with a drill down, aggregation, charts (AI insights, timeframe reports); evidence driven, agentic LLM and ETL processes drive this. respond to customer feedback, half-automated, human in the loop, but AI supported. In the tone of your brand, any language. And context-aware, with your customer support signature etc. competitor analysis. Because we do 1 for you, we can do 1. for all of your competitors and compare the results, yielding insights like „oh, this happens to everyone in November to December, so I should focus on something else“ — etc. Now, after a huge sales effort we got only one paying customer. This customer is petty happy with the product. They tell us that they use our product daily, it‘s better than all the other solutions out there (better than TrustYou, etc.) However, after cold calling/emailing hundreds of leads, we almost always hear that „what we have is good enough“. Or that they don‘t have budget. I‘m the introverted tech part of the startup. I‘m good with algorithms. Give me any tech issue and I will solve it for you quickly and efficiently. I make stuff work. But with my startups I never had commercial luck. People always tell me about my stellar potential, because I can build things almost nobody else can. I come from a poor families background, worked my way up the very hard way. I just love tech and programming. I wrote a book for O’Reilly once. I‘m not doing bad economically, but I‘m probably not the best sales person. After founding a few startups with amazing tech, people using the products and loving them, but no commercial success, I truly question myself and if I‘m just unlucky with the fact that I‘m located in Europe, targeting the wrong industries, or are just unlucky somehow? I won‘t blame my co-founders here. They definitely did the best they could. I‘m just a bit resignated. I recently thought about valuing my own lifetime more and only building software for myself anymore. Basically not focusing on what problems other people face and trying to solve them, but solely focusing on what I enjoy doing most — e.g. coding algorithms for a music visualizer. Because in the end, my time is my most valuable resource. If I waste any second on something that isn‘t contributing to „my life“ and how I define success, then it would be a rather stupid deed? I don‘t want to derail too much here. I‘m confused and seeking for advice. Burn me if you like, but please be aware that you are talking to a broadly educated nerd.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies) (I will not promote)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. (I will not promote) About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Idea Validation Post: Seeking Feedback on My AI-Driven Quick Launch Application! 🚀
reddit
LLM Vibe Score0
Human Vibe Score1
Awkward_Ad_9605This week

Idea Validation Post: Seeking Feedback on My AI-Driven Quick Launch Application! 🚀

Hey Members! I’m excited to share an idea for a new application I’m planning to build: Quick Launch . This AI-driven platform is designed to assist solopreneurs or anyone with an idea in launching their Minimum Viable Products (MVPs) by taking on the roles of the entire team needed for the process. Goal: Assistance in quickly moving from Idea to MVP Before I dive into the details, I’d love to hear your thoughts and feedback. Key Features: Product Creation: From Idea to Product Detailing AI-Generated Q&A: Real-time questions generation one-at-a-time to define the product requirements based on their knowledge levels to convert an Idea into a Product. Market Research Reports: In-depth analysis that identifies product-market fit, competitive landscape, and potential marketing strategies. Sentiment Analysis: Evaluation of user feedback and reactions across multiple subreddits to gauge public opinion on ideas. Product Development: Product Detailing to Actual Product User Story Generation: Identification and creation of comprehensive user stories, tasks, and sub-tasks to facilitate development. AI Project Management: AI agents assume roles of project managers and UI/UX designers to streamline product detailing and development. Integration Capabilities: Seamless integration with popular project management tools like Jira, Asana, and Trello for better workflow management. Target Audience: Solopreneurs: Individuals looking to bring their business ideas to life without extensive resources. Indie Hackers: Entrepreneurs focused on building small projects or startups with minimal overhead. Idea Validators: Anyone with a concept seeking initial validation and market feedback before committing significant resources. If you’re interested in learning more, check out our teaser website: Quick Launch Discussion Question: What features would you find most valuable in an application like this? Are there specific pain points you face when launching an MVP? Your insights would be incredibly helpful as I refine this idea! Looking forward to your thoughts! 🙌

The Future of AI in eCommerce Marketing: What to Expect 🚀
reddit
LLM Vibe Score0
Human Vibe Score0
McFlyAdsThis week

The Future of AI in eCommerce Marketing: What to Expect 🚀

Hey Reddit community! As we dive deeper into 2025, the integration of AI in eCommerce marketing is becoming more sophisticated and impactful. Here’s a look at where AI is headed and how it's revolutionizing the industry: Personalized Shopping Experiences: AI is enhancing personalization by analyzing consumer behavior and preferences, allowing retailers to offer tailored recommendations and promotions. This not only boosts customer satisfaction but also increases conversion rates. Chatbots and Virtual Assistants: AI-powered chatbots are becoming more intuitive and capable of handling complex queries, providing 24/7 customer support, and improving overall user experience. They’re a game-changer for eCommerce businesses looking to enhance customer engagement. Predictive Analytics: With AI, businesses can leverage predictive analytics to forecast trends, optimize inventory, and refine marketing strategies. This helps in making data-driven decisions that align with consumer demands and market dynamics. Automated Content Creation: AI tools are being used to generate product descriptions, social media posts, and even ad copy. This automation saves time and ensures consistency across marketing channels. Visual and Voice Search: AI is powering visual and voice search capabilities, making it easier for consumers to find products using images or voice commands. This technology is set to transform how users interact with eCommerce platforms. Fraud Detection: AI algorithms are improving fraud detection by analyzing transaction patterns and identifying anomalies. This is crucial for maintaining trust and security in online shopping. As AI continues to evolve, it will undoubtedly reshape the eCommerce landscape, offering new opportunities for innovation and growth. What are your thoughts on the future of AI in eCommerce marketing? Let's discuss!

Ai C-Level team
reddit
LLM Vibe Score0
Human Vibe Score1
thestoicdesignerThis week

Ai C-Level team

I've been exploring ways to run a company where I'm essentially the only internal team member, relying entirely on a suite of specialized AIs for executive roles, supported occasionally by external consultants for niche expertise. My goal is to stay lean, agile, and highly creative, especially in a fashion/tech brand context. Essentially, I'm building an AI-driven C-Level team, or what I like to call a "C-Level AI Wallet." Here's what I'm thinking for the key executive roles I'd need to cover with AI: CEO AI – Responsible for overall strategy, decision-making, trend analysis, and guiding the company's vision. I'd probably lean on something advanced like Gemini, GPT-4, or similar models, fine-tuned with market-specific data. COO AI (Operations): I'd need tools that streamline and automate logistics, supply chain management, and day-to-day operations (think something along the lines of Zapier AI integrations or Make). CMO AI (Marketing & Content): For branding, content creation, digital marketing, and consumer insights, I'd use Jasper or Copy.ai, combined with predictive analytics tools like Google Vertex AI to understand trends better. Additionally, for generating engaging visual and multimedia content, tools like Midjourney, DALL·E, Adobe Firefly, and Runway ML would be perfect. CFO AI (Financial Management): For financial management, cash flow control, and investment decisions, I'd probably leverage AI tools like Bloomberg GPT, combined with AI-powered forecasting platforms. CHRO AI (Human Resources & Culture): Although the internal team is minimal (just myself!), I'd still rely on AI for tasks like project management, freelancer hiring, and performance tracking—tools like HireVue AI, Motion, or even Notion's AI could be beneficial here. CSO AI (Sustainability & Compliance): Since sustainability and ethical sourcing are critical, I'd integrate ESG-focused AI tools to ensure transparency and responsible sourcing. My idea is that, with the right AI tools seamlessly integrated, I can manage the strategic vision and creative direction personally, leveraging external consultants only when necessary. This setup would ideally allow me to operate as a one-person internal team supported by a robust "wallet" of AI executives. Has anyone tried a similar approach? What AI tools would you recommend for a truly lean, innovative brand structure? I'm very curious about your experiences or suggestions—let me know your thoughts!

How To Build An AI-Driven Business That Doesn't Suck In 2024 (My Take).
reddit
LLM Vibe Score0
Human Vibe Score1
dojagroupThis week

How To Build An AI-Driven Business That Doesn't Suck In 2024 (My Take).

Hi everyone, this is for those of you wanting a full run through of the formula that scaled our business to around the $100,000 /m mark in less than 18 months. Why am I doing this? Since we started hitting the larger numbers I've been given considerable time back in my day as we elevate ourselves out of scrappy start-up land and have hired a full team. I've always wanted to take this time and pour it into educating others that are following the same path. There's nothing I've loved more in life (at the ripe age of 28) than connecting with other entrepreneurs that are obsessed with the game. Firstly, I want to tell you that this is absolutely possible. The main traits you need are: ➡️ Resilience to work hard around your normal life. ➡️ The willingness to put yourself outside of your comfort zone. ➡️ The awareness to place yourself in a fast-growing market with a great offering. Secondly, I want to tell you that you are probably structuring your day and your approach wrong. Here's why: ➡️ Your operations are the back-bone of your business. When correctly organised you should be in a pattern of understanding a new task, systemising it then automating it. If you do this you will build your business like you would build a lego house. ➡️ You should be setting goals that filter down into daily actions, that are being recorded and tracked so you can improve weekly. ➡️ You should start to get a good grip of cloud software like Hubspot, Trello, Notion & Slack for the various levers you need to pull inside your business. I'm seriously passionate about this and I've recorded my first Youtube video that breaks down our entire front-end and back-end funnel for our business - if you're looking for some no-nonsense education I'd equally love some feedback. You can check out the video here. https://www.youtube.com/watch?v=X6Mq9Xu9EK8 Apart from that, please ask me anything. I'm the Managing Director of doja, a team of 9 based in the UK with a team of 5 offshore. I'd love to connect with other entrepreneurs either ahead of me or following a similar path. I can answer questions on Strategy, R&D, Product, Marketing, Lead Generation, Business Development, Commerical, Onboard & Delivery funnels, as well as extensive knowledge about what's breaking through with the latest technology for small businesses.

Idea Validation Post: Seeking Feedback on My AI-Driven Quick Launch Application! 🚀
reddit
LLM Vibe Score0
Human Vibe Score1
Awkward_Ad_9605This week

Idea Validation Post: Seeking Feedback on My AI-Driven Quick Launch Application! 🚀

Hey Members! I’m excited to share an idea for a new application I’m planning to build: Quick Launch . This AI-driven platform is designed to assist solopreneurs or anyone with an idea in launching their Minimum Viable Products (MVPs) by taking on the roles of the entire team needed for the process. Goal: Assistance in quickly moving from Idea to MVP Before I dive into the details, I’d love to hear your thoughts and feedback. Key Features: Product Creation: From Idea to Product Detailing AI-Generated Q&A: Real-time questions generation one-at-a-time to define the product requirements based on their knowledge levels to convert an Idea into a Product. Market Research Reports: In-depth analysis that identifies product-market fit, competitive landscape, and potential marketing strategies. Sentiment Analysis: Evaluation of user feedback and reactions across multiple subreddits to gauge public opinion on ideas. Product Development: Product Detailing to Actual Product User Story Generation: Identification and creation of comprehensive user stories, tasks, and sub-tasks to facilitate development. AI Project Management: AI agents assume roles of project managers and UI/UX designers to streamline product detailing and development. Integration Capabilities: Seamless integration with popular project management tools like Jira, Asana, and Trello for better workflow management. Target Audience: Solopreneurs: Individuals looking to bring their business ideas to life without extensive resources. Indie Hackers: Entrepreneurs focused on building small projects or startups with minimal overhead. Idea Validators: Anyone with a concept seeking initial validation and market feedback before committing significant resources. If you’re interested in learning more, check out our teaser website: Quick Launch Discussion Question: What features would you find most valuable in an application like this? Are there specific pain points you face when launching an MVP? Your insights would be incredibly helpful as I refine this idea! Looking forward to your thoughts! 🙌

Ai C-Level team
reddit
LLM Vibe Score0
Human Vibe Score1
thestoicdesignerThis week

Ai C-Level team

I've been exploring ways to run a company where I'm essentially the only internal team member, relying entirely on a suite of specialized AIs for executive roles, supported occasionally by external consultants for niche expertise. My goal is to stay lean, agile, and highly creative, especially in a fashion/tech brand context. Essentially, I'm building an AI-driven C-Level team, or what I like to call a "C-Level AI Wallet." Here's what I'm thinking for the key executive roles I'd need to cover with AI: CEO AI – Responsible for overall strategy, decision-making, trend analysis, and guiding the company's vision. I'd probably lean on something advanced like Gemini, GPT-4, or similar models, fine-tuned with market-specific data. COO AI (Operations): I'd need tools that streamline and automate logistics, supply chain management, and day-to-day operations (think something along the lines of Zapier AI integrations or Make). CMO AI (Marketing & Content): For branding, content creation, digital marketing, and consumer insights, I'd use Jasper or Copy.ai, combined with predictive analytics tools like Google Vertex AI to understand trends better. Additionally, for generating engaging visual and multimedia content, tools like Midjourney, DALL·E, Adobe Firefly, and Runway ML would be perfect. CFO AI (Financial Management): For financial management, cash flow control, and investment decisions, I'd probably leverage AI tools like Bloomberg GPT, combined with AI-powered forecasting platforms. CHRO AI (Human Resources & Culture): Although the internal team is minimal (just myself!), I'd still rely on AI for tasks like project management, freelancer hiring, and performance tracking—tools like HireVue AI, Motion, or even Notion's AI could be beneficial here. CSO AI (Sustainability & Compliance): Since sustainability and ethical sourcing are critical, I'd integrate ESG-focused AI tools to ensure transparency and responsible sourcing. My idea is that, with the right AI tools seamlessly integrated, I can manage the strategic vision and creative direction personally, leveraging external consultants only when necessary. This setup would ideally allow me to operate as a one-person internal team supported by a robust "wallet" of AI executives. Has anyone tried a similar approach? What AI tools would you recommend for a truly lean, innovative brand structure? I'm very curious about your experiences or suggestions—let me know your thoughts!

Month of August in AI
reddit
LLM Vibe Score0
Human Vibe Score1
Difficult-Race-1188This week

Month of August in AI

🔍 Inside this Issue: 🤖 Latest Breakthroughs: This month it’s all about Agents, LangChain RAG, and LLMs evaluation challenges.* 🌐 AI Monthly News: Discover how these stories are revolutionizing industries and impacting everyday life: EU AI Act, California’s Controversial SB1047 AI regulation act, Drama at OpenAI, and possible funding at OpenAI by Nvidia and Apple.* 📚 Editor’s Special: This covers the interesting talks, lectures, and articles we came across recently. Follow me on Twitter and LinkedIn at RealAIGuys and AIGuysEditor to get insight on new AI developments. Please don't forget to subscribe to our Newsletter: https://medium.com/aiguys/newsletter Latest Breakthroughs Are Agents just simple rules? Are Agents just enhanced reasoning? The answer is yes and no. Yes, in the sense that agents have simple rules and can sometimes enhance reasoning capabilities compared to a single prompt. But No in the sense that agents can have a much more diverse functionality like using specific tools, summarizing, or even following a particular style. In this blog, we look into how to set up these agents in a hierarchal manner just like running a small team of Authors, researchers, and supervisors. How To Build Hierarchical Multi-Agent Systems? TextGrad. It is a powerful framework performing automatic “differentiation” via text. It backpropagates textual feedback provided by LLMs to improve individual components of a compound AI system. In this framework, LLMs provide rich, general, natural language suggestions to optimize variables in computation graphs, ranging from code snippets to molecular structures. TextGrad showed effectiveness and generality across various applications, from question-answering and molecule optimization to radiotherapy treatment planning. TextGrad: Improving Prompting Using AutoGrad The addition of RAG to LLMs was an excellent idea. It helped the LLMs to become more specific and individualized. Adding new components to any system leads to more interactions and its own sets of problems. Adding RAG to LLMs leads to several problems such as how to retrieve the best content, what type of prompt to write, and many more. In this blog, we are going to combine the LangChain RAG with DSPy. We deep dive into how to evaluate the RAG pipeline quantitatively using RAGAs and how to create a system where instead of manually tweaking prompts, we let the system figure out the best prompt. How To Build LangChain RAG With DSPy? As the field of natural language processing (NLP) advances, the evaluation of large language models (LLMs) like GPT-4 becomes increasingly important and complex. Traditional metrics such as accuracy are often inadequate for assessing these models’ performance because they fail to capture the nuances of human language. In this article, we will explore why evaluating LLMs is challenging and discuss effective methods like BLEU and ROUGE for a more comprehensive evaluation. The Challenges of Evaluating Large Language Models AI Monthly News AI Act enters into force On 1 August 2024, the European Artificial Intelligence Act (AI Act) enters into force. The Act aims to foster responsible artificial intelligence development and deployment in the EU. The AI Act introduces a uniform framework across all EU countries, based on a forward-looking definition of AI and a risk-based approach: Minimal risk: most AI systems such as spam filters and AI-enabled video games face no obligation under the AI Act, but companies can voluntarily adopt additional codes of conduct. Specific transparency risk: systems like chatbots must clearly inform users that they are interacting with a machine, while certain AI-generated content must be labelled as such. High risk: high-risk AI systems such as AI-based medical software or AI systems used for recruitment must comply with strict requirements, including risk-mitigation systems, high-quality of data sets, clear user information, human oversight, etc. Unacceptable risk: for example, AI systems that allow “social scoring” by governments or companies are considered a clear threat to people’s fundamental rights and are therefore banned. EU announcement: Click here https://preview.redd.it/nwyzfzgm4cmd1.png?width=828&format=png&auto=webp&s=c873db37ca0dadd5b510bea70ac9f633b96aaea4 California AI bill SB-1047 sparks fierce debate, Senator likens it to ‘Jets vs. Sharks’ feud Key Aspects of SB-1047: Regulation Scope: Targets “frontier” AI models, defined by their immense computational training requirements (over 10²⁶ operations) or significant financial investment (>$100 million). Compliance Requirements: Developers must implement safety protocols, including the ability to immediately shut down, cybersecurity measures, and risk assessments, before model deployment. Whistleblower Protections: Encourages reporting of non-compliance or risks by offering protection against retaliation. Safety Incident Reporting: Mandates reporting AI safety incidents within 72 hours to a newly established Frontier Model Division. Certification: Developers need to certify compliance, potentially under penalty of perjury in earlier drafts, though amendments might have altered this. Pros: Safety First: Prioritizes the prevention of catastrophic harms by enforcing rigorous safety standards, potentially safeguarding against AI misuse or malfunction. Incentivizes Responsible Development: By setting high standards for AI model training, the company encourages developers to think critically about the implications of their creations. Public Trust: Enhances public confidence in AI by ensuring transparency and accountability in the development process. Cons: Innovation Stagnation: Critics argue it might stifle innovation, especially in open-source AI, due to the high costs and regulatory burdens of compliance. Ambiguity: Some definitions and requirements might be too specific or broad, leading to legal challenges or unintended consequences. Global Competitiveness: There’s concern that such regulations could push AI development outside California or the U.S., benefiting other nations without similar restrictions. Implementation Challenges: The practicalities of enforcing such regulations, especially the “positive safety determination,” could be complex and contentious. News Article: Click here Open Letter: Click here https://preview.redd.it/ib96d7nk4cmd1.png?width=828&format=png&auto=webp&s=0ed5913b5dae72e203c8592393e469d9130ed689 MORE OpenAI drama OpenAI co-founder John Schulman has left the company to join rival AI startup Anthropic, while OpenAI president and co-founder Greg Brockman is taking an extended leave until the end of the year. Schulman, who played a key role in creating the AI-powered chatbot platform ChatGPT and led OpenAI’s alignment science efforts, stated his move was driven by a desire to focus more on AI alignment and hands-on technical work. Peter Deng, a product manager who joined OpenAI last year, has also left the company. With these departures, only three of OpenAI’s original 11 founders remain: CEO Sam Altman, Brockman, and Wojciech Zaremba, lead of language and code generation. News Article: Click here https://preview.redd.it/0vdjc18j4cmd1.png?width=828&format=png&auto=webp&s=e9de604c26aed3e47b50df3bdf114ef61f967080 Apple and Nvidia may invest in OpenAI Apple, which is planning to integrate ChatGPT into iOS, is in talks to invest. Soon after, Bloomberg also reported that Apple is in talks but added that Nvidia “has discussed” joining the funding round as well. The round is reportedly being led by Thrive Capital and would value OpenAI at more than $100 billion. News Article: Click here https://preview.redd.it/ude6jguh4cmd1.png?width=828&format=png&auto=webp&s=3603cbca0dbb1be3e6d0efcf06c3a698428bbdd6 Editor’s Special The AI Bubble: Will It Burst, and What Comes After?: Click here Eric Schmidt Full Controversial Interview on AI Revolution (Former Google CEO): Click here AI isn’t gonna keep improving Click here General Intelligence: Define it, measure it, build it: Click here

Join the AI4Earth challenge with the European Space Agency to highlight our footprint on Earth using Earth Observation data and Machine Learning
reddit
LLM Vibe Score0
Human Vibe Score1
campachThis week

Join the AI4Earth challenge with the European Space Agency to highlight our footprint on Earth using Earth Observation data and Machine Learning

​ https://preview.redd.it/ww109cba14f71.png?width=2401&format=png&auto=webp&s=8bd3d43e8b63848af85c73478be61e43d9e10189 The primary goal is to get an insight into the human impact on Earth, to drive and guide conservation efforts of this planet we call home. Our approach will be twofold:  Firstly we will work on AI algorithms that can serve as an early detection system of human impact sites. Secondly we will use these detection systems to find satellite images that show the most impactful human-caused changes, which will be used in the creation of a video to launch an awareness campaign. You will be working with ESA to detect things like: Wildfires and Deforestation Marine Litter and Melting Glaciers Air quality detection & Novel animal migration patterns  and much more!  European Space Agency To reach these goals we’ve partnered up with ESA, who are able to use our algorithms to monitor new satellite data and guide conservation efforts. They will provide us with multi-spectral data of their Sentinel-2 satellite pair and with invaluable knowledge and research on the domain of Earth Observation data in participant only masterclasses.  Format The challenge will run throughout September and October, where you will collaborate with a diverse team of over 30 international data specialists and domain experts in subteams, all tackling this problem from different angles. Subtasks like the detection of deforestation, wildfires, marine litter or any other human caused impact. All contributors in the challenge are expected to spend 12 hours or more per week during the entirity of the two month challenge. To learn more subscribe to the info session on the 3rd of August 19:00 CEST HERE! Some important dates: 3rd of August – Info session 1st of September – Challenge Kick-off 29th of September – Midterm presentations 29th of October – Final presentations PARTNERS SUN - https://spacehubs.network The project is spearheaded by SUN whose goal is to increase the commercialization of space enabled solutions and growth of European start-ups and scale-ups in the space downstream and upstream sectors. ESA - https://esa.int ESA will be the main stakeholder and domain knowledge provider in the challenge. Their efforts to aid human’s space endeavours as well as protect the planet we live on will serve us for many years to come.  MLReef - https://mlreef.com MLReef provides an open source platform for collaborative Machine Learning. They provide the computational infrastructure to support the EO4Earth project as part of their AI4GOOD and Open Science initiatives. Brimatech  As a partner in the SUN project, the innovation management and market research expert Brimatech helps out in the overall organisation of the challenge.  Mothership The ‘Mothership’ is a dedicated open innovation program created by Space4Good and World Startup Factory. The Mothershi is leveraging recent advancements in artificial intelligence and satellite technologies in support of the UN Sustainable Development Goals. Space4Good  Space4Good is a geospatial innovation lab supporting impact makers on the ground with earth observation insights from above. Worldstartup  Worldstartup is a collective of international entrepreneurs, experts, mentors and investors, dedicated to help the best impact-driven startups and scaleups.

Let’s Build Small AI Buzz, Offer ‘Claim Processing’ to Mid/Big Companies
reddit
LLM Vibe Score0
Human Vibe Score1
AssistanceOk2217This week

Let’s Build Small AI Buzz, Offer ‘Claim Processing’ to Mid/Big Companies

Discover How AI Can Transform Businesses, Every Details Spelled Out. Full Article https://preview.redd.it/jp0vc5g6e86d1.png?width=1421&format=png&auto=webp&s=efa43e2a9b04b6996b00adac4e4947a3b21c7e63 Artificial Intelligence (AI) is rapidly reshaping business landscapes, promising unprecedented efficiency and accuracy across industries. In this article, we delve into how Aniket Insurance Inc. (Imaginary) leverages AI to revolutionize its claim processing operations, offering insights into the transformative power of AI in modern business environments. ➡️ What’s This Article About? \* The article explores how Aniket Insurance Inc. uses AI to transform its claim processing. \* It details the three main workflows: User claim submission, Admin + AI claim processing, and Executive + AI claim analysis. https://preview.redd.it/ql0ec20ae86d1.png?width=769&format=png&auto=webp&s=4b6889dd85f848194d6adfc92c9c699138eb1fe7 ➡️ Why Read This Article \* Readers can see practical ways AI boosts efficiency in business, using Aniket Insurance as an example. \* AI speeds up routine tasks, like data entry, freeing up humans for more strategic work. It shows how AI-driven data analysis can lead to smarter business decisions. ➡️Let’s Design: Aniket Insurance Inc. has implemented AI architecture that encompasses three pivotal workflows: User Claim Submission Flow, Admin + AI Claim Processing Flow, and Executive + AI Claim Analysis Flow. Powered by AI models and integrated with store, this architecture ensures seamless automation and optimization of the entire claim processing lifecycle. By leveraging AI technologies like machine learning models and data visualization tools, Aniket Insurance how business can enhance operational efficiency, and strategic decision-making capabilities. https://preview.redd.it/qgdmzs3ee86d1.png?width=733&format=png&auto=webp&s=445295beb52a56d826e5527859cf62879116ddb0 ➡️Closing Thoughts: Looking ahead, the prospects of AI adoption across various industries are incredibly exciting. Imagine manufacturing plants where AI optimizes production lines, predicts maintenance needs, and ensures quality control. Envision healthcare facilities where AI assists in diagnosis, treatment planning, and drug discovery. Picture retail operations where AI personalizes product recommendations, streamlines inventory management, and enhances customer service. The possibilities are endless, as AI’s capabilities in pattern recognition, predictive modeling, and automation can be leveraged to tackle complex challenges and uncover valuable insights in virtually any domain. https://preview.redd.it/w3hr913ge86d1.png?width=754&format=png&auto=webp&s=d839a7703f5b28314a3278c8d628ae5f05d3668f

 Looking for beta testers for my AI-powered website builder - no templates, no coding required
reddit
LLM Vibe Score0
Human Vibe Score1
Interesting_Flow_342This week

Looking for beta testers for my AI-powered website builder - no templates, no coding required

Hey r/sideproject, I'm working on an exciting new project since 4 months- an AI-powered website builder that creates completely custom, professional-looking websites from scratch. No templates, no coding The key capabilities of this AI website builder are: Designing unique, mobile-responsive layouts based on your preferences and content Generating custom written content for each page, section, and element Ensuring best practices for things like typography, color schemes, and SEO But the real power comes in the customization. Once the AI generates your initial website, you can easily make changes to any part of it - from the design and layout to the text and images. Simply select the specific element you want to modify, and the AI will make the requested changes, whether that's tweaking the font and colors, rearranging the page structure, or rewriting the copy. It's a truly interactive, AI-driven web building experience. This is perfect for things like: Marketing/informational websites Landing pages Online resumes and portfolios Small business websites When you're ready, you can publish your AI-generated, fully customized website on a free subdomain or download the full code. I'm looking to get a few early users to try this out and provide feedback before the full public launch. If you're interested in being a beta tester, I'd love to hear from you! This could be especially useful for small business owners, freelancers, job seekers, or anyone who needs a professional web presence but doesn't have the time or skills for traditional web development. If you're interested, just leave a comment below or send me a DM. I'll be in touch to get you set up with early access. Thanks for checking it out! Muhammad Bilal Moten

ChatPDF and PDF.ai are making millions using open source tech... here's the code
reddit
LLM Vibe Score0
Human Vibe Score1
Level-Thought6152This week

ChatPDF and PDF.ai are making millions using open source tech... here's the code

Why "copy" an existing product? The best SaaS products weren’t the first of their kind - think Slack, Shopify, Zoom, Dropbox, or HubSpot. They didn’t invent team communication, e-commerce, video conferencing, cloud storage, or marketing tools; they just made them better. What is a "Chat with PDF" SaaS? These are AI-powered PDF assistants that let you upload a PDF and ask questions about its content. You can summarize articles, extract key details from a contract, analyze a research paper, and more. To see this in action or dive deeper into the tech behind it, check out this YouTube video. Let's look at the market Made possible by advances in AI like ChatGPT and Retrieval-Augmented Generation (RAG), PDF chat tools started gaining traction in early 2023 and have seen consistent growth in market interest, which is currently at an all-time high (source:google trends) Keywords like "chat PDF" and "PDF AI" get between 1 to 10 million searches every month (source:keyword planner), with a broad target audience that includes researchers, students, and professionals across various industries. Leaders like PDF.ai and ChatPDF have already gained millions of users within a year of launch, driven by the growing market demand, with paid users subscribing at around $20/month. Alright, so how do we build this with open source? The core tech for most PDF AI tools are based on the same architecture. You generate text embeddings (AI-friendly text representations; usually via OpenAI APIs) for the uploaded PDF’s chapters/topics and store them in a vector database (like Pinecone). Now, every time the user asks a question, a similarity search is performed to find the most similar PDF topics from the vector database. The selected topic contents are then sent to an LLM (like ChatGPT) along with the question, which generates a contextual answer! Here are some of the best open source implementations for this process: GPT4 & LangChain Chatbot for large PDF docs by Mayo Oshin MultiPDF Chat App by Alejandro AO PDFToChat by Hassan El Mghari Worried about building signups, user management, payments, etc.? Here are my go-to open-source SaaS boilerplates that include everything you need out of the box: SaaS Boilerplate by Remi Wg Open SaaS by wasp-lang A few ideas to stand out from the noise: Here are a few strategies that could help you differentiate and achieve product market fit (based on the pivot principles from The Lean Startup by Eric Ries): Narrow down your target audience for a personalized UX: For instance, an exam prep assistant for students with study notes and quiz generator; or a document due diligence and analysis tool for lawyers. Add unique features to increase switching cost: You could autogenerate APIs for the uploaded PDFs to enable remote integrations (eg. support chatbot knowledge base); or build in workflow automation features for bulk analyses of PDFs. Offer platform level advantages: You could ship a native mobile/desktop apps for a more integrated UX; or (non-trivial) offer private/offline support by replacing the APIs with local open source deployments (eg. llama for LLM, an embedding model from the MTEB list, and FAISS for vector search). TMI? I’m an ex-AI engineer and product lead, so don’t hesitate to reach out with any questions! P.S. I've started a free weekly newsletter to share open-source/turnkey resources behind popular products (like this one). If you’re a founder looking to launch your next product without reinventing the wheel, please subscribe :)

Introducing Stratify: Your Ultimate AI Strategy Builder for Business Success
reddit
LLM Vibe Score0
Human Vibe Score0
vsengarThis week

Introducing Stratify: Your Ultimate AI Strategy Builder for Business Success

Hello, I’m thrilled to announce the launch of my new startup, Stratify! 🔍 What is Stratify? Stratify is an AI Strategy Builder designed to help businesses of all sizes develop, implement, and optimize their strategic plans using cutting-edge artificial intelligence. Whether you're a startup looking to scale or an established company aiming to innovate, Stratify provides the tools and insights you need to stay ahead in today's competitive landscape. 🌟 Key Features: Automated Strategy Development: Leverage AI to analyze market trends, competitor data, and internal metrics to create comprehensive strategic plans tailored to your business goals. Real-Time Analytics & Insights: Monitor your strategy's performance with real-time data dashboards, enabling you to make informed decisions quickly. Scenario Planning: Use AI-driven simulations to forecast different business scenarios and understand potential outcomes, helping you prepare for uncertainties. Collaborative Tools: Facilitate team collaboration with integrated communication features, ensuring everyone is aligned and contributing to the strategy development process. Customizable Templates: Access a library of industry-specific strategy templates that can be customized to fit your unique business needs. 💡 Why Stratify? In today's fast-paced business environment, creating and adapting effective strategies can be challenging. Many companies struggle with data overload, lack of actionable insights, and inefficient planning processes. Stratify addresses these pain points by harnessing the power of AI to streamline strategy building, making it more efficient, data-driven, and adaptable. 🚀 Our Journey So Far: Founded: August 2024 Milestones Achieved: Developed and tested our MVP with a select group of beta users What's Next: Launching our public beta in Q4 2024 Expanding our feature set based on user feedback Growing our team with experts in AI, business strategy, and customer success 🤝 How You Can Help: We’re eager to connect with early adopters, business strategists, and industry experts who can benefit from or contribute to Stratify. Here’s how you can get involved: Join Our Beta Program: Be among the first to experience Stratify and provide valuable feedback. Share Your Insights: Help us refine our features by sharing your business strategy challenges and needs. Spread the Word: If you know someone who could benefit from an AI-driven strategy builder, please share our mission and be an affiliate to earn rewards! 🌐 Learn More: Visit our website at AI-Powered Brand Strategy & Content Creation | Stratify (brandprovoke.com) and follow us for the latest updates and insights. 🙏 Thank You! A heartfelt thank you to the Reddit community for your support and encouragement. We’re excited to embark on this journey and look forward to your feedback and suggestions! Looking forward to your thoughts and questions!

ChatPDF and PDF.ai are making millions using open source tech... here's the code
reddit
LLM Vibe Score0
Human Vibe Score1
Level-Thought6152This week

ChatPDF and PDF.ai are making millions using open source tech... here's the code

Why "copy" an existing product? The best SaaS products weren’t the first of their kind - think Slack, Shopify, Zoom, Dropbox, or HubSpot. They didn’t invent team communication, e-commerce, video conferencing, cloud storage, or marketing tools; they just made them better. What is a "Chat with PDF" SaaS? These are AI-powered PDF assistants that let you upload a PDF and ask questions about its content. You can summarize articles, extract key details from a contract, analyze a research paper, and more. To see this in action or dive deeper into the tech behind it, check out this YouTube video. Let's look at the market Made possible by advances in AI like ChatGPT and Retrieval-Augmented Generation (RAG), PDF chat tools started gaining traction in early 2023 and have seen consistent growth in market interest, which is currently at an all-time high (source:google trends) Keywords like "chat PDF" and "PDF AI" get between 1 to 10 million searches every month (source:keyword planner), with a broad target audience that includes researchers, students, and professionals across various industries. Leaders like PDF.ai and ChatPDF have already gained millions of users within a year of launch, driven by the growing market demand, with paid users subscribing at around $20/month. Alright, so how do we build this with open source? The core tech for most PDF AI tools are based on the same architecture. You generate text embeddings (AI-friendly text representations; usually via OpenAI APIs) for the uploaded PDF’s chapters/topics and store them in a vector database (like Pinecone). Now, every time the user asks a question, a similarity search is performed to find the most similar PDF topics from the vector database. The selected topic contents are then sent to an LLM (like ChatGPT) along with the question, which generates a contextual answer! Here are some of the best open source implementations for this process: GPT4 & LangChain Chatbot for large PDF docs by Mayo Oshin MultiPDF Chat App by Alejandro AO PDFToChat by Hassan El Mghari Worried about building signups, user management, payments, etc.? Here are my go-to open-source SaaS boilerplates that include everything you need out of the box: SaaS Boilerplate by Remi Wg Open SaaS by wasp-lang A few ideas to stand out from the noise: Here are a few strategies that could help you differentiate and achieve product market fit (based on the pivot principles from The Lean Startup by Eric Ries): Narrow down your target audience for a personalized UX: For instance, an exam prep assistant for students with study notes and quiz generator; or a document due diligence and analysis tool for lawyers. Add unique features to increase switching cost: You could autogenerate APIs for the uploaded PDFs to enable remote integrations (eg. support chatbot knowledge base); or build in workflow automation features for bulk analyses of PDFs. Offer platform level advantages: You could ship a native mobile/desktop apps for a more integrated UX; or (non-trivial) offer private/offline support by replacing the APIs with local open source deployments (eg. llama for LLM, an embedding model from the MTEB list, and FAISS for vector search). TMI? I’m an ex-AI engineer and product lead, so don’t hesitate to reach out with any questions! P.S. I've started a free weekly newsletter to share open-source/turnkey resources behind popular products (like this one). If you’re a founder looking to launch your next product without reinventing the wheel, please subscribe :)

I searched for unexplored AI business opportunities for 2024 and found 8 promising ideas
reddit
LLM Vibe Score0
Human Vibe Score0
yuki_taylorThis week

I searched for unexplored AI business opportunities for 2024 and found 8 promising ideas

https://solansync.beehiiv.com/p/8-innovative-ai-business-opportunities-2024-evaluation-resources Entering 2024, the AI landscape presents numerous uncharted business opportunities. Solan Sync, on February 06, 2024, shared an insightful exploration into nine innovative AI business prospects that stand out for their potential market impact and implementation feasibility. Here's a brief overview of each: No-Code AI Chatbot Development Platforms: These platforms enable businesses to create efficient chatbots without coding knowledge, catering to a variety of communication needs and boasting a significant market potential projected at $19.8 billion by 2027. AI-Powered Document Management Systems: Offering a solution to automate data extraction and management, this opportunity targets sectors overwhelmed by paperwork, with a market growth expected to reach $4.4 billion by 2026. Automated AI Customer Support Platforms: AI-driven platforms are transforming customer support by handling inquiries with advanced conversational agents, aiming for a part of the $15.3 billion market by 2027. AI-Driven Content Generation Platforms: Utilizing advanced language models for content creation, this area addresses the high demand for engaging content across digital platforms, with the market projected to hit $12 billion by 2025. AI-Powered Recommendation System APIs: Tailored product recommendations can significantly enhance user experience, tapping into a market anticipated to grow to $6.3 billion by 2027. AI-Enhanced Digital Media Buying Solutions: These platforms optimize advertising strategies using AI, targeting the native advertising market expected to reach $59 billion by 2025. Enterprise-grade Voice-activated AI Assistants: Improving workplace efficiency with voice commands, this segment has a potential market of $1.1 billion by 2026. AI-Enhanced Supply Chain Management Solutions: By applying AI for real-time optimization, this opportunity aims at improving efficiency within the vast data-rich environments of modern supply chains. Each idea is detailed with its overview, target customer segments, key AI functionalities, profitability evaluations, and examples of current pioneers. This exploration not only highlights the vast potential within AI-driven business models but also encourages entrepreneurs and corporations to delve into these promising sectors. The rapid advancement of AI technology and its practical applications suggest these ideas represent just the beginning of what the future holds. Now is the time to leverage AI's capabilities to innovate and enhance products, services, and operations across industries.

Introducing Stratify: Your Ultimate AI Strategy Builder for Business Success
reddit
LLM Vibe Score0
Human Vibe Score0
vsengarThis week

Introducing Stratify: Your Ultimate AI Strategy Builder for Business Success

Hello, I’m thrilled to announce the launch of my new startup, Stratify! 🔍 What is Stratify? Stratify is an AI Strategy Builder designed to help businesses of all sizes develop, implement, and optimize their strategic plans using cutting-edge artificial intelligence. Whether you're a startup looking to scale or an established company aiming to innovate, Stratify provides the tools and insights you need to stay ahead in today's competitive landscape. 🌟 Key Features: Automated Strategy Development: Leverage AI to analyze market trends, competitor data, and internal metrics to create comprehensive strategic plans tailored to your business goals. Real-Time Analytics & Insights: Monitor your strategy's performance with real-time data dashboards, enabling you to make informed decisions quickly. Scenario Planning: Use AI-driven simulations to forecast different business scenarios and understand potential outcomes, helping you prepare for uncertainties. Collaborative Tools: Facilitate team collaboration with integrated communication features, ensuring everyone is aligned and contributing to the strategy development process. Customizable Templates: Access a library of industry-specific strategy templates that can be customized to fit your unique business needs. 💡 Why Stratify? In today's fast-paced business environment, creating and adapting effective strategies can be challenging. Many companies struggle with data overload, lack of actionable insights, and inefficient planning processes. Stratify addresses these pain points by harnessing the power of AI to streamline strategy building, making it more efficient, data-driven, and adaptable. 🚀 Our Journey So Far: Founded: August 2024 Milestones Achieved: Developed and tested our MVP with a select group of beta users What's Next: Launching our public beta in Q4 2024 Expanding our feature set based on user feedback Growing our team with experts in AI, business strategy, and customer success 🤝 How You Can Help: We’re eager to connect with early adopters, business strategists, and industry experts who can benefit from or contribute to Stratify. Here’s how you can get involved: Join Our Beta Program: Be among the first to experience Stratify and provide valuable feedback. Share Your Insights: Help us refine our features by sharing your business strategy challenges and needs. Spread the Word: If you know someone who could benefit from an AI-driven strategy builder, please share our mission and be an affiliate to earn rewards! 🌐 Learn More: Visit our website at AI-Powered Brand Strategy & Content Creation | Stratify (brandprovoke.com) and follow us for the latest updates and insights. 🙏 Thank You! A heartfelt thank you to the Reddit community for your support and encouragement. We’re excited to embark on this journey and look forward to your feedback and suggestions! Looking forward to your thoughts and questions!

AI News Reporter (AI Video + AI Audio + AI Music + AI Lipsync + Transitions + Automated Video Edit).
reddit
LLM Vibe Score0
Human Vibe Score1
gochapachi1This week

AI News Reporter (AI Video + AI Audio + AI Music + AI Lipsync + Transitions + Automated Video Edit).

Processing img mgx8qvvd7nne1... Do give an upvote you guys, Discover how to create a professional AI news reporter video using an automated n8n workflow! In this video, we demonstrate an end-to-end process that integrates various AI tools and automated video editing techniques to produce a fully polished news video. Here's what you'll learn: AI Video Model Generation: Automatically generate realistic video models using AI. AI Audio Creation: Generate high-quality AI audio for the model with perfect lipsync. AI Music Generation: Create custom background music using AI to add the perfect vibe to your video. Automated Editing & Transitions: Utilize advanced video editing techniques and seamless transitions with ffmpeg integrated into the n8n workflow. Complete End-to-End Automation: Watch as the entire process—from content creation to final editing—is fully automated, saving time and effort. Whether you're a content creator, media professional, or just curious about the power of automation and AI, this workflow offers a glimpse into the future of video production. Workflow:- https://github.com/gochapachi/AI-news-Reporter Youtube :- https://youtu.be/Km2u6193pDU If you enjoyed this video, please like, comment, and subscribe for more content on AI-driven automation and innovative video production techniques. Let's revolutionize content creation with AI and automation! 👉 Follow Us on Social Media for More Updates: 🧠 Reddit: https://www.reddit.com/user/gochapachi1/ 📘 Facebook: https://facebook.com/gochapachi/ 📸 Instagram: https://www.instagram.com/gochapachi/ 🎥 YouTube: https://www.youtube.com/@gochapachi 💼 LinkedIn: https://www.linkedin.com/in/gochapachi/ 📞 whatsapp: +91-8400210108 📩 Email: sanjeevcs0034@gmail.com

[D] Here are 17 ways of making PyTorch training faster – what did I miss?
reddit
LLM Vibe Score0
Human Vibe Score1
lorenzkuhnThis week

[D] Here are 17 ways of making PyTorch training faster – what did I miss?

I've been collecting methods to accelerate training in PyTorch – here's what I've found so far. What did I miss? What did I get wrong? The methods – roughly sorted from largest to smallest expected speed-up – are: Consider using a different learning rate schedule. Use multiple workers and pinned memory in DataLoader. Max out the batch size. Use Automatic Mixed Precision (AMP). Consider using a different optimizer. Turn on cudNN benchmarking. Beware of frequently transferring data between CPUs and GPUs. Use gradient/activation checkpointing. Use gradient accumulation. Use DistributedDataParallel for multi-GPU training. Set gradients to None rather than 0. Use .as\_tensor rather than .tensor() Turn off debugging APIs if not needed. Use gradient clipping. Turn off bias before BatchNorm. Turn off gradient computation during validation. Use input and batch normalization. Consider using another learning rate schedule The learning rate (schedule) you choose has a large impact on the speed of convergence as well as the generalization performance of your model. Cyclical Learning Rates and the 1Cycle learning rate schedule are both methods introduced by Leslie N. Smith (here and here), and then popularised by fast.ai's Jeremy Howard and Sylvain Gugger (here and here). Essentially, the 1Cycle learning rate schedule looks something like this: ​ https://preview.redd.it/sc37u5knmxa61.png?width=476&format=png&auto=webp&s=09b309b4dbd67eedb4ab5f86e03e0e83d7b072d1 Sylvain writes: \[1cycle consists of\]  two steps of equal lengths, one going from a lower learning rate to a higher one than go back to the minimum. The maximum should be the value picked with the Learning Rate Finder, and the lower one can be ten times lower. Then, the length of this cycle should be slightly less than the total number of epochs, and, in the last part of training, we should allow the learning rate to decrease more than the minimum, by several orders of magnitude. In the best case this schedule achieves a massive speed-up – what Smith calls Superconvergence – as compared to conventional learning rate schedules. Using the 1Cycle policy he needs \~10x fewer training iterations of a ResNet-56 on ImageNet to match the performance of the original paper, for instance). The schedule seems to perform robustly well across common architectures and optimizers. PyTorch implements both of these methods torch.optim.lrscheduler.CyclicLR and torch.optim.lrscheduler.OneCycleLR, see the documentation. One drawback of these schedulers is that they introduce a number of additional hyperparameters. This post and this repo, offer a nice overview and implementation of how good hyper-parameters can be found including the Learning Rate Finder mentioned above. Why does this work? It doesn't seem entirely clear but one possible explanation might be that regularly increasing the learning rate helps to traverse saddle points in the loss landscape more quickly. Use multiple workers and pinned memory in DataLoader When using torch.utils.data.DataLoader, set numworkers > 0, rather than the default value of 0, and pinmemory=True, rather than the default value of False. Details of this are explained here. Szymon Micacz achieves a 2x speed-up for a single training epoch by using four workers and pinned memory. A rule of thumb that people are using to choose the number of workers is to set it to four times the number of available GPUs with both a larger and smaller number of workers leading to a slow down. Note that increasing num\_workerswill increase your CPU memory consumption. Max out the batch size This is a somewhat contentious point. Generally, however, it seems like using the largest batch size your GPU memory permits will accelerate your training (see NVIDIA's Szymon Migacz, for instance). Note that you will also have to adjust other hyperparameters, such as the learning rate, if you modify the batch size. A rule of thumb here is to double the learning rate as you double the batch size. OpenAI has a nice empirical paper on the number of convergence steps needed for different batch sizes. Daniel Huynh runs some experiments with different batch sizes (also using the 1Cycle policy discussed above) where he achieves a 4x speed-up by going from batch size 64 to 512. One of the downsides of using large batch sizes, however, is that they might lead to solutions that generalize worse than those trained with smaller batches. Use Automatic Mixed Precision (AMP) The release of PyTorch 1.6 included a native implementation of Automatic Mixed Precision training to PyTorch. The main idea here is that certain operations can be run faster and without a loss of accuracy at semi-precision (FP16) rather than in the single-precision (FP32) used elsewhere. AMP, then, automatically decide which operation should be executed in which format. This allows both for faster training and a smaller memory footprint. In the best case, the usage of AMP would look something like this: import torch Creates once at the beginning of training scaler = torch.cuda.amp.GradScaler() for data, label in data_iter: optimizer.zero_grad() Casts operations to mixed precision with torch.cuda.amp.autocast(): loss = model(data) Scales the loss, and calls backward() to create scaled gradients scaler.scale(loss).backward() Unscales gradients and calls or skips optimizer.step() scaler.step(optimizer) Updates the scale for next iteration scaler.update() Benchmarking a number of common language and vision models on NVIDIA V100 GPUs, Huang and colleagues find that using AMP over regular FP32 training yields roughly 2x – but upto 5.5x – training speed-ups. Currently, only CUDA ops can be autocast in this way. See the documentation here for more details on this and other limitations. u/SVPERBlA points out that you can squeeze out some additional performance (\~ 20%) from AMP on NVIDIA Tensor Core GPUs if you convert your tensors to the Channels Last memory format. Refer to this section in the NVIDIA docs for an explanation of the speedup and more about NCHW versus NHWC tensor formats. Consider using another optimizer AdamW is Adam with weight decay (rather than L2-regularization) which was popularized by fast.ai and is now available natively in PyTorch as torch.optim.AdamW. AdamW seems to consistently outperform Adam in terms of both the error achieved and the training time. See this excellent blog post on why using weight decay instead of L2-regularization makes a difference for Adam. Both Adam and AdamW work well with the 1Cycle policy described above. There are also a few not-yet-native optimizers that have received a lot of attention recently, most notably LARS (pip installable implementation) and LAMB. NVIDA's APEX implements fused versions of a number of common optimizers such as Adam. This implementation avoid a number of passes to and from GPU memory as compared to the PyTorch implementation of Adam, yielding speed-ups in the range of 5%. Turn on cudNN benchmarking If your model architecture remains fixed and your input size stays constant, setting torch.backends.cudnn.benchmark = True might be beneficial (docs). This enables the cudNN autotuner which will benchmark a number of different ways of computing convolutions in cudNN and then use the fastest method from then on. For a rough reference on the type of speed-up you can expect from this, Szymon Migacz achieves a speed-up of 70% on a forward pass for a convolution and a 27% speed-up for a forward + backward pass of the same convolution. One caveat here is that this autotuning might become very slow if you max out the batch size as mentioned above. Beware of frequently transferring data between CPUs and GPUs Beware of frequently transferring tensors from a GPU to a CPU using tensor.cpu() and vice versa using tensor.cuda() as these are relatively expensive. The same applies for .item() and .numpy() – use .detach() instead. If you are creating a new tensor, you can also directly assign it to your GPU using the keyword argument device=torch.device('cuda:0'). If you do need to transfer data, using .to(non_blocking=True), might be useful as long as you don't have any synchronization points after the transfer. If you really have to, you might want to give Santosh Gupta's SpeedTorch a try, although it doesn't seem entirely clear when this actually does/doesn't provide speed-ups. Use gradient/activation checkpointing Quoting directly from the documentation: Checkpointing works by trading compute for memory. Rather than storing all intermediate activations of the entire computation graph for computing backward, the checkpointed part does not save intermediate activations, and instead recomputes them in backward pass. It can be applied on any part of a model. Specifically, in the forward pass, function will run in torch.no\grad() manner, i.e., not storing the intermediate activations. Instead, the forward pass saves the inputs tuple and the functionparameter. In the backwards pass, the saved inputs and function is retrieved, and the forward pass is computed on function again, now tracking the intermediate activations, and then the gradients are calculated using these activation values. So while this will might slightly increase your run time for a given batch size, you'll significantly reduce your memory footprint. This in turn will allow you to further increase the batch size you're using allowing for better GPU utilization. While checkpointing is implemented natively as torch.utils.checkpoint(docs), it does seem to take some thought and effort to implement properly. Priya Goyal has a good tutorial demonstrating some of the key aspects of checkpointing. Use gradient accumulation Another approach to increasing the batch size is to accumulate gradients across multiple .backward() passes before calling optimizer.step(). Following a post by Hugging Face's Thomas Wolf, gradient accumulation can be implemented as follows: model.zero_grad() Reset gradients tensors for i, (inputs, labels) in enumerate(training_set): predictions = model(inputs) Forward pass loss = loss_function(predictions, labels) Compute loss function loss = loss / accumulation_steps Normalize our loss (if averaged) loss.backward() Backward pass if (i+1) % accumulation_steps == 0: Wait for several backward steps optimizer.step() Now we can do an optimizer step model.zero_grad() Reset gradients tensors if (i+1) % evaluation_steps == 0: Evaluate the model when we... evaluate_model() ...have no gradients accumulate This method was developed mainly to circumvent GPU memory limitations and I'm not entirely clear on the trade-off between having additional .backward() loops. This discussion on the fastai forum seems to suggest that it can in fact accelerate training, so it's probably worth a try. Use Distributed Data Parallel for multi-GPU training Methods to accelerate distributed training probably warrant their own post but one simple one is to use torch.nn.DistributedDataParallel rather than torch.nn.DataParallel. By doing so, each GPU will be driven by a dedicated CPU core avoiding the GIL issues of DataParallel. In general, I can strongly recommend reading the documentation on distributed training. Set gradients to None rather than 0 Use .zerograd(settonone=True) rather than .zerograd(). Doing so will let the memory allocator handle the gradients rather than actively setting them to 0. This will lead to yield a modest speed-up as they say in the documentation, so don't expect any miracles. Watch out, doing this is not side-effect free! Check the docs for the details on this. Use .as_tensor() rather than .tensor() torch.tensor() always copies data. If you have a numpy array that you want to convert, use torch.astensor() or torch.fromnumpy() to avoid copying the data. Turn on debugging tools only when actually needed PyTorch offers a number of useful debugging tools like the autograd.profiler, autograd.grad\check, and autograd.anomaly\detection. Make sure to use them to better understand when needed but to also turn them off when you don't need them as they will slow down your training. Use gradient clipping Originally used to avoid exploding gradients in RNNs, there is both some empirical evidence as well as some theoretical support that clipping gradients (roughly speaking: gradient = min(gradient, threshold)) accelerates convergence. Hugging Face's Transformer implementation is a really clean example of how to use gradient clipping as well as some of the other methods such as AMP mentioned in this post. In PyTorch this can be done using torch.nn.utils.clipgradnorm(documentation). It's not entirely clear to me which models benefit how much from gradient clipping but it seems to be robustly useful for RNNs, Transformer-based and ResNets architectures and a range of different optimizers. Turn off bias before BatchNorm This is a very simple one: turn off the bias of layers before BatchNormalization layers. For a 2-D convolutional layer, this can be done by setting the bias keyword to False: torch.nn.Conv2d(..., bias=False, ...).  (Here's a reminder why this makes sense.) You will save some parameters, I would however expect the speed-up of this to be relatively small as compared to some of the other methods mentioned here. Turn off gradient computation during validation This one is straightforward: set torch.no_grad() during validation. Use input and batch normalization You're probably already doing this but you might want to double-check: Are you normalizing your input? Are you using batch-normalization? And here's a reminder of why you probably should. Bonus tip from the comments: Use JIT to fuse point-wise operations. If you have adjacent point-wise operations you can use PyTorch JIT to combine them into one FusionGroup which can then be launched on a single kernel rather than multiple kernels as would have been done per default. You'll also save some memory reads and writes. Szymon Migacz shows how you can use the @torch.jit.script decorator to fuse the operations in a GELU, for instance: @torch.jit.script def fused_gelu(x): return x 0.5 (1.0 + torch.erf(x / 1.41421)) In this case, fusing the operations leads to a 5x speed-up for the execution of fused_gelu as compared to the unfused version. See also this post for an example of how Torchscript can be used to accelerate an RNN. Hat tip to u/Patient_Atmosphere45 for the suggestion. Sources and additional resources Many of the tips listed above come from Szymon Migacz' talk and post in the PyTorch docs. PyTorch Lightning's William Falcon has two interesting posts with tips to speed-up training. PyTorch Lightning does already take care of some of the points above per-default. Thomas Wolf at Hugging Face has a number of interesting articles on accelerating deep learning – with a particular focus on language models. The same goes for Sylvain Gugger and Jeremy Howard: they have many interesting posts in particular on learning rates and AdamW. Thanks to Ben Hahn, Kevin Klein and Robin Vaaler for their feedback on a draft of this post! I've also put all of the above into this blog post.

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[D] Should We Be Concerned About The Failure Of Evolutionary Algorithms, And Its Implications?
reddit
LLM Vibe Score0
Human Vibe Score-1
mystikaldangerThis week

[D] Should We Be Concerned About The Failure Of Evolutionary Algorithms, And Its Implications?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287292/ ​ A number of possible explanations for \[why we can't evolve complex software\] could be considered. We tried to be as comprehensive as possible in this section, but it is possible that we have not considered some plausible explanations: Incompetent programmers—It is theoretically possible, but is highly unlikely, that out of thousands of scientists working on evolutionary computation, all failed to correctly implement the Darwinian algorithm. Nonrepresentative algorithms—Some have suggested that EAs do not accurately capture the theory of evolution, but of course that would imply that the theory itself is not specified in sufficient detail to make falsifiable predictions. If, however, such more detailed specifications are available to GP believers, it is up to them to implement them as computer simulations for testing purposes, but no successful examples of such work are known and the known ones have not been successful in evolving software. Inadequate fitness functions—Fitness function for a complex software product is difficult to outline and specify and may be as complex (or even more complex) as the software we want to evolve as it has to consider all the possible use cases and pass all unit tests. This may be the Achilles heel of GP, but it is also an objection to feasibility of programming in general and GP in particular, as both have to convert software specification into the source code. If human programmers and biological evolution succeed with such constraints, so should Darwinian simulations. The Halting problem—Turing proved that it is impossible to determine whether an arbitrary program halts, but this is also a problem for human programmers and could be easily addressed by placing time limits on considered solutions. Program correctness—If we require evolved software to be provably correct, this would present a problem as GP does not verify produced designs but only tests them against specific unit tests. Likewise, we cannot rely on automated software verification as it is still an unsolved problem in the general case. This is not really a problem as most of the human-written software is never proven to be correct and only a small portion of software engineering process relies of formal specification and Test Driven Development. Inappropriate solutions—Literature on EA is full of examples of surprising creativity of Darwinian algorithm resulting in solutions which match the letter of design specifications but not the spirit. This is similar to human-produced software and numerous examples of ways in which such software fails the goals of the initial design. Insufficient complexity of the environment (not enough data, poor fitness functions)—It is possible that the simulated environment is not complex enough to generate high complexity outputs in evolutionary simulations. This does not seem correct as Internet presents a highly complex landscape in which many self-modifying computer viruses roam. Likewise, virtual world such as Second Life and many others present close approximations to the real world and are certainly more complex than early Earth was: A skeptic might insist that an abstract environment would be inadequate for the evolution . . ., believing instead that the virtual environment would need to closely resemble the actual biological environment in which our ancestors evolved. Creating a physically realistic virtual world would require a far greater investment of computational resources than the simulation of a simple toy world or abstract problem domain (whereas evolution had access to a physically realistic real world “for free”). In the limiting case, if complete microphysical accuracy were insisted upon, the computational requirements would balloon to utterly infeasible proportions. Requiring more realistic environmental conditions may result in an increase in necessary computational resources, a problem addressed in the next bullet. Insufficient resources (compute, memory)—From the history of computer science, we know of many situations (speech recognition, NN training), where we had a correct algorithm but insufficient computational resources to run it to success. It is possible that we simply do not have hardware powerful enough to emulate evolution. We will address this possibility in section “Computational Complexity of Biological Evolution and Available Compute.” Software design is not amenable to evolutionary methods—Space of software designs may be discrete with no continuous path via incremental fitness to the desired solutions. This is possible, but this implies that original goals of GP are unattainable and misguided. In addition, because a clear mapping exists between solutions to problems and animals as solutions to environmental problems, this would also imply that current explanation for the origin of the species is incorrect. Darwinian algorithm is incomplete or wrong—Finally, we have to consider the possibility that the inspiration behind evolutionary computation, the Darwinian algorithm itself is wrong or at least partially incomplete. If that was true, computer simulations of such algorithm would fail to produce results comparable with observations we see in nature and a search for an alternative algorithm would need to take place. This would be an extraordinary claim and would require that we discard all the other possible explanations from this list. We challenge EA community to prove us wrong by producing an experiment, which evolves nontrivial software from scratch and without human help. That would be the only way in which our findings could be shown to be incorrect. Perhaps, reframing the problem in terms of maximizing negentropy of digital organisms, as suggested by Schrödinger, Michaelian, and Ulanowicz and Hannon, with respect to negative energy being a fundamental property of all life-forms may produce better results. On a positive side, the fact that it seems impossible to evolve complex software implies that we are unlikely to be able to evolve highly sophisticated artificially intelligent agents, which may present significant risk to our safety and security. Just imagine what would have happened, if the very first time we ran a simulation of evolution on a computer, it produced a superintelligent agent. Yampolskiy has shown that programming as a problem is AI-complete; if GP can solve programming that would imply that GP = AGI (artificial general intelligence), but we see no experimental evidence for such claim. In fact, it is more likely that once we have AGI, it could be used to create an intelligent fitness function for GP and so evolve software. Genetic programming will not be the cause of AI, but a product of it. However, neuroevolution methods for optimizing deep learning architectures and parameters remain a strong possibility for creation of AGI.

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters
reddit
LLM Vibe Score0
Human Vibe Score1
KseniaseThis week

[N] TheSequence Scope: When it comes to machine learning, size matters: Microsoft's DeepSpeed framework, which can train a model with up to a trillion parameters

Hi there! Offering to your attention the latest edition of a weekly ML-newsletter that focusing on three things: impactful ML research papers, cool ML tech solutions, and ML use cases supported by investors. Please, see it below. Reddit is a new thing for me, and I've been struggling a bit with it, so please don't judge me too harsh for this promotion. This weekly digest is free and I hope you'd find the format convenient for you. Your feedback is very appreciated, and please feel free to sign up if you like it. 📝 Editorial  The recent emergence of pre-trained language models and transformer architectures pushed the creation of larger and larger machine learning models. Google’s BERT presented attention mechanism and transformer architecture possibilities as the “next big thing” in ML, and the numbers seem surreal. OpenAI’s GPT-2 set a record by processing 1.5 billion parameters, followed by Microsoft’s Turing-NLG, which processed 17 billion parameters just to see the new GPT-3 processing an astonishing 175 billion parameters. To not feel complacent, just this week Microsoft announced a new release of its DeepSpeed framework (which powers Turing-NLG), which can train a model with up to a trillion parameters. That sounds insane but it really isn’t.   What we are seeing is a consequence of several factors. First, computation power and parallelization techniques have evolved to a point where it is relatively easy to train machine learning models in large clusters of machines. Second and most importantly, in the current state of machine learning, larger models have regularly outperformed smaller and more specialized models. Knowledge reusability methods like transfer learning are still in very nascent stages. As a result, it’s really hard to build small models that can operate in uncertain environments. Furthermore, as models like GPT-3 and Turing-NLG have shown, there is some unexplainable magic that happens after models go past a certain size. Many of the immediate machine learning problems might be solved by scaling the current generation of neural network architectures. Plain and simple, when it comes to machine learning, size matters.   We would love to hear your opinions about the debate between broader-larger vs. smaller and more specialized models.   Leave a comment Now, to the most important developments in the AI industry this week 🔎 ML Research GPT-3 Falls Short in Machine Comprehension Proposed by researchers from a few major American universities, a 57-task test to measure models’ ability to reason poses challenges even for sophisticated models like GPT-3 ->read more in the original paper Better Text Summarization OpenAI published a paper showing a reinforcement learning with human feedback technique that can surpass supervised models ->read more on OpenAI blog Reinforcement Learning with Offline Datasets Researchers from the Berkeley AI Research (BAIR) Lab published a paper unveiling a method that uses offline datasets to improve reinforcement learning models->read more on BAIR blog 🤖 Cool AI Tech Releases New Version of DeepSpeed Microsoft open-sourced a new version of DeepSpeed, an open-source library for parallelizable training that can scale up to models with 1 trillion parameters->read more on Microsoft Research blog 💸 Money in AI AI-powered customer experience management platform Sprinklr has raised $200 million (kudos to our subscribers from Sprinklr 👏). Sprinklr's “AI listening processing” solution allows companies to get structured and meaningful sentiments and insights from unstructured customer data that comes from public conversations on different websites and social platforms. Xometry, an on-demand industrial parts marketplace, raises $75 million in Series E funding. The company provides a digital way of creating the right combination of buyers and manufacturers. Another example of AI implementation into matching two sides for a deal. Real estate tech company Orchard raises $69 million in its recent funding round. Orchard aims to digitize the whole real estate market, by developing a solution that combines machine learning and rapid human assistance to smooth the search, match the right deal, and simplify buying and selling relationships. Cybersecurity startup Pcysys raised $25 million in its funding round. Pcysys’ platform, which doesn’t require installation or network reconfiguration, uses algorithms to scan and “ethically” attack enterprise networks. Robotics farming company Iron Ox raised $20 million in a funding round. The system of farming robots is still semi-autonomous, the company’s goal is to become fully autonomous.  Insurtech company Descartes Underwriting raised $18.5 million. The company applies AI and machine learning technologies to climate risk predicting and insurance underwriting. Legaltech startup ThoughtRiver raised $10 million in its Series A round. Its AI solution applied to contract pre-screening aims to boost operational efficiency. Medtech startup Skin Analytics raised $5.1 million in Series A funding. Skin Analytics has developed a clinically validated AI system that can identify not only the important skin cancers but also precancerous lesions that can be treated, as well as a range of lesions that are benign. Amazon, along with several government organizations and three other industry partners, helped fund the National Science Foundation, a high-priority AI research initiative. The amount of funding is not disclosed. The content of TheSequence is written by Jesus Rodriguez, one of the most-read contributors to KDNuggets and TDS. You can check his Medium here.

🌟 Introducing DarwinAI: An Open-Source Platform for the Evolution of Intelligent Agents 🚀 [Project]
reddit
LLM Vibe Score0
Human Vibe Score1
Interesting-Fox-6758This week

🌟 Introducing DarwinAI: An Open-Source Platform for the Evolution of Intelligent Agents 🚀 [Project]

🌱 The Vision: Evolutionary AI at Your Fingertips Imagine a world where AI agents aren't just programmed to perform tasks but evolve over time, adapting and improving through generations, much like living organisms. Welcome to DarwinAI, an open-source platform inspired by biological evolution, designed to breed, train, and evolve AI agents that can tackle complex, dynamic, and unpredictable challenges. 🧬 The Genetic Blueprint: Building Blocks of Intelligence At the core of DarwinAI is the concept of a digital DNA for each AI agent. This DNA is a modular structure that defines the agent's capabilities, behaviors, and adaptability. Here's what makes up this digital DNA: Genes of Ability: These are snippets of code that represent specific functions, like data classification, text analysis, or optimization. Think of them as the skills your AI agent possesses. Genes of Adaptation: These genes control how the agent responds to different environments or contexts. They determine its flexibility and resilience in the face of changing conditions. Genes of Connection: These define how the agent interacts with other agents or external resources. They are the social and collaborative aspects of the agent. This digital DNA is stored in a structured, version-controlled database, allowing us to track the evolution of each agent and ensure that beneficial mutations are preserved over time. 🛠️ The Evolutionary Process: From Genesis to Mastery The evolution of AI agents in DarwinAI happens through a series of generations, each building upon the strengths of the previous one: Selection of Parents: The fittest agents, those that excel at specific tasks, are chosen as parents. These agents have proven their worth in the simulated environment and are prime candidates for breeding the next generation. Genetic Crossover: The digital DNA of these parent agents is combined to create new agents. This can happen in two ways: Direct Crossover: Where entire genes are copied from the parents. Combinatorial Crossover: Where parts of different genes are fused to create entirely new abilities. Mutations: Random, small changes are introduced into the genes to promote diversity and explore new solutions. These mutations are the wildcards that can lead to breakthrough abilities. 🌍 The Simulated Environment: A Playground for Evolution Agents don't just exist in a vacuum; they operate in a dynamic, simulated environment where they must adapt and survive. This environment is designed to challenge the agents with: Evolutionary Tasks: Problems that agents must solve, such as data classification, prediction, or content generation. Changing Contexts: Factors like noisy data, resource constraints, or new rules that force agents to adapt on the fly. 🐣 The Life Cycle of an Agent: From Birth to Legacy Each agent goes through a life cycle that mirrors the process of natural selection: Initial Learning: Agents receive initial training based on their digital DNA. Task Execution: They perform tasks in the simulated environment, where their abilities are put to the test. Performance Evaluation: Their effectiveness, adaptability, and efficiency are measured. Reproduction: The top-performing agents produce offspring with improved genetic traits. Discard and Archive: Less effective agents are archived for future analysis, ensuring that their lessons are not lost. 🧩 Knowledge Transfer: Passing the Torch One of the key aspects of DarwinAI is the ability for agents to pass on their learned knowledge to future generations: Weight Persistence: Trained models retain their learned weights, allowing them to inherit capabilities from their ancestors. Modular Transfer: Optimized ability genes can be directly copied to new generations, ensuring that valuable skills are preserved. 🛠️ Modularity and Extensibility: Build, Mix, and Evolve DarwinAI is designed to be highly modular and extensible, allowing for: New Capabilities: Easily incorporate new genes to expand the agents' abilities over time. Hybridization: Combine agents from different specializations to create more complex and versatile agents. Directed Evolution: Introduce controlled mutations to address specific problems or challenges. 🚀 Innovative Use Cases: The Future is Bright The potential applications of DarwinAI are vast and varied: Adaptive Automation: Create agents that can adapt to new market conditions or evolving industrial requirements. Collaborative Robots: Develop robots that evolve to improve teamwork in dynamic environments. Scientific Discovery: Agents that combine skills to uncover patterns or solutions that were previously unknown. 🚀 Vision for the Future: An Ecosystem of Evolving Intelligence By fostering an ecosystem where knowledge is accumulated and adaptability is paramount, DarwinAI aims to produce agents that are not only intelligent but also diverse and efficient. These agents will be equipped to handle complex, unpredictable challenges, opening up new frontiers in AI research and application. 🌐 Join Us in Shaping the Future of AI! DarwinAI is more than just a project; it's a community-driven movement towards a new era of AI. We invite you to join us, contribute your ideas, and help shape the future of evolutionary AI. Whether you're a developer, researcher, or simply someone excited about the potential of AI, there's a place for you in this journey. Let's evolve together! 🌱💻

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)
reddit
LLM Vibe Score0
Human Vibe Score0
aadityauraThis week

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)

[\[D\] Last Week in Medical AI: Top LLM Research Papers\/Models \(December 7 - December 14, 2024\)](https://preview.redd.it/o23fp3csj07e1.jpg?width=1280&format=pjpg&auto=webp&s=69e19fc351b3aa5e34c4c00e66245583f88bd9bb) Medical LLM & Other Models PediaBench: Chinese Pediatric LLM This paper introduces PediaBench, the first Chinese pediatric dataset for evaluating Large Language Model (LLM) question-answering performance, containing 4,565 objective and 1,632 subjective questions across 12 disease groups. BiMediX: Bilingual Medical LLM This paper introduces BiMediX, the first bilingual (English-Arabic) medical Mixture of Experts LLM, along with BiMed1.3M, a 1.3M bilingual medical instruction dataset with over 632M tokens used for training. Diverse medical knowledge integration This paper introduces BiMediX2, a bilingual (Arabic-English) Large Multimodal Model (LMM) based on Llama3.1 architecture, trained on 1.6M medical interaction samples. BRAD: Digital Biology Language Model This paper introduces BRAD (Bioinformatics Retrieval Augmented Digital assistant), an LLM-powered chatbot and agent system integrating various bioinformatics tools. MMedPO: Vision-Language Medical LLM This paper introduces MMedPO, a multimodal medical preference optimization approach to improve factual accuracy in Medical Large Vision-Language Models (Med-LVLMs) by addressing modality misalignment. Frameworks & Methodologies \- TOP-Training: Medical Q&A Framework \- Hybrid RAG: Secure Medical Data Management \- Zero-Shot ATC Clinical Coding \- Chest X-Ray Diagnosis Architecture \- Medical Imaging AI Democratization Benchmarks & Evaluations \- KorMedMCQA: Korean Healthcare Licensing Benchmark \- Large Language Model Medical Tasks \- Clinical T5 Model Performance Study \- Radiology Report Quality Assessment \- Genomic Analysis Benchmarking LLM Applications \- TCM-FTP: Herbal Prescription Prediction \- LLaSA: Activity Analysis via Sensors \- Emergency Department Visit Predictions \- Neurodegenerative Disease AI Diagnosis \- Kidney Disease Explainable AI Model Ethical AI & Privacy \- Privacy-Preserving LLM Mechanisms \- AI-Driven Digital Organism Modeling \- Biomedical Research Automation \- Multimodality in Medical Practice Full thread in detail: https://x.com/OpenlifesciAI/status/1867999825721242101

[D] Using AI to navigate the complexities of regulatory frameworks
reddit
LLM Vibe Score0
Human Vibe Score1
cryptobooty_This week

[D] Using AI to navigate the complexities of regulatory frameworks

I would be interested in hearing opinions for using AI for regulatory assurance and compliance in regulated industries, what are your thoughts? Explanation: An AI-driven compliance system ensuring adherence to evolving regulations, minimizing risks, and enabling businesses to operate confidently within legal boundaries. Pairing Large Language Models (LLMs) with blockchain technology to offer a range of benefits, particularly in the context of regulatory compliance. LLMs, powered by advanced natural language processing and machine learning capabilities, can enhance regulatory compliance processes in several ways. Firstly, they can automate the analysis of regulatory documents, helping businesses stay updated with evolving compliance requirements. LLMs can also assist in generating compliance reports, simplifying complex legal language into understandable summaries. Furthermore, by integrating LLMs into smart contracts, businesses can ensure that contract terms adhere to regulatory guidelines automatically. The integration of LLMs with blockchain can significantly improve regulatory compliance by automating document analysis, simplifying legal language, monitoring compliance in real-time, and enhancing customer interactions—all contributing to greater efficiency and accuracy in adhering to regulatory standards. I have a whole technical whitepaper with this stuff on hand, if anyone would like to review it let me know..

[News] AAAI 2025 Workshop on AI for Music 🎶
reddit
LLM Vibe Score0
Human Vibe Score0
Saysike_rightnow69This week

[News] AAAI 2025 Workshop on AI for Music 🎶

Hi everyone! We’re hosting the first “AI for Music” workshop at AAAI on March 3, 2025. The workshop will explore how AI is transforming music creation, recognition, education, and more. Topics include AI-driven composition, sound design, legal and ethical challenges, and AI’s impact on musicians’ careers. Submissions (up to 6 pages) are welcome until November 22, 2024. Work in progress is encouraged! Workshop Summary This one-day workshop will explore the dynamic intersection of artificial intelligence and music. It explores how AI is transforming music creation, recognition, and education, ethical and legal implications, as well as business opportunities. We will investigate how AI is changing the music industry and education—from composition to performance, production, collaboration, and audience experience. Participants will gain insights into the technological challenges in music and how AI can enhance creativity, enabling musicians and producers to push the boundaries of their art. The workshop will cover topics such as AI-driven music composition, where algorithms generate melodies, harmonies, and even full orchestral arrangements. We will discuss how AI tools assist in sound design, remixing, and mastering, allowing for new sonic possibilities and efficiencies in music production. Additionally, we'll examine AI's impact on music education and the careers of musicians, exploring advanced learning tools and teaching methods. AI technologies are increasingly adopted in the music and entertainment industry. The workshop will also discuss the legal and ethical implications of AI in music, including questions of authorship, originality, and the evolving role of human artists in an increasingly automated world. This workshop is designed for AI researchers, musicians, producers, and educators interested in the current status and future of AI in music. Call for Papers Submissions should be a maximum of 6 pages. Work in progress is welcome. Authors are encouraged to include descriptions of their prototype implementations. Additionally, authors are encouraged to interact with workshop attendees by including posters or demonstrations at the end of the workshop. Conceptual designs without any evidence of practical implementation are discouraged. Topics of interest are (but not limited to) AI-Driven Music Composition and Generation AI in Music Practice and Performance AI-based Music Recognition and Transcription AI Applications in Sound Design AI-Generated Videos and Lyrics Based on Music Legal and Ethical Implications of AI in Music AI’s Impact on Musicians’ Careers and Education Business Opportunities of AI in Music Music Datasets and Data Analysis Important Dates Submission Deadline: November 22, 2024 Notification: December 9, 2024 Final Version Due: December 31, 2024 We hope to see you there! 🎶

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.
reddit
LLM Vibe Score0
Human Vibe Score0.765
hardmaruThis week

Interview with Juergen Schmidhuber, renowned ‘Father Of Modern AI’, says his life’s work won't lead to dystopia.

Schmidhuber interview expressing his views on the future of AI and AGI. Original source. I think the interview is of interest to r/MachineLearning, and presents an alternate view, compared to other influential leaders in AI. Juergen Schmidhuber, Renowned 'Father Of Modern AI,' Says His Life’s Work Won't Lead To Dystopia May 23, 2023. Contributed by Hessie Jones. Amid the growing concern about the impact of more advanced artificial intelligence (AI) technologies on society, there are many in the technology community who fear the implications of the advancements in Generative AI if they go unchecked. Dr. Juergen Schmidhuber, a renowned scientist, artificial intelligence researcher and widely regarded as one of the pioneers in the field, is more optimistic. He declares that many of those who suddenly warn against the dangers of AI are just seeking publicity, exploiting the media’s obsession with killer robots which has attracted more attention than “good AI” for healthcare etc. The potential to revolutionize various industries and improve our lives is clear, as are the equal dangers if bad actors leverage the technology for personal gain. Are we headed towards a dystopian future, or is there reason to be optimistic? I had a chance to sit down with Dr. Juergen Schmidhuber to understand his perspective on this seemingly fast-moving AI-train that will leap us into the future. As a teenager in the 1970s, Juergen Schmidhuber became fascinated with the idea of creating intelligent machines that could learn and improve on their own, becoming smarter than himself within his lifetime. This would ultimately lead to his groundbreaking work in the field of deep learning. In the 1980s, he studied computer science at the Technical University of Munich (TUM), where he earned his diploma in 1987. His thesis was on the ultimate self-improving machines that, not only, learn through some pre-wired human-designed learning algorithm, but also learn and improve the learning algorithm itself. Decades later, this became a hot topic. He also received his Ph.D. at TUM in 1991 for work that laid some of the foundations of modern AI. Schmidhuber is best known for his contributions to the development of recurrent neural networks (RNNs), the most powerful type of artificial neural network that can process sequential data such as speech and natural language. With his students Sepp Hochreiter, Felix Gers, Alex Graves, Daan Wierstra, and others, he published architectures and training algorithms for the long short-term memory (LSTM), a type of RNN that is widely used in natural language processing, speech recognition, video games, robotics, and other applications. LSTM has become the most cited neural network of the 20th century, and Business Week called it "arguably the most commercial AI achievement." Throughout his career, Schmidhuber has received various awards and accolades for his groundbreaking work. In 2013, he was awarded the Helmholtz Prize, which recognizes significant contributions to the field of machine learning. In 2016, he was awarded the IEEE Neural Network Pioneer Award for "pioneering contributions to deep learning and neural networks." The media have often called him the “father of modern AI,” because the most cited neural networks all build on his lab’s work. He is quick to point out, however, that AI history goes back centuries. Despite his many accomplishments, at the age of 60, he feels mounting time pressure towards building an Artificial General Intelligence within his lifetime and remains committed to pushing the boundaries of AI research and development. He is currently director of the KAUST AI Initiative, scientific director of the Swiss AI Lab IDSIA, and co-founder and chief scientist of AI company NNAISENSE, whose motto is "AI∀" which is a math-inspired way of saying "AI For All." He continues to work on cutting-edge AI technologies and applications to improve human health and extend human lives and make lives easier for everyone. The following interview has been edited for clarity. Jones: Thank you Juergen for joining me. You have signed letters warning about AI weapons. But you didn't sign the recent publication, "Pause Gigantic AI Experiments: An Open Letter"? Is there a reason? Schmidhuber: Thank you Hessie. Glad to speak with you. I have realized that many of those who warn in public against the dangers of AI are just seeking publicity. I don't think the latest letter will have any significant impact because many AI researchers, companies, and governments will ignore it completely. The proposal frequently uses the word "we" and refers to "us," the humans. But as I have pointed out many times in the past, there is no "we" that everyone can identify with. Ask 10 different people, and you will hear 10 different opinions about what is "good." Some of those opinions will be completely incompatible with each other. Don't forget the enormous amount of conflict between the many people. The letter also says, "If such a pause cannot be quickly put in place, governments should intervene and impose a moratorium." The problem is that different governments have ALSO different opinions about what is good for them and for others. Great Power A will say, if we don't do it, Great Power B will, perhaps secretly, and gain an advantage over us. The same is true for Great Powers C and D. Jones: Everyone acknowledges this fear surrounding current generative AI technology. Moreover, the existential threat of this technology has been publicly acknowledged by Sam Altman, CEO of OpenAI himself, calling for AI regulation. From your perspective, is there an existential threat? Schmidhuber: It is true that AI can be weaponized, and I have no doubt that there will be all kinds of AI arms races, but AI does not introduce a new quality of existential threat. The threat coming from AI weapons seems to pale in comparison to the much older threat from nuclear hydrogen bombs that don’t need AI at all. We should be much more afraid of half-century-old tech in the form of H-bomb rockets. The Tsar Bomba of 1961 had almost 15 times more destructive power than all weapons of WW-II combined. Despite the dramatic nuclear disarmament since the 1980s, there are still more than enough nuclear warheads to wipe out human civilization within two hours, without any AI I’m much more worried about that old existential threat than the rather harmless AI weapons. Jones: I realize that while you compare AI to the threat of nuclear bombs, there is a current danger that a current technology can be put in the hands of humans and enable them to “eventually” exact further harms to individuals of group in a very precise way, like targeted drone attacks. You are giving people a toolset that they've never had before, enabling bad actors, as some have pointed out, to be able to do a lot more than previously because they didn't have this technology. Schmidhuber: Now, all that sounds horrible in principle, but our existing laws are sufficient to deal with these new types of weapons enabled by AI. If you kill someone with a gun, you will go to jail. Same if you kill someone with one of these drones. Law enforcement will get better at understanding new threats and new weapons and will respond with better technology to combat these threats. Enabling drones to target persons from a distance in a way that requires some tracking and some intelligence to perform, which has traditionally been performed by skilled humans, to me, it seems is just an improved version of a traditional weapon, like a gun, which is, you know, a little bit smarter than the old guns. But, in principle, all of that is not a new development. For many centuries, we have had the evolution of better weaponry and deadlier poisons and so on, and law enforcement has evolved their policies to react to these threats over time. So, it's not that we suddenly have a new quality of existential threat and it's much more worrisome than what we have had for about six decades. A large nuclear warhead doesn’t need fancy face recognition to kill an individual. No, it simply wipes out an entire city with ten million inhabitants. Jones: The existential threat that’s implied is the extent to which humans have control over this technology. We see some early cases of opportunism which, as you say, tends to get more media attention than positive breakthroughs. But you’re implying that this will all balance out? Schmidhuber: Historically, we have a long tradition of technological breakthroughs that led to advancements in weapons for the purpose of defense but also for protection. From sticks, to rocks, to axes to gunpowder to cannons to rockets… and now to drones… this has had a drastic influence on human history but what has been consistent throughout history is that those who are using technology to achieve their own ends are themselves, facing the same technology because the opposing side is learning to use it against them. And that's what has been repeated in thousands of years of human history and it will continue. I don't see the new AI arms race as something that is remotely as existential a threat as the good old nuclear warheads. You said something important, in that some people prefer to talk about the downsides rather than the benefits of this technology, but that's misleading, because 95% of all AI research and AI development is about making people happier and advancing human life and health. Jones: Let’s touch on some of those beneficial advances in AI research that have been able to radically change present day methods and achieve breakthroughs. Schmidhuber: All right! For example, eleven years ago, our team with my postdoc Dan Ciresan was the first to win a medical imaging competition through deep learning. We analyzed female breast cells with the objective to determine harmless cells vs. those in the pre-cancer stage. Typically, a trained oncologist needs a long time to make these determinations. Our team, who knew nothing about cancer, were able to train an artificial neural network, which was totally dumb in the beginning, on lots of this kind of data. It was able to outperform all the other methods. Today, this is being used not only for breast cancer, but also for radiology and detecting plaque in arteries, and many other things. Some of the neural networks that we have developed in the last 3 decades are now prevalent across thousands of healthcare applications, detecting Diabetes and Covid-19 and what not. This will eventually permeate across all healthcare. The good consequences of this type of AI are much more important than the click-bait new ways of conducting crimes with AI. Jones: Adoption is a product of reinforced outcomes. The massive scale of adoption either leads us to believe that people have been led astray, or conversely, technology is having a positive effect on people’s lives. Schmidhuber: The latter is the likely case. There's intense commercial pressure towards good AI rather than bad AI because companies want to sell you something, and you are going to buy only stuff you think is going to be good for you. So already just through this simple, commercial pressure, you have a tremendous bias towards good AI rather than bad AI. However, doomsday scenarios like in Schwarzenegger movies grab more attention than documentaries on AI that improve people’s lives. Jones: I would argue that people are drawn to good stories – narratives that contain an adversary and struggle, but in the end, have happy endings. And this is consistent with your comment on human nature and how history, despite its tendency for violence and destruction of humanity, somehow tends to correct itself. Let’s take the example of a technology, which you are aware – GANs – General Adversarial Networks, which today has been used in applications for fake news and disinformation. In actuality, the purpose in the invention of GANs was far from what it is used for today. Schmidhuber: Yes, the name GANs was created in 2014 but we had the basic principle already in the early 1990s. More than 30 years ago, I called it artificial curiosity. It's a very simple way of injecting creativity into a little two network system. This creative AI is not just trying to slavishly imitate humans. Rather, it’s inventing its own goals. Let me explain: You have two networks. One network is producing outputs that could be anything, any action. Then the second network is looking at these actions and it’s trying to predict the consequences of these actions. An action could move a robot, then something happens, and the other network is just trying to predict what will happen. Now we can implement artificial curiosity by reducing the prediction error of the second network, which, at the same time, is the reward of the first network. The first network wants to maximize its reward and so it will invent actions that will lead to situations that will surprise the second network, which it has not yet learned to predict well. In the case where the outputs are fake images, the first network will try to generate images that are good enough to fool the second network, which will attempt to predict the reaction of the environment: fake or real image, and it will try to become better at it. The first network will continue to also improve at generating images whose type the second network will not be able to predict. So, they fight each other. The 2nd network will continue to reduce its prediction error, while the 1st network will attempt to maximize it. Through this zero-sum game the first network gets better and better at producing these convincing fake outputs which look almost realistic. So, once you have an interesting set of images by Vincent Van Gogh, you can generate new images that leverage his style, without the original artist having ever produced the artwork himself. Jones: I see how the Van Gogh example can be applied in an education setting and there are countless examples of artists mimicking styles from famous painters but image generation from this instance that can happen within seconds is quite another feat. And you know this is how GANs has been used. What’s more prevalent today is a socialized enablement of generating images or information to intentionally fool people. It also surfaces new harms that deal with the threat to intellectual property and copyright, where laws have yet to account for. And from your perspective this was not the intention when the model was conceived. What was your motivation in your early conception of what is now GANs? Schmidhuber: My old motivation for GANs was actually very important and it was not to create deepfakes or fake news but to enable AIs to be curious and invent their own goals, to make them explore their environment and make them creative. Suppose you have a robot that executes one action, then something happens, then it executes another action, and so on, because it wants to achieve certain goals in the environment. For example, when the battery is low, this will trigger “pain” through hunger sensors, so it wants to go to the charging station, without running into obstacles, which will trigger other pain sensors. It will seek to minimize pain (encoded through numbers). Now the robot has a friend, the second network, which is a world model ––it’s a prediction machine that learns to predict the consequences of the robot’s actions. Once the robot has a good model of the world, it can use it for planning. It can be used as a simulation of the real world. And then it can determine what is a good action sequence. If the robot imagines this sequence of actions, the model will predict a lot of pain, which it wants to avoid. If it plays this alternative action sequence in its mental model of the world, then it will predict a rewarding situation where it’s going to sit on the charging station and its battery is going to load again. So, it'll prefer to execute the latter action sequence. In the beginning, however, the model of the world knows nothing, so how can we motivate the first network to generate experiments that lead to data that helps the world model learn something it didn’t already know? That’s what artificial curiosity is about. The dueling two network systems effectively explore uncharted environments by creating experiments so that over time the curious AI gets a better sense of how the environment works. This can be applied to all kinds of environments, and has medical applications. Jones: Let’s talk about the future. You have said, “Traditional humans won’t play a significant role in spreading intelligence across the universe.” Schmidhuber: Let’s first conceptually separate two types of AIs. The first type of AI are tools directed by humans. They are trained to do specific things like accurately detect diabetes or heart disease and prevent attacks before they happen. In these cases, the goal is coming from the human. More interesting AIs are setting their own goals. They are inventing their own experiments and learning from them. Their horizons expand and eventually they become more and more general problem solvers in the real world. They are not controlled by their parents, but much of what they learn is through self-invented experiments. A robot, for example, is rotating a toy, and as it is doing this, the video coming in through the camera eyes, changes over time and it begins to learn how this video changes and learns how the 3D nature of the toy generates certain videos if you rotate it a certain way, and eventually, how gravity works, and how the physics of the world works. Like a little scientist! And I have predicted for decades that future scaled-up versions of such AI scientists will want to further expand their horizons, and eventually go where most of the physical resources are, to build more and bigger AIs. And of course, almost all of these resources are far away from earth out there in space, which is hostile to humans but friendly to appropriately designed AI-controlled robots and self-replicating robot factories. So here we are not talking any longer about our tiny biosphere; no, we are talking about the much bigger rest of the universe. Within a few tens of billions of years, curious self-improving AIs will colonize the visible cosmos in a way that’s infeasible for humans. Those who don’t won’t have an impact. Sounds like science fiction, but since the 1970s I have been unable to see a plausible alternative to this scenario, except for a global catastrophe such as an all-out nuclear war that stops this development before it takes off. Jones: How long have these AIs, which can set their own goals — how long have they existed? To what extent can they be independent of human interaction? Schmidhuber: Neural networks like that have existed for over 30 years. My first simple adversarial neural network system of this kind is the one from 1990 described above. You don’t need a teacher there; it's just a little agent running around in the world and trying to invent new experiments that surprise its own prediction machine. Once it has figured out certain parts of the world, the agent will become bored and will move on to more exciting experiments. The simple 1990 systems I mentioned have certain limitations, but in the past three decades, we have also built more sophisticated systems that are setting their own goals and such systems I think will be essential for achieving true intelligence. If you are only imitating humans, you will never go beyond them. So, you really must give AIs the freedom to explore previously unexplored regions of the world in a way that no human is really predefining. Jones: Where is this being done today? Schmidhuber: Variants of neural network-based artificial curiosity are used today for agents that learn to play video games in a human-competitive way. We have also started to use them for automatic design of experiments in fields such as materials science. I bet many other fields will be affected by it: chemistry, biology, drug design, you name it. However, at least for now, these artificial scientists, as I like to call them, cannot yet compete with human scientists. I don’t think it’s going to stay this way but, at the moment, it’s still the case. Sure, AI has made a lot of progress. Since 1997, there have been superhuman chess players, and since 2011, through the DanNet of my team, there have been superhuman visual pattern recognizers. But there are other things where humans, at the moment at least, are much better, in particular, science itself. In the lab we have many first examples of self-directed artificial scientists, but they are not yet convincing enough to appear on the radar screen of the public space, which is currently much more fascinated with simpler systems that just imitate humans and write texts based on previously seen human-written documents. Jones: You speak of these numerous instances dating back 30 years of these lab experiments where these self-driven agents are deciding and learning and moving on once they’ve learned. And I assume that that rate of learning becomes even faster over time. What kind of timeframe are we talking about when this eventually is taken outside of the lab and embedded into society? Schmidhuber: This could still take months or even years :-) Anyway, in the not-too-distant future, we will probably see artificial scientists who are good at devising experiments that allow them to discover new, previously unknown physical laws. As always, we are going to profit from the old trend that has held at least since 1941: every decade compute is getting 100 times cheaper. Jones: How does this trend affect modern AI such as ChatGPT? Schmidhuber: Perhaps you know that all the recent famous AI applications such as ChatGPT and similar models are largely based on principles of artificial neural networks invented in the previous millennium. The main reason why they works so well now is the incredible acceleration of compute per dollar. ChatGPT is driven by a neural network called “Transformer” described in 2017 by Google. I am happy about that because a quarter century earlier in 1991 I had a particular Transformer variant which is now called the “Transformer with linearized self-attention”. Back then, not much could be done with it, because the compute cost was a million times higher than today. But today, one can train such models on half the internet and achieve much more interesting results. Jones: And for how long will this acceleration continue? Schmidhuber: There's no reason to believe that in the next 30 years, we won't have another factor of 1 million and that's going to be really significant. In the near future, for the first time we will have many not-so expensive devices that can compute as much as a human brain. The physical limits of computation, however, are much further out so even if the trend of a factor of 100 every decade continues, the physical limits (of 1051 elementary instructions per second and kilogram of matter) won’t be hit until, say, the mid-next century. Even in our current century, however, we’ll probably have many machines that compute more than all 10 billion human brains collectively and you can imagine, everything will change then! Jones: That is the big question. Is everything going to change? If so, what do you say to the next generation of leaders, currently coming out of college and university. So much of this change is already impacting how they study, how they will work, or how the future of work and livelihood is defined. What is their purpose and how do we change our systems so they will adapt to this new version of intelligence? Schmidhuber: For decades, people have asked me questions like that, because you know what I'm saying now, I have basically said since the 1970s, it’s just that today, people are paying more attention because, back then, they thought this was science fiction. They didn't think that I would ever come close to achieving my crazy life goal of building a machine that learns to become smarter than myself such that I can retire. But now many have changed their minds and think it's conceivable. And now I have two daughters, 23 and 25. People ask me: what do I tell them? They know that Daddy always said, “It seems likely that within your lifetimes, you will have new types of intelligence that are probably going to be superior in many ways, and probably all kinds of interesting ways.” How should they prepare for that? And I kept telling them the obvious: Learn how to learn new things! It's not like in the previous millennium where within 20 years someone learned to be a useful member of society, and then took a job for 40 years and performed in this job until she received her pension. Now things are changing much faster and we must learn continuously just to keep up. I also told my girls that no matter how smart AIs are going to get, learn at least the basics of math and physics, because that’s the essence of our universe, and anybody who understands this will have an advantage, and learn all kinds of new things more easily. I also told them that social skills will remain important, because most future jobs for humans will continue to involve interactions with other humans, but I couldn’t teach them anything about that; they know much more about social skills than I do. You touched on the big philosophical question about people’s purpose. Can this be answered without answering the even grander question: What’s the purpose of the entire universe? We don’t know. But what’s happening right now might be connected to the unknown answer. Don’t think of humans as the crown of creation. Instead view human civilization as part of a much grander scheme, an important step (but not the last one) on the path of the universe from very simple initial conditions towards more and more unfathomable complexity. Now it seems ready to take its next step, a step comparable to the invention of life itself over 3.5 billion years ago. Alas, don’t worry, in the end, all will be good! Jones: Let’s get back to this transformation happening right now with OpenAI. There are many questioning the efficacy and accuracy of ChatGPT, and are concerned its release has been premature. In light of the rampant adoption, educators have banned its use over concerns of plagiarism and how it stifles individual development. Should large language models like ChatGPT be used in school? Schmidhuber: When the calculator was first introduced, instructors forbade students from using it in school. Today, the consensus is that kids should learn the basic methods of arithmetic, but they should also learn to use the “artificial multipliers” aka calculators, even in exams, because laziness and efficiency is a hallmark of intelligence. Any intelligent being wants to minimize its efforts to achieve things. And that's the reason why we have tools, and why our kids are learning to use these tools. The first stone tools were invented maybe 3.5 million years ago; tools just have become more sophisticated over time. In fact, humans have changed in response to the properties of their tools. Our anatomical evolution was shaped by tools such as spears and fire. So, it's going to continue this way. And there is no permanent way of preventing large language models from being used in school. Jones: And when our children, your children graduate, what does their future work look like? Schmidhuber: A single human trying to predict details of how 10 billion people and their machines will evolve in the future is like a single neuron in my brain trying to predict what the entire brain and its tens of billions of neurons will do next year. 40 years ago, before the WWW was created at CERN in Switzerland, who would have predicted all those young people making money as YouTube video bloggers? Nevertheless, let’s make a few limited job-related observations. For a long time, people have thought that desktop jobs may require more intelligence than skills trade or handicraft professions. But now, it turns out that it's much easier to replace certain aspects of desktop jobs than replacing a carpenter, for example. Because everything that works well in AI is happening behind the screen currently, but not so much in the physical world. There are now artificial systems that can read lots of documents and then make really nice summaries of these documents. That is a desktop job. Or you give them a description of an illustration that you want to have for your article and pretty good illustrations are being generated that may need some minimal fine-tuning. But you know, all these desktop jobs are much easier to facilitate than the real tough jobs in the physical world. And it's interesting that the things people thought required intelligence, like playing chess, or writing or summarizing documents, are much easier for machines than they thought. But for things like playing football or soccer, there is no physical robot that can remotely compete with the abilities of a little boy with these skills. So, AI in the physical world, interestingly, is much harder than AI behind the screen in virtual worlds. And it's really exciting, in my opinion, to see that jobs such as plumbers are much more challenging than playing chess or writing another tabloid story. Jones: The way data has been collected in these large language models does not guarantee personal information has not been excluded. Current consent laws already are outdated when it comes to these large language models (LLM). The concern, rightly so, is increasing surveillance and loss of privacy. What is your view on this? Schmidhuber: As I have indicated earlier: are surveillance and loss of privacy inevitable consequences of increasingly complex societies? Super-organisms such as cities and states and companies consist of numerous people, just like people consist of numerous cells. These cells enjoy little privacy. They are constantly monitored by specialized "police cells" and "border guard cells": Are you a cancer cell? Are you an external intruder, a pathogen? Individual cells sacrifice their freedom for the benefits of being part of a multicellular organism. Similarly, for super-organisms such as nations. Over 5000 years ago, writing enabled recorded history and thus became its inaugural and most important invention. Its initial purpose, however, was to facilitate surveillance, to track citizens and their tax payments. The more complex a super-organism, the more comprehensive its collection of information about its constituents. 200 years ago, at least, the parish priest in each village knew everything about all the village people, even about those who did not confess, because they appeared in the confessions of others. Also, everyone soon knew about the stranger who had entered the village, because some occasionally peered out of the window, and what they saw got around. Such control mechanisms were temporarily lost through anonymization in rapidly growing cities but are now returning with the help of new surveillance devices such as smartphones as part of digital nervous systems that tell companies and governments a lot about billions of users. Cameras and drones etc. are becoming increasingly tinier and more ubiquitous. More effective recognition of faces and other detection technology are becoming cheaper and cheaper, and many will use it to identify others anywhere on earth; the big wide world will not offer any more privacy than the local village. Is this good or bad? Some nations may find it easier than others to justify more complex kinds of super-organisms at the expense of the privacy rights of their constituents. Jones: So, there is no way to stop or change this process of collection, or how it continuously informs decisions over time? How do you see governance and rules responding to this, especially amid Italy’s ban on ChatGPT following suspected user data breach and the more recent news about the Meta’s record $1.3billion fine in the company’s handling of user information? Schmidhuber: Data collection has benefits and drawbacks, such as the loss of privacy. How to balance those? I have argued for addressing this through data ownership in data markets. If it is true that data is the new oil, then it should have a price, just like oil. At the moment, the major surveillance platforms such as Meta do not offer users any money for their data and the transitive loss of privacy. In the future, however, we will likely see attempts at creating efficient data markets to figure out the data's true financial value through the interplay between supply and demand. Even some of the sensitive medical data should not be priced by governmental regulators but by patients (and healthy persons) who own it and who may sell or license parts thereof as micro-entrepreneurs in a healthcare data market. Following a previous interview, I gave for one of the largest re-insurance companies , let's look at the different participants in such a data market: patients, hospitals, data companies. (1) Patients with a rare form of cancer can offer more valuable data than patients with a very common form of cancer. (2) Hospitals and their machines are needed to extract the data, e.g., through magnet spin tomography, radiology, evaluations through human doctors, and so on. (3) Companies such as Siemens, Google or IBM would like to buy annotated data to make better artificial neural networks that learn to predict pathologies and diseases and the consequences of therapies. Now the market’s invisible hand will decide about the data’s price through the interplay between demand and supply. On the demand side, you will have several companies offering something for the data, maybe through an app on the smartphone (a bit like a stock market app). On the supply side, each patient in this market should be able to profit from high prices for rare valuable types of data. Likewise, competing data extractors such as hospitals will profit from gaining recognition and trust for extracting data well at a reasonable price. The market will make the whole system efficient through incentives for all who are doing a good job. Soon there will be a flourishing ecosystem of commercial data market advisors and what not, just like the ecosystem surrounding the traditional stock market. The value of the data won’t be determined by governments or ethics committees, but by those who own the data and decide by themselves which parts thereof they want to license to others under certain conditions. At first glance, a market-based system seems to be detrimental to the interest of certain monopolistic companies, as they would have to pay for the data - some would prefer free data and keep their monopoly. However, since every healthy and sick person in the market would suddenly have an incentive to collect and share their data under self-chosen anonymity conditions, there will soon be many more useful data to evaluate all kinds of treatments. On average, people will live longer and healthier, and many companies and the entire healthcare system will benefit. Jones: Finally, what is your view on open source versus the private companies like Google and OpenAI? Is there a danger to supporting these private companies’ large language models versus trying to keep these models open source and transparent, very much like what LAION is doing? Schmidhuber: I signed this open letter by LAION because I strongly favor the open-source movement. And I think it's also something that is going to challenge whatever big tech dominance there might be at the moment. Sure, the best models today are run by big companies with huge budgets for computers, but the exciting fact is that open-source models are not so far behind, some people say maybe six to eight months only. Of course, the private company models are all based on stuff that was created in academia, often in little labs without so much funding, which publish without patenting their results and open source their code and others take it and improved it. Big tech has profited tremendously from academia; their main achievement being that they have scaled up everything greatly, sometimes even failing to credit the original inventors. So, it's very interesting to see that as soon as some big company comes up with a new scaled-up model, lots of students out there are competing, or collaborating, with each other, trying to come up with equal or better performance on smaller networks and smaller machines. And since they are open sourcing, the next guy can have another great idea to improve it, so now there’s tremendous competition also for the big companies. Because of that, and since AI is still getting exponentially cheaper all the time, I don't believe that big tech companies will dominate in the long run. They find it very hard to compete with the enormous open-source movement. As long as you can encourage the open-source community, I think you shouldn't worry too much. Now, of course, you might say if everything is open source, then the bad actors also will more easily have access to these AI tools. And there's truth to that. But as always since the invention of controlled fire, it was good that knowledge about how technology works quickly became public such that everybody could use it. And then, against any bad actor, there's almost immediately a counter actor trying to nullify his efforts. You see, I still believe in our old motto "AI∀" or "AI For All." Jones: Thank you, Juergen for sharing your perspective on this amazing time in history. It’s clear that with new technology, the enormous potential can be matched by disparate and troubling risks which we’ve yet to solve, and even those we have yet to identify. If we are to dispel the fear of a sentient system for which we have no control, humans, alone need to take steps for more responsible development and collaboration to ensure AI technology is used to ultimately benefit society. Humanity will be judged by what we do next.

[D] Working with Various OpenAI Models - My Thoughts and Experiences
reddit
LLM Vibe Score0
Human Vibe Score1
bart_soThis week

[D] Working with Various OpenAI Models - My Thoughts and Experiences

I'd like to share some of my insights from working with OpenAI models on my project. I'm not exactly a tech person, so some of these observations might be obvious to some of you, but I think they're worth sharing for those with less experience or who aren't directly in the field. Intro: In early February, my friends and I started a side project where we aimed to build an AI portal called DoMoreAI. For the first two months, we focused on creating an AI tools catalog. Our experiment is based on the idea that in the future, companies will be "Managed by AI, and Driven by Humans." So, our goal was to leave as much as possible to AI and automation, with all the consequences that come with it. As mentioned before, I'm not a tech guy, but I've been playing with OpenAI models for the past few years, so I had some experience when starting this project. Tasks We Assigned to AI: Based on an AI tool's front page, we had the AI write a one-sentence summary of an AI project + write a more in-depth review of the project, categorize the project into different categories (WHAT category, like blog; TASK category, like writing; FOR category, like content creator), decide if the project offers iOS app, Android app, browser extension, API, find social media links, process information about prices and pricing policy, and more. Interesting Findings: When working on a more complex prompt, particularly one with several tasks, you have to be patient when crafting it. You might eventually find the right wording to achieve the desired results, but it takes time and lots of trial and error. You might even be surprised by what works and what doesn't. If cost isn't an issue, you can always break up one complex prompt into several smaller prompts. However, the more requests you send, the higher the chance of encountering errors like the 429 error, which may require setting up more sophisticated error handlers for the whole process. You need error handlers because, without them, the automation process will suffer. With more complex prompts, there are no prompts that always yield the expected results, so you have to plan for what to do if the results aren't satisfactory and how to determine if the result meets your expectations or not. GPT-3.0 struggled with outputting JSON strings as requested, but GPT-3.5 is much better at this task. I'd say the number of errors from improperly formatting the response in JSON is 3-4 times lower for GPT-3.5. AI models have trouble distinguishing words singular forms from plural forms. Just because you can use AI for a given task doesn't mean you should. Often, standard techniques like using regex can yield better results when extracting something from text than relying solely on AI. A hybrid solution often provides the best results. We're using ADA vector embeddings and Pinecone for semantic search in our catalog, and I was really surprised to find that this kind of semantic search works in any language. Even if all the content on our page is in English, you can search in another language and still get decent results. The Best Mishaps: As you may know, there's a token limit for requests, so we have to ensure that we don't send too long a part of the front page to the model. Sometimes, this led to funny situations. If the HTML of the page consists mainly of styles and the model is fed only with styles, then when you ask the AI to write a review of the project, it writes about how beautiful, mobile-friendly, etc., the project is. For one project, instead of writing the one-sentence summary, the model's output only included the prompt we were using to generate the summary (needless to say, it was automatically published on our website ;)) ​ I hope this post will be useful. We are currently running a campaign on Product Hunt: https://www.producthunt.com/posts/domore-ai So, if you have any feedback for us or think what we're doing is cool, don't hesitate to support us :)

[News] AAAI 2025 Workshop on AI for Music 🎶
reddit
LLM Vibe Score0
Human Vibe Score0
Saysike_rightnow69This week

[News] AAAI 2025 Workshop on AI for Music 🎶

Hi everyone! We’re hosting the first “AI for Music” workshop at AAAI on March 3, 2025. The workshop will explore how AI is transforming music creation, recognition, education, and more. Topics include AI-driven composition, sound design, legal and ethical challenges, and AI’s impact on musicians’ careers. Submissions (up to 6 pages) are welcome until November 22, 2024. Work in progress is encouraged! Workshop Summary This one-day workshop will explore the dynamic intersection of artificial intelligence and music. It explores how AI is transforming music creation, recognition, and education, ethical and legal implications, as well as business opportunities. We will investigate how AI is changing the music industry and education—from composition to performance, production, collaboration, and audience experience. Participants will gain insights into the technological challenges in music and how AI can enhance creativity, enabling musicians and producers to push the boundaries of their art. The workshop will cover topics such as AI-driven music composition, where algorithms generate melodies, harmonies, and even full orchestral arrangements. We will discuss how AI tools assist in sound design, remixing, and mastering, allowing for new sonic possibilities and efficiencies in music production. Additionally, we'll examine AI's impact on music education and the careers of musicians, exploring advanced learning tools and teaching methods. AI technologies are increasingly adopted in the music and entertainment industry. The workshop will also discuss the legal and ethical implications of AI in music, including questions of authorship, originality, and the evolving role of human artists in an increasingly automated world. This workshop is designed for AI researchers, musicians, producers, and educators interested in the current status and future of AI in music. Call for Papers Submissions should be a maximum of 6 pages. Work in progress is welcome. Authors are encouraged to include descriptions of their prototype implementations. Additionally, authors are encouraged to interact with workshop attendees by including posters or demonstrations at the end of the workshop. Conceptual designs without any evidence of practical implementation are discouraged. Topics of interest are (but not limited to) AI-Driven Music Composition and Generation AI in Music Practice and Performance AI-based Music Recognition and Transcription AI Applications in Sound Design AI-Generated Videos and Lyrics Based on Music Legal and Ethical Implications of AI in Music AI’s Impact on Musicians’ Careers and Education Business Opportunities of AI in Music Music Datasets and Data Analysis Important Dates Submission Deadline: November 22, 2024 Notification: December 9, 2024 Final Version Due: December 31, 2024 We hope to see you there! 🎶

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)
reddit
LLM Vibe Score0
Human Vibe Score0
aadityauraThis week

[D] Last Week in Medical AI: Top LLM Research Papers/Models (December 7 - December 14, 2024)

[\[D\] Last Week in Medical AI: Top LLM Research Papers\/Models \(December 7 - December 14, 2024\)](https://preview.redd.it/o23fp3csj07e1.jpg?width=1280&format=pjpg&auto=webp&s=69e19fc351b3aa5e34c4c00e66245583f88bd9bb) Medical LLM & Other Models PediaBench: Chinese Pediatric LLM This paper introduces PediaBench, the first Chinese pediatric dataset for evaluating Large Language Model (LLM) question-answering performance, containing 4,565 objective and 1,632 subjective questions across 12 disease groups. BiMediX: Bilingual Medical LLM This paper introduces BiMediX, the first bilingual (English-Arabic) medical Mixture of Experts LLM, along with BiMed1.3M, a 1.3M bilingual medical instruction dataset with over 632M tokens used for training. Diverse medical knowledge integration This paper introduces BiMediX2, a bilingual (Arabic-English) Large Multimodal Model (LMM) based on Llama3.1 architecture, trained on 1.6M medical interaction samples. BRAD: Digital Biology Language Model This paper introduces BRAD (Bioinformatics Retrieval Augmented Digital assistant), an LLM-powered chatbot and agent system integrating various bioinformatics tools. MMedPO: Vision-Language Medical LLM This paper introduces MMedPO, a multimodal medical preference optimization approach to improve factual accuracy in Medical Large Vision-Language Models (Med-LVLMs) by addressing modality misalignment. Frameworks & Methodologies \- TOP-Training: Medical Q&A Framework \- Hybrid RAG: Secure Medical Data Management \- Zero-Shot ATC Clinical Coding \- Chest X-Ray Diagnosis Architecture \- Medical Imaging AI Democratization Benchmarks & Evaluations \- KorMedMCQA: Korean Healthcare Licensing Benchmark \- Large Language Model Medical Tasks \- Clinical T5 Model Performance Study \- Radiology Report Quality Assessment \- Genomic Analysis Benchmarking LLM Applications \- TCM-FTP: Herbal Prescription Prediction \- LLaSA: Activity Analysis via Sensors \- Emergency Department Visit Predictions \- Neurodegenerative Disease AI Diagnosis \- Kidney Disease Explainable AI Model Ethical AI & Privacy \- Privacy-Preserving LLM Mechanisms \- AI-Driven Digital Organism Modeling \- Biomedical Research Automation \- Multimodality in Medical Practice Full thread in detail: https://x.com/OpenlifesciAI/status/1867999825721242101

[R] AutoDev: Automated AI-Driven Development - Microsoft 2024
reddit
LLM Vibe Score0
Human Vibe Score0
Singularian2501This week

[R] AutoDev: Automated AI-Driven Development - Microsoft 2024

Paper: https://arxiv.org/abs/2403.08299 Sorry posted a wrong github link. The real code sadly isnt public yet! Thank you for everyone who pointed that out to me! ~~Github includes Code + AutoDev Coder Model:~~ ~~https://github.com/unit-mesh/auto-dev~~ Abstract: The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment. https://preview.redd.it/5nxqajnvbkoc1.jpg?width=924&format=pjpg&auto=webp&s=8343c5fb33d2914bbfbf2dd9c164b5970b9743ab https://preview.redd.it/z5fkkjnvbkoc1.jpg?width=1364&format=pjpg&auto=webp&s=bc434ff384d2ed67ea0382dbbb68b9a90313cd44

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Is there any point in building a product with AI anymore?
reddit
LLM Vibe Score0
Human Vibe Score1
jottrledThis week

Is there any point in building a product with AI anymore?

Everyone and their grandmother are building AI products. So it begs the question. Is the AI market now too saturated? Have all the AI apps been thought of? Of course not don't be silly, There is still a significant opportunity to create AI products and become profitable. But let's play devils advocate here. Let's say you're a developer and you want to build your first SaaS product. Now, imagine a world where all AI products were already thought of (a scary thought). What would you do? Would you move onto something else? See, when people think of an idea for a SaaS product what often happens is they do a quick Google search and tend to think "oh crap, it already exists, better move on". Maybe that's the right thing to do...but then again maybe it's not. Before you run for the hills, make sure to check the SEO potential for your idea. If your idea has the potential to rank high on Google and there are already hundreds/thousands of people looking for it then you can take that as all the validation you need to start building it. Here are 3 AI ideas that all have good SEO potential. Each idea has keywords that you can target with a difficulty level 500. This means it's easy to rank high in Google for them and they have a high number of people searching for them each month. AI Accounting Software A Saas product that uses AI to analyze bank transactions, invoices, and receipts to automatically match them and reconcile accounts in real-time, reducing manual work and errors. It would also offer predictive insights, suggesting optimal payment times or highlighting potential cash flow issues based on historical data. Could potentially be integrated with popular accounting software like QuickBooks or Xero. SEO Potential Keyword: ai accounting Keyword Difficulty: 9 Average Search Volume 2900 AI Human Resources Software AI Human Resources Software An AI-driven candidate screening and onboarding platform for small to medium-sized businesses. The tool would use AI to automatically filter job applications based on predefined criteria, rank candidates, and even conduct initial interview assessments using natural language processing. It could also manage onboarding tasks by automating the distribution of paperwork, training schedules, and team introductions. SEO Potential Keyword: ai human resources Keyword Difficulty: 17 Average Search Volume 2900 AI Nutrition Tool A Micro SaaS which creates personalized meal planning and nutrition analysis. The platform would use AI to create tailored meal plans based on users' dietary goals, preferences, allergies, and health data (such as activity level or medical conditions). It could analyze food labels, suggest healthier alternatives, and track nutrient intake in real time, helping users maintain balanced diets. SEO Potential Keyword: ai nutrition Keyword Difficulty: 3 Average Search Volume 720 I created a tool (check the first comment) to find ideas like this.

Building and launching an AI-powered Product Strategy tool, or; a story of nights and weekends
reddit
LLM Vibe Score0
Human Vibe Score1
_raZeThis week

Building and launching an AI-powered Product Strategy tool, or; a story of nights and weekends

Speaking to peers in the software development sphere I learned of one constant that we had all personally experienced throughout our careers: a bloated product development process that feels like work for the sake of work, centred around the highest-paid person's opinion instead of its customers. We didn't like how current tools assume AI will provide the perfect answer on the first run. Instead, we wanted a tool that allows for manual refining and editing AI suggestions, keeping all previous ideas in context. This way, we can develop a solution step by step, instead of trying to get it perfect on the first try. An approach more similar to how you'd typically approach product discovery as a human. AI is then used to help save time and reduce admin, instead of replace the expert So, we got together and asked over 100 Product Managers questions about it, brought all that feedback goodness together, and started building Squad. We think we've created something really cool and hope you think so too. The ELI5 on what Squad does: 1) Creates alignment that empowers bottom up software development whilst keeping executive in the loop 2) Increases confidence that what you're building is what people actually want - data driven by default 2) Speeds up the time from idea --> execution by ideating with you on an experimentation approach 3) Helps gives PMs time back to focus on strategy (currently stats show they spend 75% of their time on admin, 25% on strategy) The team hustled hard on this as a passion project while working day jobs, and today have launched on Product Hunt. Check it out and see if the mission resonates with you, we'd appreciate the love! https://www.producthunt.com/posts/squad-8b75e29c-d767-4a8f-a60a-fd162e141a72 ​

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

MVP + AI/ML Implementation/Integration - Done for you SaaS
reddit
LLM Vibe Score0
Human Vibe Score1
rikksamThis week

MVP + AI/ML Implementation/Integration - Done for you SaaS

In today’s fast-paced world, businesses need to stay ahead of the curve. Leveraging AI, ML, and Cloud technologies isn't just an option—it's a necessity. We specialize in providing cutting-edge AI/ML solutions and Cloud services that empower businesses to innovate, automate, and scale like never before. Why AI and ML Matter Artificial Intelligence (AI) and Machine Learning (ML) are revolutionizing industries by enabling systems to learn, adapt, and improve over time. Whether it's predicting customer behavior, automating tasks, or enhancing decision-making, AI and ML open up a world of possibilities. Key Benefits of AI and ML: Enhanced Decision-Making: Harness predictive analytics to make data-driven decisions. Automation: Streamline operations with intelligent automation. Personalization: Deliver tailored experiences to your customers, increasing engagement and loyalty. Efficiency: Reduce costs and time through optimized processes. How Cloud Services Drive Innovation The Cloud is the backbone of modern business infrastructure. It allows companies to be more agile, scalable, and resilient. With Cloud computing, businesses can access powerful tools and resources on-demand, without the need for significant upfront investment. Advantages of Cloud Services: Scalability: Easily scale up or down based on your business needs. Cost Efficiency: Pay only for the resources you use, minimizing overhead. Security: Benefit from the highest standards of data security and compliance. Flexibility: Access your applications and data from anywhere, anytime. Our Services We offer comprehensive services to help you harness the full potential of AI, ML, and Cloud technologies: AI and ML Solutions: We design and deploy custom AI/ML models that solve your specific business challenges. From natural language processing (NLP) to computer vision, we cover all aspects of AI/ML. Cloud Integration: We help you migrate to the Cloud, ensuring a smooth transition with minimal disruption. Whether it’s AWS, Azure, or Google Cloud, our experts have you covered. Data Analytics: Transform your data into actionable insights with advanced analytics tools and platforms. Custom Software Development: We build robust, scalable applications that integrate AI/ML capabilities and leverage the Cloud. DevOps: Automate your development pipeline and ensure continuous integration and delivery with our DevOps expertise. Why Choose Us? Expert Team: Our team of experienced professionals is well-versed in AI/ML, Cloud computing, and data analytics. End-to-End Solutions: From ideation to deployment, we offer full-cycle development services. Tailored Approach: We understand that every business is unique. We provide customized solutions that align with your specific goals. Proven Track Record: We’ve helped numerous businesses across industries to innovate and grow. Success Stories Retail Industry: Implemented an AI-driven recommendation engine that increased sales by 30%. Healthcare Sector: Developed an ML-based diagnostic tool that improved accuracy by 20%. Finance: Integrated Cloud-based AI solutions that reduced operational costs by 25%.

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade
reddit
LLM Vibe Score0
Human Vibe Score0.333
Alarming_Management3This week

Switching Gears: Implementing AI for My Agency’s Marketing After a Decade

Hi there, I’ve been running a software development and design agency for the last 10 years, mainly focusing on building custom solutions for businesses and SaaS. For the last 2 years, I’ve consistently recommended that clients use AI technologies, especially for social media and content creation to generate traffic. Funny enough, I wasn’t practicing what I preached. Most of my client projects came from platforms like Upwork and word-of-mouth referrals from clients or people from networking events. Background I started my journey in 2014, switching from an employee to a freelancer. Within the first 10 months, my initial projects grew beyond what I could handle alone, prompting me to hire additional developers. This shift turned my role from a full-stack developer to a team lead and developer. Over the years, my focus has been a blend of tech and product. About five years ago, I realized the importance of design, leading me to adding designers to the agency to provide full-cycle service development—from product ideation and design to development, testing, launch, and support. I still continue to set up dedicated teams for some clients, maintaining a strong technical role as a tech lead, solution architect, and head product designer. To enhance my skills, I even completed UI/UX design courses to offer better product solutions. Despite these changes, building products has always been the easy part. The challenge was ensuring these client products didn’t end up in the graveyard due to poor product-market fit, often caused by inadequate marketing and sales strategies but more often just absence of them. (we are talking about startup and first time founders here 🙂 ) My Journey and Observations Advising Clients: I often found myself advising clients on increasing traffic for their SaaS products and crafting strategic marketing plans. Learning: I’ve gained most of my knowledge from consuming internet materials, courses, and blog posts and learning from successful client project launches. Realization: Despite giving this advice, I wasn’t applying these strategies to my own business, leading to low visits to my agency’s website. Initial Solution: Hiring a Marketer Hiring: I brought in a marketer with a solid background in content creating and interview video editing from an educational organization. Goal: The aim was to increase website visits through a comprehensive marketing strategy. Outcome: Although the content produced was high-quality and useful for pitching services, it didn’t lead to significant traffic increases. Issue: The marketer focused more on content creation rather than distribution channels, which limited effectiveness. Shift to AI-Driven Strategy Experiment: I decided to try using AI for content creation and distribution, which aligns with my agency’s specialization in design-driven development and AI integrations. Implementation plan: I will be generating all content with minimal edits using AI and implementing a strategic backlinking approach. Backlinking Strategy Initial Plan: I initially thought of hiring a specialist for backlinks. Realization: The costs and profiles of freelancers didn’t seem promising. Solution: I found AI-driven services for backlinks, which seem more efficient and cost-effective. Plan: My plan is to use these tools for programmatic SEO-driven AI-generated articles and third-party backlinking services over the next two to three months. Current Approach Management: This approach can be managed and executed by 1 person and monitored weekly, reducing human error and optimizing efficiency. I will start it myself and then replace myself with an editor with managing skills. Reflection: It’s a bit ironic and funny that it took me 10 years to start implementing these strategies in my own agency business, but I now feel more confident with AI and automation in place. Why Increase Website Visitors? You might ask, why do I want to increase the number of visitors to the site, and how can I ensure these visitors will be qualified? Hands-On Experience: To gain hands-on experience and perform this exercise effectively. Introduce Packaged Services: I want to introduce a set of low-cost packaged services tailored for non-technical people who want to build things for themselves - the DIY kits for non-technical folks. These services will provide a foundational template for them to build upon on top of existing established solutions such as Wix, Square Why am I Posting and Sharing Here? You might also wonder, why am I posting it here and sharing this? Well, I'm doing this more for myself. Most of my career, the things I’ve done have been behind the curtains. With this small project, I want to make it public to see the reaction of the community. Perhaps there will be good and smart suggestions offered, and maybe some insights or highlights of tools I wasn’t aware of or didn’t consider. I’ll keep sharing updates on this journey of website promotion, marketing, and SEO. My current goal is to reach 2,000 visits per month, which is a modest start. Looking forward to any thoughts or advice from this community! Disclaimer: This content was not generated by AI, but it was edited by it 😛

I built a Word Ladder game using AI only - ZERO coding
reddit
LLM Vibe Score0
Human Vibe Score1
eibrahimThis week

I built a Word Ladder game using AI only - ZERO coding

Hey fellow devs!!! I'm excited to share a unique project I've just completed: an online Word Ladder game built entirely using AI assistance, specifically Claude.ai. The kicker? I wrote zero lines of code myself! 🔗 Check it out: https://www.wordladdergame.com Why this matters: AI-Driven Development: This project showcases the potential of AI in software development. Everything from architecture decisions to actual code implementation was guided by AI. Zero Manual Coding: As someone with a product background but limited coding experience, I was able to bring a full-fledged web app to life without writing a single line of code myself. Rapid Prototyping: The entire process, from ideation to deployment, was incredibly fast compared to traditional development methods. I did the whole thing in under 4 hours and spent another 4 hours tweaking it (also using AI) Learning Opportunity: This approach allowed me to understand modern web development practices and technologies without getting bogged down in syntax and debugging. Tech Stack (all implemented through AI guidance): Next.js TypeScript Prisma (with PostgreSQL) Tailwind CSS Vercel for deployment The game features randomly generated word pairs, a solve button, and a clean, responsive UI. But more than the game itself, I'm excited about what this development process represents for the future of software creation. I'd love to hear your thoughts: Have you experimented with AI-assisted development? How do you see this changing the landscape for entrepreneurs and non-technical founders? What potential challenges or limitations do you foresee with this approach? Feel free to try the game and ask any questions about the development process. I'm here to discuss and learn from your insights!

Ai C-Level team
reddit
LLM Vibe Score0
Human Vibe Score1
thestoicdesignerThis week

Ai C-Level team

I've been exploring ways to run a company where I'm essentially the only internal team member, relying entirely on a suite of specialized AIs for executive roles, supported occasionally by external consultants for niche expertise. My goal is to stay lean, agile, and highly creative, especially in a fashion / tech brand context. Essentially, I'm building an AI-driven C-Level team, or what I like to call a "C-Level AI Wallet." Here's what I'm thinking for the key executive roles I'd need to cover with AI: CEO AI – Responsible for overall strategy, decision-making, trend analysis, and guiding the company's vision. I'd probably lean on something advanced like Gemini, GPT-4, or similar models, fine-tuned with market-specific data. COO AI (Operations): I'd need tools that streamline and automate logistics, supply chain management, and day-to-day operations (think something along the lines of Zapier AI integrations or Make). CMO AI (Marketing & Content): For branding, content creation, digital marketing, and consumer insights, I'd use Jasper or Copy . ai, combined with predictive analytics tools like Google Vertex AI to understand trends better. Additionally, for generating engaging visual and multimedia content, tools like Midjourney, DALL·E, Adobe Firefly, and Runway ML would be perfect. CFO AI (Financial Management): For financial management, cash flow control, and investment decisions, I'd probably leverage AI tools like Bloomberg GPT, combined with AI-powered forecasting platforms. CHRO AI (Human Resources & Culture): Although the internal team is minimal (just myself!), I'd still rely on AI for tasks like project management, freelancer hiring, and performance tracking—tools like HireVue AI, Motion, or even Notion's AI could be beneficial here. CSO AI (Sustainability & Compliance): Since sustainability and ethical sourcing are critical, I'd integrate ESG-focused AI tools to ensure transparency and responsible sourcing. My idea is that, with the right AI tools seamlessly integrated, I can manage the strategic vision and creative direction personally, leveraging external consultants only when necessary. This setup would ideally allow me to operate as a one-person internal team supported by a robust "wallet" of AI executives. Has anyone tried a similar approach? What AI tools would you recommend for a truly lean, innovative brand structure? I'm very curious about your experiences or suggestions—let me know your thoughts!

100 best ai sustainable business ideas in 2025
reddit
LLM Vibe Score0
Human Vibe Score1
Low_Philosopher1792This week

100 best ai sustainable business ideas in 2025

AI in Renewable Energy AI-powered smart solar panel optimization Predictive maintenance for wind turbines AI-driven energy storage management AI-based microgrid optimization Smart grid energy forecasting AI-powered water desalination efficiency AI-driven carbon footprint reduction software AI-powered hydropower efficiency monitoring AI for geothermal energy exploration AI-driven green hydrogen production optimization AI in Waste Management & Recycling AI-based waste sorting robots Smart recycling bins with AI recognition AI-powered food waste management AI-driven upcycling marketplace AI-enabled e-waste management solutions AI-powered sustainable packaging optimization AI-driven landfill management systems AI-powered plastic waste tracking and reduction AI-based waste-to-energy conversion AI-driven composting automation AI in Water Conservation AI-powered leak detection and water conservation AI-driven smart irrigation systems AI-based flood prediction and mitigation AI-powered ocean plastic cleanup robots AI-driven rainwater harvesting optimization AI-based groundwater level monitoring AI-powered desalination energy efficiency AI-driven smart water meters AI-powered wastewater treatment optimization AI-based water pollution monitoring AI in Sustainable Agriculture AI-driven precision farming AI-powered vertical farming automation AI-based pest and disease prediction AI-powered livestock health monitoring AI-driven soil health analysis AI-powered regenerative agriculture analytics AI-driven smart greenhouses AI-powered crop rotation optimization AI-based carbon farming solutions AI-powered sustainable aquaculture AI in Transportation & Mobility AI-powered electric vehicle (EV) battery optimization AI-driven smart traffic management AI-powered EV charging station optimization AI-based sustainable urban mobility planning AI-powered drone delivery for carbon reduction AI-driven logistics and supply chain sustainability AI-powered smart public transport systems AI-driven sustainable aviation fuel optimization AI-powered bicycle-sharing optimization AI-driven AI carpooling and ride-sharing efficiency AI in Green Manufacturing AI-powered energy-efficient manufacturing AI-driven supply chain sustainability analytics AI-based material waste reduction AI-powered sustainable fashion production AI-driven predictive demand to reduce overproduction AI-powered eco-friendly textile manufacturing AI-driven 3D printing for sustainable manufacturing AI-powered emission reduction in factories AI-driven green construction material optimization AI-based lifecycle assessment for eco-products AI in Carbon Offsetting & Climate Action AI-powered carbon credit marketplaces AI-driven tree planting optimization AI-based carbon capture efficiency enhancement AI-powered reforestation tracking and monitoring AI-driven climate risk prediction AI-powered environmental compliance software AI-driven sustainable investment analysis AI-based corporate sustainability tracking AI-powered carbon accounting and reporting AI-driven decarbonization roadmaps for businesses AI in Sustainable Smart Cities AI-powered urban energy efficiency monitoring AI-driven AI-powered smart lighting for cities AI-based pollution monitoring and reduction AI-driven green building automation AI-powered smart HVAC energy optimization AI-driven urban tree canopy management AI-powered digital twins for sustainable city planning AI-based urban noise pollution monitoring AI-powered public waste management optimization AI-driven citizen engagement for sustainability AI in Eco-Friendly Consumer Solutions AI-powered sustainable shopping assistant AI-driven personal carbon footprint tracking app AI-powered second-hand marketplace optimization AI-driven sustainable food delivery services AI-powered ethical supply chain transparency AI-driven zero-waste grocery stores AI-powered green subscription services AI-driven sustainable tourism planning AI-powered smart home energy efficiency optimization AI-driven personal finance for sustainability investments AI in Sustainable Healthcare & Well-being AI-powered climate impact on health analytics AI-driven sustainable hospital management AI-based predictive disease outbreak prevention AI-powered mental health solutions for eco-anxiety AI-driven green pharmaceutical production AI-powered sustainable medical waste management AI-based air quality health impact monitoring AI-driven climate-friendly diet and nutrition planning AI-powered fitness and well-being optimization for sustainability AI-driven telemedicine to reduce healthcare emissions These AI-driven sustainable business ideas offer high growth potential while making a positive impact on the planet. Let me know if you want details on a specific idea or need help with implementation strategies!

We create AI software and provide AI automation for companies. Here is a list of the best AI tools for sales IMHO
reddit
LLM Vibe Score0
Human Vibe Score1
IntellectualAINCThis week

We create AI software and provide AI automation for companies. Here is a list of the best AI tools for sales IMHO

Here are some AI tools that are useful for sales. I tried to touch as many different parts of the sales process so the tools are all quite different but all useful for sales. I tried to include some of the best and underrated AI tools. Most of them are free so check them out if you want. I did not include ChatGPT as it can basically be used for anything with the right prompts. So these tools will be more research-oriented. A quick disclaimer – I work for the company Idealink where we create custom ChatGPT for businesses and other AI products. Apollo AI Seamless AI CoPilot AI Lavender AI Regie AI Gemini Plusdocs Make Midjourney Fireflies AI Apollo AI - Find potential customers Apollo is a platform for sales and business development. It offers a range of tools to find and engage with ideal customers. The platform has an extensive B2B database and features that streamline the sales process from prospecting to closing deals. Key Features: Extensive B2B Database: Apollo boasts a large, accurate database of over 275 million contacts, providing a wealth of potential leads and opportunities for sales teams. Data Enrichment and Lead Insights: The platform offers data enrichment capabilities, ensuring CRM systems are continuously updated with detailed and actionable lead information. AI-Driven Sales Engagement: Apollo's AI technology assists in crafting effective communication and prioritizing high-value leads, enhancing the overall sales engagement process. Comprehensive Sales Tools: The platform provides an integrated suite of tools for email, call, and social media engagement, combined with analytics and automation features to streamline the sales cycle. Tailored Solutions for Teams: Apollo offers customized solutions for different team types, including sales and business development, founders, and marketing teams, addressing specific needs and goals. Seamless AI - Sale process made easier Seamless.AI is an innovative B2B sales lead generation solution that allows sales teams to efficiently connect with their ideal customers. The platform's features provide accurate and up-to-date contact information and integrate easily with existing sales and marketing tools. Key Features: Real-Time Search Engine: Seamless.AI uses AI to scour the web in real time, ensuring the contact information for sales leads is current and accurate. Comprehensive Integration: Easily integrates with popular CRMs and sales tools like Salesforce, HubSpot, and LinkedIn Sales Navigator, enhancing productivity and eliminating manual data entry. Chrome Extension: Enhances web browsing experience for sales teams, allowing them to build lead lists directly from their browser. Pitch Intelligence and Writer: Tools for crafting effective sales messages and marketing content, personalized for each potential customer. Data Enrichment and Autopilot: Keeps customer data current and automates lead-building, supporting consistent lead generation. Buyer Intent Data and Job Changes: Offers insights into potential customers' buying intentions and keeps track of significant job changes within key accounts. CoPilot AI - Helps sales reps manage leads CoPilot AI is an advanced AI-powered sales support platform designed for B2B sales teams and agencies to drive consistent revenue growth. The tool focuses on using LinkedIn for sales prospecting, engagement, and conversion. Key Features: LinkedIn Lead Generation: Targets and automates outreach to high-intent LinkedIn leads, enhancing efficiency and scalability in lead generation. Personalized Messaging Automation: Facilitates sending of personalized, one-click messages at scale, maintaining a human touch in digital interactions. Sales Conversion Insights: Offers tools to understand and adapt to prospects' communication styles, improving the likelihood of conversion. Sales Process Optimization: Provides analytics to evaluate and refine sales strategies, identifying opportunities for improvement in the sales funnel. Industry Versatility: Adapts to diverse industries, offering tailored solutions for B2B sales, marketing, HR, and financial services sectors. Collaborative Team Tools: Enables team synchronization and collaboration, boosting productivity and synergy in sales teams Lavender AI - Email AI assistant Lavender AI is an AI-powered email tool that helps users write better emails. It provides real-time feedback and personalized suggestions to optimize email communication efficiency. Key Features: Email Coaching and Scoring: Lavender evaluates emails using AI and a vast database of email interactions, offering a score and tips for improvement. It identifies factors that might reduce the likelihood of receiving a reply, helping users refine their email content. Personalization Assistant: This feature integrates prospect data directly into the user's email platform, suggesting personalization strategies based on recipient data and personality insights to foster deeper connections. Adaptive Improvement: Lavender's scoring and recommendations evolve in real-time with changing email behaviors and practices, thanks to its generative AI and extensive data analysis, ensuring users always follow the best practices. Data-Driven Managerial Insights: The platform provides managers with valuable insights derived from actual email interactions, aiding them in coaching their teams more effectively based on real performance and communication trends. Broad Integration Capability: Lavender integrates with various email and sales platforms including Gmail, Outlook, and others, making it versatile for different user preferences and workflows. Regie AI - Great for business intelligence Regie.ai simplifies the sales prospecting process for businesses, using GenAI and automation to improve interactions with prospects. The platform offers tools like Auto-Pilot for automatic prospecting and meeting scheduling, Co-Pilot for sales rep support, and integrations with various CRM and sales engagement platforms. It also includes a Chrome Extension and CMS for content management and customization. Key Features: Automated Prospecting with Auto-Pilot: Regie.ai's Auto-Pilot feature autonomously prospects and schedules meetings, using Generative AI for Sales Agents to enhance outbound sales efforts. Audience Discovery and Content Generation: The platform identifies target accounts not in the CRM, generating relevant, on-brand content for each message, thus ensuring efficiency in list building and message personalization. Outbound Prioritization and Dynamic Engagement: It utilizes engagement and intent data to prioritize outreach to in-market prospects and adjust engagement strategies based on buyer responsiveness. Full Funnel Brand Protection and Analytics: Regie.ai ensures consistent use of marketing-approved language in all sales outreach and provides insights into campaign and document performance, thereby safeguarding brand integrity throughout the sales funnel. Gemini - AI powered conversational platform Gemini is a large language model chatbot developed by Google AI. It can generate text, translate languages, write different creative text formats, and answer your questions in an informative way. It is still under development but has learned to perform many kinds of tasks. Key features: Generate different creative text formats of text content (poems, code, scripts, musical pieces, email, letters, etc.) Answer your questions in an informative way, even if they are open ended, challenging, or strange. Translate languages Follow your instructions and complete your requests thoughtfully. Plusdocs (Plus AI) - AI tool for presentations Plus AI is a versatile tool that helps improve presentations and integrates with Slides in a simple and intuitive way. It simplifies slide creation and customization by converting text into slides and utilizing AI for various languages. Key Features: Text-to-Slide Conversion: Plus AI excels in transforming textual content into visually appealing slides, streamlining the presentation creation process. Multilingual AI Support: The tool is equipped to handle various languages, making it adaptable for a global user base. Professional Design Options: Users have access to professionally designed slide layouts, enabling the creation of polished presentations with ease. Customization and AI Design: Plus AI allows for extensive customization, including the use of AI for designing and editing slides, ensuring unique and personalized presentations. Live Snapshots and Templates: The tool offers live snapshots for real-time updates and a wide range of templates for quick and effective slide creation. Make - AI automation Make is a powerful visual platform that allows users to build and automate tasks, workflows, apps, and systems. It offers an intuitive, no-code interface that empowers users across various business functions to design and implement complex processes without the need for developer resources. Key Features: No-Code Visual Workflow Builder: Make's core feature is its user-friendly interface that allows for the creation of intricate workflows without coding expertise, making it accessible to a wide range of users. Extensive App Integration: The platform boasts compatibility with over 1000 apps, facilitating seamless connections and data sharing across diverse tools and systems. Custom Automation Solutions: Make enables personalized automation strategies, fitting various business needs from marketing automation to IT workflow control. Template Library: Users can jumpstart their automation projects with a vast collection of pre-built templates, which are customizable to fit specific workflow requirements. Enterprise-Level Solutions: Make offers advanced options for larger organizations, including enhanced security, single sign-on, custom functions, and dedicated support. Midjourney - Making sales content Midjourney is an AI-based image generation tool that changes the way we visualise and create digital art. It offers a lot of artistic possibilities, allowing users to create stunning images from text prompts. This innovative service caters to artists, designers, and anyone seeking to bring their creative visions to life. Key Features: Advanced AI Image Generation: Midjourney's core strength lies in its powerful AI algorithms, which interpret text prompts to generate detailed, high-quality images. This feature allows users to explore an endless array of visual concepts and styles. User-driven Customization: The tool offers significant control over the image creation process, enabling users to guide the AI with specific instructions, ensuring that the final output aligns closely with their vision. Diverse Artistic Styles: Midjourney can mimic various artistic styles, from classical to contemporary, providing users with a wide range of aesthetic options for their creations. Collaboration and Community Features: The platform fosters a community of users who can share, critique, and collaborate on artistic projects, enriching the creative experience. Fireflies AI - Sales meeting assistant Fireflies.ai is a powerful tool for improving team productivity and efficiency in managing meetings and voice conversations. It offers a range of features to simplify the process of capturing, organizing, and analyzing meeting content. Key Features: Automatic Meeting Transcription: Fireflies.ai can transcribe meetings held on various video-conferencing platforms and dialers. The tool captures both video and audio, providing transcripts quickly and efficiently. AI-Powered Search and Summarization: It allows users to review long meetings in a fraction of the time, highlighting key action items, tasks, and questions. Users can filter and focus on specific topics discussed in meetings. Improved Collaboration: The tool enables adding comments, pins, and reactions to specific conversation parts. Users can create and share soundbites and integrate meeting notes with popular collaboration apps such as Slack, Notion, and Asana. Conversation Intelligence: Fireflies.ai offers insights into meetings by tracking metrics like speaker talk time and sentiment. It helps in coaching team members and improving performance in sales, recruiting, and other internal processes. Workflow Automation: The AI assistant from Fireflies.ai can log call notes and activities in CRMs, create tasks through voice commands, and share meeting recaps instantly across various platforms. Comprehensive Knowledge Base: It compiles all voice conversations into an easily accessible and updatable knowledge base, with features to organize meetings into channels and set custom privacy controls. I’ll keep updating this little guide, so add your comments and I’ll try to add more tools. This is all just a personal opinion, so it’s completely cool if you disagree with it. Btw here is the link to the full blog post about all the AI tools in a bit more depth.

As a soloproneur, here is how I'm scaling with AI and GPT-based tools
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

As a soloproneur, here is how I'm scaling with AI and GPT-based tools

Being a solopreneur has its fair share of challenges. Currently I've got businesses in ecommerce, agency work, and affiliate marketing, and one undeniable truth remains: to truly scale by yourself, you need more than just sheer will. That's where I feel technology, especially AI, steps in. As such, I wanted some AI tools that have genuinely made a difference in my own work as a solo business operator. No fluff, just tried-and-true tools and platforms that have worked for me. The ability for me to scale alone with AI tools that take advantage of GPT in one way, or another has been significant and really changed my game over the past year. They bring in an element of adaptability and intelligence and work right alongside “traditional automation”. Whether you're new to this or looking to optimize your current setup, I hope this post helps. FYI I used multiple prompts with GPT-4 to draft this using my personal notes. Plus AI (add-on for google slides/docs) I handle a lot of sales calls and demos for my AI automation agency. As I’m providing a custom service rather than a product, every client has different pain points and as such I need to make a new slide deck each time. And making slides used to be a huge PITA and pretty much the bane of my existence until slide deck generators using GPT came out. My favorite so far has been PlusAI, which works as a plugin for Google Slides. You pretty much give it a rough idea, or some key points and it creates some slides right within Google Slides. For me, I’ve been pasting the website copy or any information on my client, then telling PlusAI the service I want to propose. After the slides are made, you have a lot of leeway to edit the slides again with AI, compared to other slide generators out there. With 'Remix', I can switch up layouts if something feels off, and 'Rewrite' is there to gently nudge the AI in a different direction if I ever need it to. It's definitely given me a bit of breathing space in a schedule that often feels suffocating. echo.win (web-based app) As a solopreneur, I'm constantly juggling roles. Managing incoming calls can be particularly challenging. Echo.win, a modern call management platform, has become a game-changer for my business. It's like having a 24/7 personal assistant. Its advanced AI understands and responds to queries in a remarkably human way, freeing up my time. A standout feature is the Scenario Builder, allowing me to create personalized conversation flows. Live transcripts and in-depth analytics help me make data-driven decisions. The platform is scalable, handling multiple simultaneous calls and improving customer satisfaction. Automatic contact updates ensure I never miss an important call. Echo.win's pricing is reasonable, offering a personalized business number, AI agents, unlimited scenarios, live transcripts, and 100 answered call minutes per month. Extra minutes are available at a nominal cost. Echo.win has revolutionized my call management. It's a comprehensive, no-code platform that ensures my customers are always heard and never missed MindStudio by YouAi (web app/GUI) I work with numerous clients in my AI agency, and a recurring task is creating chatbots and demo apps tailored to their specific needs and connected to their knowledge base/data sources. Typically, I would make production builds from scratch with libraries such as LangChain/LlamaIndex, however it’s quite cumbersome to do this for free demos. As each client has unique requirements, it means I'm often creating something from scratch. For this, I’ve been using MindStudio (by YouAi) to quickly come up with the first iteration of my app. It supports multiple AI models (GPT, Claude, Llama), let’s you upload custom data sources via multiple formats (PDF, CSV, Excel, TXT, Docx, and HTML), allows for custom flows and rules, and lets you to quickly publish your apps. If you are in their developer program, YouAi has built-in payment infrastructure to charge your users for using your app. Unlike many of the other AI builders I’ve tried, MindStudio basically lets me dictate every step of the AI interaction at a high level, while at the same time simplifying the behind-the-scenes work. Just like how you'd sketch an outline or jot down main points, you start with a scaffold or decide to "remix" an existing AI, and it will open up the IDE. I often find myself importing client data or specific project details, and then laying out the kind of app or chatbot I'm looking to prototype. And once you've got your prototype you can customize the app as much as you want. LLamaIndex (Python framework) As mentioned before, in my AI agency, I frequently create chatbots and apps for clients, tailored to their specific needs and connected to their data sources. LlamaIndex, a data framework for LLM applications, has been a game-changer in this process. It allows me to ingest, structure, and access private or domain-specific data. The major difference over LangChain is I feel like LlamaIndex does high level abstraction much better.. Where LangChain unnecessarily abstracts the simplest logic, LlamaIndex actually has clear benefits when it comes to integrating your data with LLMs- it comes with data connectors that ingest data from various sources and formats, data indexes that structure data for easy consumption by LLMs, and engines that provide natural language access to data. It also includes data agents, LLM-powered knowledge workers augmented by tools, and application integrations that tie LlamaIndex back into the rest of the ecosystem. LlamaIndex is user-friendly, allowing beginners to use it with just five lines of code, while advanced users can customize and extend any module to fit their needs. To be completely honest, to me it’s more than a tool- at its heart it’s a framework that ensures seamless integration of LLMs with data sources while allowing for complete flexibility compared to no-code tools. GoCharlie (web app) GoCharlie, the first AI Agent product for content creation, has been a game-changer for my business. Powered by a proprietary LLM called Charlie, it's capable of handling multi-input/multi-output tasks. GoCharlie's capabilities are vast, including content repurposing, image generation in 4K and 8K for various aspect ratios, SEO-optimized blog creation, fact-checking, web research, and stock photo and GIF pull-ins. It also offers audio transcriptions for uploaded audio/video files and YouTube URLs, web scraping capabilities, and translation. One standout feature is its multiple input capability, where I can attach a file (like a brand brief from a client) and instruct it to create a social media campaign using brand guidelines. It considers the file, prompt, and website, and produces multiple outputs for each channel, each of which can be edited separately. Its multi-output feature allows me to write a prompt and receive a response, which can then be edited further using AI. Overall, very satisfied with GoCharlie and in my opinion it really presents itself as an effective alternative to GPT based tools. ProfilePro (chrome extension) As someone overseeing multiple Google Business Profiles (GBPs) for my various businesses, I’ve been using ProfilePro by Merchynt. This tool stood out with its ability to auto-generate SEO-optimized content like review responses and business updates based on minimal business input. It works as a Chrome extension, and offers suggestions for responses automatically on your GBP, with multiple options for the tone it will write in. As a plus, it can generate AI images for Google posts, and offer suggestions for services and service/product descriptions. While it streamlines many GBP tasks, it still allows room for personal adjustments and refinements, offering a balance between automation and individual touch. And if you are like me and don't have dedicated SEO experience, it can handle ongoing optimization tasks to help boost visibility and drive more customers to profiles through Google Maps and Search

Founder Pitch: AI Agent for Simplifying Public Cloud Management
reddit
LLM Vibe Score0
Human Vibe Score1
rasvi786This week

Founder Pitch: AI Agent for Simplifying Public Cloud Management

Video to understand : https://youtu.be/9ocUjlUrU\w?si=S0ETDbKSdJqlVDyg Are You Ready to Redefine Cloud Management with AI? Imagine an intelligent AI agent that transforms the complexity of managing public cloud infrastructure into simple, natural language commands. No more navigating through endless configurations or deciphering technical documentation—our AI agent is here to revolutionize the way organizations interact with cloud platforms. About the Project We’re building an AI-powered agent designed to handle public cloud management tasks seamlessly. Whether you’re setting up your organization’s cloud foundation or deploying complex workloads, this AI agent makes it as easy as having a conversation. What Can the AI Agent Do? Cloud Foundation Setup: Example: “Please set up a cloud foundation blueprint for my organization on Google Cloud.”* The AI agent will ask key questions (e.g., organization ID) and guide you through authentication. Once authorized, it sets up the foundation using GCP APIs. Workload Deployment: Example: “Spin up a GKE cluster for me.”* The agent will ask for necessary details (e.g., number of nodes, VPC info), authenticate, and deploy the cluster in minutes. Security and Compliance Validation: Example: “Validate my organization’s cloud setup and check for security vulnerabilities.”* The agent audits your setup, identifies potential risks, and provides actionable insights. Current Progress We’ve developed a working prototype that integrates with major cloud providers like Google Cloud. The AI agent can already: Authenticate with cloud APIs Execute foundational tasks such as setting up organizations and spinning up clusters Perform initial security validations Who I’m Looking For I’m searching for a co-founder with enterprise sales experience and a strategic vision to grow our user base. You will be instrumental in helping us: Build relationships with companies willing to pilot our product Develop go-to-market strategies for enterprise adoption Identify opportunities for partnerships with cloud service providers Your Role As a co-founder, you’ll lead efforts to: Secure Pilot Programs: Identify and onboard enterprises for product trials to gather feedback and refine the solution. Drive Growth: Develop scalable strategies to grow our user base across industries. Market Positioning: Work with me to define our unique value proposition and establish thought leadership in the cloud management space. My Background I bring over a decade of experience in tech, with a strong focus on software engineering and infrastructure. My contributions so far include: Developing the core AI engine and cloud integrations Designing workflows that simplify complex cloud tasks Why Join This Project? Revolutionize Cloud Management: Be part of a project that will redefine how organizations interact with public clouds. Tackle Challenging Problems: Work at the cutting edge of AI and cloud computing. High Growth Potential: Join an industry projected to grow exponentially as enterprises embrace AI-driven automation. Build a Company from Scratch: Shape the product, team, and culture as we grow together. What’s Next? Our immediate priorities include: Expanding the AI agent’s capabilities to support multi-cloud setups. Conducting pilot programs with enterprise clients. Iterating on the product based on real-world feedback. What We Need to Succeed Expertise in enterprise sales and partnerships A deep understanding of enterprise challenges and cloud adoption trends A shared passion for leveraging AI to solve complex problems Let’s work together to build the future of cloud management. If you’re excited about this vision and bring the expertise we need, I’d love to connect and discuss how we can take this project to the next level.

What role will tech play in sustainability for businesses?
reddit
LLM Vibe Score0
Human Vibe Score0
brycetychsenThis week

What role will tech play in sustainability for businesses?

Have you ever wanted to know how technology is shifting the business sector towards a greener future? Well, wonder no more! In this post, we'll explore the stupendous ways technology is exerting a pivotal role in promoting sustainability within businesses. Smart Energy Management Solutions Gone are the days of wasting energy and money on ineffective practices. With the advent of smart energy management systems, businesses can now optimize their energy usage in real-time. From smart thermostats to AI-powered energy analytics, these solutions help reduce carbon footprints while saving on utility bills. It's a win-win situation for both the environment and the bottom line! Renewable Energy Integration Due to advancements in technology, businesses can now easily integrate solar, wind, and other renewable energy sources into their operations. Not only does this reduce greenhouse gas emissions, but it also shields businesses from the volatility of traditional energy markets. Supply Chain Transparency Ever wondered where your products come from and how they're made? With blockchain technology, businesses can now provide unprecedented transparency throughout their supply chains. From sourcing raw materials to manufacturing processes, consumers can trace the journey of products, ensuring ethical and sustainable practices every step of the way. Data-Driven Sustainability Strategies In the age of big data, knowledge is power, especially when it comes to sustainability. By harnessing the power of data analytics, businesses can identify areas for improvement and implement targeted sustainability strategies. Whether it's optimizing transportation routes or minimizing waste generation, data-driven insights enable businesses to make smarter, greener decisions. Who knew numbers could be so eco-friendly? Eco-Friendly Innovation Last but not least, technology is driving innovation in eco-friendly products and services. From biodegradable packaging to electric vehicles, businesses are constantly pushing the boundaries of sustainability. By embracing these innovations, companies not only reduce their environmental impact but also appeal to eco-conscious consumers. That is it for now, people! From energy management to supply chain transparency, technology is paving the way for a more sustainable future in business. Let's continue to embrace these innovations and work together towards a greener tomorrow.

Looking for a co-founder for a B2B AI startup. I have a development team and funds for at least a year of operations.
reddit
LLM Vibe Score0
Human Vibe Score0.5
cheech123456This week

Looking for a co-founder for a B2B AI startup. I have a development team and funds for at least a year of operations.

Hello, As the title said I'm looking for a co-founder. I built with my team a few ventures that generate revenues but I don't believe that any of them has a future. I have 15 years of experience in Software Engineering and AI. Worked in various industries, but always in data-driven applications. I spent the last 3 years as an entrepreneur and raised successfully money from VCs. ​ A few preconceptions I have: \- B2C is extremely hard. Very quickly you realize that you need to spend all your resources on marketing. \- B2B is extremely hard - but for different reasons. Sales cycles take months. If you want to reach serious buyers and decision-makers, you need to have an amazing network. Even then, companies will prioritize 90% of the time to do things internally rather than paying for anything. \- I hate when people say that "ideas are garbage", and I think that execution is overhyped. Execution is a matter of finding the right people, and paying them (I am confident to say that I can guarantee good execution). Ideas are not garbage, ideas need validation, and garbage "entrepreneurs" are too lazy to validate anything. ​ Your ideal profile: \- You have a great idea, something that has been brewing for some time but you lack resources or technical experience to execute by yourself. \- You have domain expertise, experience, and a network. If we build an MVP in 3 months, you can get 20 interviews with industry people to validate the solution. Once the MVP is built you can put it in front of another 40 people. \- You are a product person. \- You can do efficient sales calls. (Bonus: You are a sales person) If you are an ideal profile, please reach out.

Founder Pitch: AI Agent for Simplifying Public Cloud Management
reddit
LLM Vibe Score0
Human Vibe Score1
rasvi786This week

Founder Pitch: AI Agent for Simplifying Public Cloud Management

Video to understand : https://youtu.be/9ocUjlUrU\w?si=S0ETDbKSdJqlVDyg Are You Ready to Redefine Cloud Management with AI? Imagine an intelligent AI agent that transforms the complexity of managing public cloud infrastructure into simple, natural language commands. No more navigating through endless configurations or deciphering technical documentation—our AI agent is here to revolutionize the way organizations interact with cloud platforms. About the Project We’re building an AI-powered agent designed to handle public cloud management tasks seamlessly. Whether you’re setting up your organization’s cloud foundation or deploying complex workloads, this AI agent makes it as easy as having a conversation. What Can the AI Agent Do? Cloud Foundation Setup: Example: “Please set up a cloud foundation blueprint for my organization on Google Cloud.”* The AI agent will ask key questions (e.g., organization ID) and guide you through authentication. Once authorized, it sets up the foundation using GCP APIs. Workload Deployment: Example: “Spin up a GKE cluster for me.”* The agent will ask for necessary details (e.g., number of nodes, VPC info), authenticate, and deploy the cluster in minutes. Security and Compliance Validation: Example: “Validate my organization’s cloud setup and check for security vulnerabilities.”* The agent audits your setup, identifies potential risks, and provides actionable insights. Current Progress We’ve developed a working prototype that integrates with major cloud providers like Google Cloud. The AI agent can already: Authenticate with cloud APIs Execute foundational tasks such as setting up organizations and spinning up clusters Perform initial security validations Who I’m Looking For I’m searching for a co-founder with enterprise sales experience and a strategic vision to grow our user base. You will be instrumental in helping us: Build relationships with companies willing to pilot our product Develop go-to-market strategies for enterprise adoption Identify opportunities for partnerships with cloud service providers Your Role As a co-founder, you’ll lead efforts to: Secure Pilot Programs: Identify and onboard enterprises for product trials to gather feedback and refine the solution. Drive Growth: Develop scalable strategies to grow our user base across industries. Market Positioning: Work with me to define our unique value proposition and establish thought leadership in the cloud management space. My Background I bring over a decade of experience in tech, with a strong focus on software engineering and infrastructure. My contributions so far include: Developing the core AI engine and cloud integrations Designing workflows that simplify complex cloud tasks Why Join This Project? Revolutionize Cloud Management: Be part of a project that will redefine how organizations interact with public clouds. Tackle Challenging Problems: Work at the cutting edge of AI and cloud computing. High Growth Potential: Join an industry projected to grow exponentially as enterprises embrace AI-driven automation. Build a Company from Scratch: Shape the product, team, and culture as we grow together. What’s Next? Our immediate priorities include: Expanding the AI agent’s capabilities to support multi-cloud setups. Conducting pilot programs with enterprise clients. Iterating on the product based on real-world feedback. What We Need to Succeed Expertise in enterprise sales and partnerships A deep understanding of enterprise challenges and cloud adoption trends A shared passion for leveraging AI to solve complex problems Let’s work together to build the future of cloud management. If you’re excited about this vision and bring the expertise we need, I’d love to connect and discuss how we can take this project to the next level.

AI-Powered Tool to Detect and Mask PII in Documents
reddit
LLM Vibe Score0
Human Vibe Score1
hoa_nguyen95This week

AI-Powered Tool to Detect and Mask PII in Documents

Hi, everyone! 👋 I’ve been working on an idea for an application that could be a game-changer for data privacy and compliance: The Concept Imagine an app where users can upload a PDF or DOC/DOCX file, and with the power of AI, it scans the document for Personally Identifiable Information (PII). Once identified, the app automatically masks (censors) all the PII and generates a new, sanitized version of the document. Why This Matters In today’s data-driven world, sharing documents is routine, but protecting sensitive information is critical. Businesses, freelancers, and even everyday users often need to redact PII for privacy reasons or compliance with regulations like GDPR, HIPAA, or CCPA. Current Challenges: Manual redaction is time-consuming and error-prone. The Solution: This app ensures quick, accurate, and automated PII redaction, saving time while enhancing data security. Potential Features File Support: PDF, DOC/DOCX, and maybe more formats in the future. AI-Powered Detection: Identify PII such as names, addresses, phone numbers, SSNs, and email addresses. Customization: Users could define additional sensitive terms to be masked. Audit Logs: For compliance, generate a report of what was redacted. Integration: Plug into cloud storage services like Google Drive or Dropbox for seamless workflows. My Questions for the Community Use Cases: What industries or professionals do you think would benefit most from this? Features: Are there additional features or considerations I’m overlooking? Competition: Do you know of similar tools already on the market, and how could this app differentiate itself? Challenges: What technical or market challenges should I anticipate when building and launching this product? I’d love to hear your thoughts, feedback, or ideas for collaboration. If you’re interested in discussing this further, let me know! Thanks in advance for your time and input.

What are your thoughts on this AI-Powered Interest Rate Negotiation Service Business Model?
reddit
LLM Vibe Score0
Human Vibe Score1
Background_Value_610This week

What are your thoughts on this AI-Powered Interest Rate Negotiation Service Business Model?

Value Proposition: Helps homebuyers secure the best mortgage rates through AI-driven negotiation. Saves time and effort by automating communication with multiple lenders. Increases chances of approval at a favorable rate. Customer Segments: First-time homebuyers Homeowners refinancing their mortgages Investors seeking lower interest rates Revenue Streams: Subscription-based model (monthly/one-time fee for AI-powered negotiation) Success-based fee (small percentage of interest savings upon approval) Affiliate commissions from mortgage lenders for closed deals Channels: Website with a step-by-step AI-powered negotiation tool API integration with mortgage marketplaces Email and social media marketing targeting homebuyers Customer Relationships: AI-powered chatbot and live support for users Automated email sequences keeping users informed Personalized mortgage rate tracking & negotiation updates Key Activities: Developing AI models for lender negotiation Automating email and lender response handling Expanding partnerships with mortgage providers Key Resources: AI/ML engineers to refine the negotiation model CRM system for tracking lender-client interactions Email automation and lead generation tools Key Partners: Mortgage lenders willing to negotiate rates AI-powered email automation services Real estate and mortgage brokers Cost Structure: AI model training and maintenance Web platform hosting and development Compliance and legal expenses

Looking for a Business Partner for an AI Stock recommendation SaaS
reddit
LLM Vibe Score0
Human Vibe Score1
armaan-devThis week

Looking for a Business Partner for an AI Stock recommendation SaaS

Hey everyone, I’m a 15-year-old full-stack developer, currently building StockWise, a startup focused on AI-driven stock market insights and analytics. I can handle all engineering, backend, frontend, and AI-related work—but I need a business partner who can take care of the marketing, sales, and user acquisition side of things. So this SaaS is currently in development. Also this I believe this can be both b2c and b2b. Like for b2c - it's the website included, with the recommendations, for individual users, for b2b - we can provide API's. Here is the classic workflow : \-> You can give your preferences, such as your monthly investment capital, if you're expecting short term or long term, and also if there are any specific areas you are more interested like AI, hydrogen fuel related, ev, compaines. \-> Then with this data, we recommend you stocks to buy, analyzing your preferences, looking at market, researching, looking into company's stock history, background, product \-> You will also have a chatbot like interface you can talk to about anything, and it will be personalized \-> Also you can add your portfolio here, and you can get insights based on the market data \-> Also there can be a weekly newsletter, too, if you subscribe to it. I'm much more of a builder, likes to build stuff, is good at it, but not good at the business side of things, that's why I'm really looking for a business partner. If you’re interested in joining as a co-founder or business partner, drop a comment or DM me!, Thanks a lot, Armaan

What are your thoughts on this AI-Powered Interest Rate Negotiation Service Business Model?
reddit
LLM Vibe Score0
Human Vibe Score1
Background_Value_610This week

What are your thoughts on this AI-Powered Interest Rate Negotiation Service Business Model?

Value Proposition: Helps homebuyers secure the best mortgage rates through AI-driven negotiation. Saves time and effort by automating communication with multiple lenders. Increases chances of approval at a favorable rate. Customer Segments: First-time homebuyers Homeowners refinancing their mortgages Investors seeking lower interest rates Revenue Streams: Subscription-based model (monthly/one-time fee for AI-powered negotiation) Success-based fee (small percentage of interest savings upon approval) Affiliate commissions from mortgage lenders for closed deals Channels: Website with a step-by-step AI-powered negotiation tool API integration with mortgage marketplaces Email and social media marketing targeting homebuyers Customer Relationships: AI-powered chatbot and live support for users Automated email sequences keeping users informed Personalized mortgage rate tracking & negotiation updates Key Activities: Developing AI models for lender negotiation Automating email and lender response handling Expanding partnerships with mortgage providers Key Resources: AI/ML engineers to refine the negotiation model CRM system for tracking lender-client interactions Email automation and lead generation tools Key Partners: Mortgage lenders willing to negotiate rates AI-powered email automation services Real estate and mortgage brokers Cost Structure: AI model training and maintenance Web platform hosting and development Compliance and legal expenses

AI-Powered Tool to Detect and Mask PII in Documents
reddit
LLM Vibe Score0
Human Vibe Score1
hoa_nguyen95This week

AI-Powered Tool to Detect and Mask PII in Documents

Hi, everyone! 👋 I’ve been working on an idea for an application that could be a game-changer for data privacy and compliance: The Concept Imagine an app where users can upload a PDF or DOC/DOCX file, and with the power of AI, it scans the document for Personally Identifiable Information (PII). Once identified, the app automatically masks (censors) all the PII and generates a new, sanitized version of the document. Why This Matters In today’s data-driven world, sharing documents is routine, but protecting sensitive information is critical. Businesses, freelancers, and even everyday users often need to redact PII for privacy reasons or compliance with regulations like GDPR, HIPAA, or CCPA. Current Challenges: Manual redaction is time-consuming and error-prone. The Solution: This app ensures quick, accurate, and automated PII redaction, saving time while enhancing data security. Potential Features File Support: PDF, DOC/DOCX, and maybe more formats in the future. AI-Powered Detection: Identify PII such as names, addresses, phone numbers, SSNs, and email addresses. Customization: Users could define additional sensitive terms to be masked. Audit Logs: For compliance, generate a report of what was redacted. Integration: Plug into cloud storage services like Google Drive or Dropbox for seamless workflows. My Questions for the Community Use Cases: What industries or professionals do you think would benefit most from this? Features: Are there additional features or considerations I’m overlooking? Competition: Do you know of similar tools already on the market, and how could this app differentiate itself? Challenges: What technical or market challenges should I anticipate when building and launching this product? I’d love to hear your thoughts, feedback, or ideas for collaboration. If you’re interested in discussing this further, let me know! Thanks in advance for your time and input.

I single-handedly built the world’s best AI investing platform. Here’s NexusTrade’s 2024 year in review
reddit
LLM Vibe Score0
Human Vibe Score1
No-Definition-2886This week

I single-handedly built the world’s best AI investing platform. Here’s NexusTrade’s 2024 year in review

I copy-pasted the content of this article to save you a click! I’ve been developing an AI investing platform for 4 years, and I’m blown away by all of the new features I’ve gotten done! Here’s my project’s 2024 year in review —- When someone asks me what is the best way to learn how to trade and invest, I have an unbiased answer – NexusTrade.io. I started NexusTrade to empower everybody, including beginners and non-technical investors, to learn how to make smarter investing decisions. NexusTrade is the best way for a new investor to learn algorithmic trading and financial research, and I’m not the only person to think so. Just this year alone, user growth has skyrocketed from 1,703 users to 14,319 users. This is driven by new features, better research tools, and the launch of algorithmic trading. Here’s NexusTrade’s 2024 year in review, a semi-complete list of the features I’ve launched. Summarizing this year in review TL;DR: I implemented a variety of new features to enhance NexusTrade’s algorithmic trading and financial research capabilities. This includes: Cryptocurrency support Enhanced financial research, like the AI-Powered Stock Screener Unique watchlists and daily market summaries Live-trading with Alpaca. Next year, I plan to implement features to make NexusTrade more tailored for each user’s experience, and launch several unique features including copy trading and fully automated algorithmic trading. Feature-by-feature: What have I done so far in 2024? Algorithmic Cryptocurrency Trading Picture: Algorithmic Cryptocurrency Trading I kicked off the year by adding cryptocurrency support to NexusTrade. Users can now research, design, and implement automated strategies for popular cryptocurrencies, such as Bitcoin, Dogecoin, and Ethereum. AI-Powered Stock Screener and research capabilities Picture: AI-Powered Stock Screener In tandem with cryptocurrency support, I made a huge update to Aurora, the AI Assistant in NexusTrade, by implementing a natural language stock screener. This screener makes it easy to find fundamentally strong stocks. Throughout the year, I’ve made several enhancements to it. Over time, I’ve made the screener faster, more accurate, and expanded its capabilities. Using fundamental indicators within trading strategies Picture: Using fundamental indicators Doing financial research for companies isn’t enough; we also need a way to integrate this type of research into trading strategies. Thus, I’ve expanded the NexusTrade indicators, and made it possible to create strategies using metrics like revenue, net income, free cash flow, and P/E ratio. Stock watchlists with tailored, automated daily emails Picture: Stock watchlists In addition, I didn’t want the research you may have done for a stock (or list of stocks) to be forgotten. Thus, I created the most useful watchlist page of any investing platform. This watchlist makes it easy to keep track of your favorite stocks, track them over time, and even receive curated, daily emails about them. Enhanced user profile page, Google sign-ins, and two-factor authentication Picture: Enhanced user profile Keeping in theme with adding new pages to NexusTrade, many pages, such as the profile page, got a huge revamp. The new profile page is cleaner, easier to use, and allows you to secure your account more effectively, for example, by using two-factor authentication. GPT-Reports: an AI-generated analysis of every stock in the market Picture: GPT-Reports I created GPT-Stock Reports, an AI-Generated analysis of every stock in the market. This report was generated by taking each company’s earnings data and asking GPT to analyze the stock and give it a rating. Manual and semi-automated algorithmic trading with Alpaca Picture: Manual and semi-automated trading Finally, I’ve fully launched the Alpaca integration, and enabled users to execute real trades directly in the NexusTrade app! This integration has transformed NexusTrade from a financial research app into a real, algorithmic trading platform for retail investors. Concluding Thoughts When I say that NexusTrade is the best platform for traders and investors to make more money in the stock market, you may naively think that I’m biased. I created the app, and the rose-tinted glasses is bound to make every red flag look like a regular flag, right? Wrong. NexusTrade is objectively a completely new way for investors to approach financial markets. The fact that the app is so expansive is nothing short of miraculous.

GenAI_Agents
github
LLM Vibe Score0.563
Human Vibe Score0.24210481455988786
NirDiamantMar 28, 2025

GenAI_Agents

🌟 Support This Project: Your sponsorship fuels innovation in GenAI agent development. Become a sponsor to help maintain and expand this valuable resource! GenAI Agents: Comprehensive Repository for Development and Implementation 🚀 Welcome to one of the most extensive and dynamic collections of Generative AI (GenAI) agent tutorials and implementations available today. This repository serves as a comprehensive resource for learning, building, and sharing GenAI agents, ranging from simple conversational bots to complex, multi-agent systems. 📫 Stay Updated! 🚀Cutting-edgeUpdates 💡ExpertInsights 🎯Top 0.1%Content Join over 15,000 of AI enthusiasts getting unique cutting-edge insights and free tutorials! Plus, subscribers get exclusive early access and special 33% discounts to my book and the upcoming RAG Techniques course! Introduction Generative AI agents are at the forefront of artificial intelligence, revolutionizing the way we interact with and leverage AI technologies. This repository is designed to guide you through the development journey, from basic agent implementations to advanced, cutting-edge systems. 📚 Learn to Build Your First AI Agent Your First AI Agent: Simpler Than You Think This detailed blog post complements the repository by providing a complete A-Z walkthrough with in-depth explanations of core concepts, step-by-step implementation, and the theory behind AI agents. It's designed to be incredibly simple to follow while covering everything you need to know to build your first working agent from scratch. 💡 Plus: Subscribe to the newsletter for exclusive early access to tutorials and special discounts on upcoming courses and books! Our goal is to provide a valuable resource for everyone - from beginners taking their first steps in AI to seasoned practitioners pushing the boundaries of what's possible. By offering a range of examples from foundational to complex, we aim to facilitate learning, experimentation, and innovation in the rapidly evolving field of GenAI agents. Furthermore, this repository serves as a platform for showcasing innovative agent creations. Whether you've developed a novel agent architecture or found an innovative application for existing techniques, we encourage you to share your work with the community. Related Projects 📚 Dive into my comprehensive guide on RAG techniques to learn about integrating external knowledge into AI systems, enhancing their capabilities with up-to-date and relevant information retrieval. 🖋️ Explore my Prompt Engineering Techniques guide for an extensive collection of prompting strategies, from fundamental concepts to advanced methods, improving your ability to communicate effectively with AI language models. A Community-Driven Knowledge Hub This repository grows stronger with your contributions! Join our vibrant Discord community — the central hub for shaping and advancing this project together 🤝 GenAI Agents Discord Community Whether you're a novice eager to learn or an expert ready to share your knowledge, your insights can shape the future of GenAI agents. Join us to propose ideas, get feedback, and collaborate on innovative implementations. For contribution guidelines, please refer to our CONTRIBUTING.md file. Let's advance GenAI agent technology together! 🔗 For discussions on GenAI, agents, or to explore knowledge-sharing opportunities, feel free to connect on LinkedIn. Key Features 🎓 Learn to build GenAI agents from beginner to advanced levels 🧠 Explore a wide range of agent architectures and applications 📚 Step-by-step tutorials and comprehensive documentation 🛠️ Practical, ready-to-use agent implementations 🌟 Regular updates with the latest advancements in GenAI 🤝 Share your own agent creations with the community GenAI Agent Implementations Explore our extensive list of GenAI agent implementations, sorted by categories: 🌱 Beginner-Friendly Agents Simple Conversational Agent LangChain PydanticAI Overview 🔎 A context-aware conversational AI maintains information across interactions, enabling more natural dialogues. Implementation 🛠️ Integrates a language model, prompt template, and history manager to generate contextual responses and track conversation sessions. Simple Question Answering Agent Overview 🔎 Answering (QA) agent using LangChain and OpenAI's language model understands user queries and provides relevant, concise answers. Implementation 🛠️ Combines OpenAI's GPT model, a prompt template, and an LLMChain to process user questions and generate AI-driven responses in a streamlined manner. Simple Data Analysis Agent LangChain PydanticAI Overview 🔎 An AI-powered data analysis agent interprets and answers questions about datasets using natural language, combining language models with data manipulation tools for intuitive data exploration. Implementation 🛠️ Integrates a language model, data manipulation framework, and agent framework to process natural language queries and perform data analysis on a synthetic dataset, enabling accessible insights for non-technical users. 🔧 Framework Tutorial: LangGraph Introduction to LangGraph: Building Modular AI Workflows Overview 🔎 This tutorial introduces LangGraph, a powerful framework for creating modular, graph-based AI workflows. Learn how to leverage LangGraph to build more complex and flexible AI agents that can handle multi-step processes efficiently. Implementation 🛠️ Step-by-step guide on using LangGraph to create a StateGraph workflow. The tutorial covers key concepts such as state management, node creation, and graph compilation. It demonstrates these principles by constructing a simple text analysis pipeline, serving as a foundation for more advanced agent architectures. Additional Resources 📚 Blog Post 🎓 Educational and Research Agents ATLAS: Academic Task and Learning Agent System Overview 🔎 ATLAS demonstrates how to build an intelligent multi-agent system that transforms academic support through AI-powered assistance. The system leverages LangGraph's workflow framework to coordinate multiple specialized agents that provide personalized academic planning, note-taking, and advisory support. Implementation 🛠️ Implements a state-managed multi-agent architecture using four specialized agents (Coordinator, Planner, Notewriter, and Advisor) working in concert through LangGraph's workflow framework. The system features sophisticated workflows for profile analysis and academic support, with continuous adaptation based on student performance and feedback. Additional Resources 📚 YouTube Explanation Blog Post Scientific Paper Agent - Literature Review Overview 🔎 An intelligent research assistant that helps users navigate, understand, and analyze scientific literature through an orchestrated workflow. The system combines academic APIs with sophisticated paper processing techniques to automate literature review tasks, enabling researchers to efficiently extract insights from academic papers while maintaining research rigor and quality control. Implementation 🛠️ Leverages LangGraph to create a five-node workflow system including decision making, planning, tool execution, and quality validation nodes. The system integrates the CORE API for paper access, PDFplumber for document processing, and advanced language models for analysis. Key features include a retry mechanism for robust paper downloads, structured data handling through Pydantic models, and quality-focused improvement cycles with human-in-the-loop validation options. Additional Resources 📚 YouTube Explanation Blog Post Chiron - A Feynman-Enhanced Learning Agent Overview 🔎 An adaptive learning agent that guides users through educational content using a structured checkpoint system and Feynman-style teaching. The system processes learning materials (either user-provided or web-retrieved), verifies understanding through interactive checkpoints, and provides simplified explanations when needed, creating a personalized learning experience that mimics one-on-one tutoring. Implementation 🛠️ Uses LangGraph to orchestrate a learning workflow that includes checkpoint definition, context building, understanding verification, and Feynman teaching nodes. The system integrates web search for dynamic content retrieval, employs semantic chunking for context processing, and manages embeddings for relevant information retrieval. Key features include a 70% understanding threshold for progression, interactive human-in-the-loop validation, and structured output through Pydantic models for consistent data handling. Additional Resources 📚 YouTube Explanation 💼 Business and Professional Agents Customer Support Agent (LangGraph) Overview 🔎 An intelligent customer support agent using LangGraph categorizes queries, analyzes sentiment, and provides appropriate responses or escalates issues. Implementation 🛠️ Utilizes LangGraph to create a workflow combining state management, query categorization, sentiment analysis, and response generation. Essay Grading Agent (LangGraph) Overview 🔎 An automated essay grading system using LangGraph and an LLM model evaluates essays based on relevance, grammar, structure, and depth of analysis. Implementation 🛠️ Utilizes a state graph to define the grading workflow, incorporating separate grading functions for each criterion. Travel Planning Agent (LangGraph) Overview 🔎 A Travel Planner using LangGraph demonstrates how to build a stateful, multi-step conversational AI application that collects user input and generates personalized travel itineraries. Implementation 🛠️ Utilizes StateGraph to define the application flow, incorporates custom PlannerState for process management. GenAI Career Assistant Agent Overview 🔎 The GenAI Career Assistant demonstrates how to create a multi-agent system that provides personalized guidance for careers in Generative AI. Using LangGraph and Gemini LLM, the system delivers customized learning paths, resume assistance, interview preparation, and job search support. Implementation 🛠️ Leverages a multi-agent architecture using LangGraph to coordinate specialized agents (Learning, Resume, Interview, Job Search) through TypedDict-based state management. The system employs sophisticated query categorization and routing while integrating with external tools like DuckDuckGo for job searches and dynamic content generation. Additional Resources 📚 YouTube Explanation Project Manager Assistant Agent Overview 🔎 An AI agent designed to assist in project management tasks by automating the process of creating actionable tasks from project descriptions, identifying dependencies, scheduling work, and assigning tasks to team members based on expertise. The system includes risk assessment and self-reflection capabilities to optimize project plans through multiple iterations, aiming to minimize overall project risk. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized nodes including task generation, dependency mapping, scheduling, allocation, and risk assessment. Each node uses GPT-4o-mini for structured outputs following Pydantic models. The system implements a feedback loop for self-improvement, where risk scores trigger reflection cycles that generate insights to optimize the project plan. Visualization tools display Gantt charts of the generated schedules across iterations. Additional Resources 📚 YouTube Explanation Contract Analysis Assistant (ClauseAI) Overview 🔎 ClauseAI demonstrates how to build an AI-powered contract analysis system using a multi-agent approach. The system employs specialized AI agents for different aspects of contract review, from clause analysis to compliance checking, and leverages LangGraph for workflow orchestration and Pinecone for efficient clause retrieval and comparison. Implementation 🛠️ Implements a sophisticated state-based workflow using LangGraph to coordinate multiple AI agents through contract analysis stages. The system features Pydantic models for data validation, vector storage with Pinecone for clause comparison, and LLM-based analysis for generating comprehensive contract reports. The implementation includes parallel processing capabilities and customizable report generation based on user requirements. Additional Resources 📚 YouTube Explanation E2E Testing Agent Overview 🔎 The E2E Testing Agent demonstrates how to build an AI-powered system that converts natural language test instructions into executable end-to-end web tests. Using LangGraph for workflow orchestration and Playwright for browser automation, the system enables users to specify test cases in plain English while handling the complexity of test generation and execution. Implementation 🛠️ Implements a structured workflow using LangGraph to coordinate test generation, validation, and execution. The system features TypedDict state management, integration with Playwright for browser automation, and LLM-based code generation for converting natural language instructions into executable test scripts. The implementation includes DOM state analysis, error handling, and comprehensive test reporting. Additional Resources 📚 YouTube Explanation 🎨 Creative and Content Generation Agents GIF Animation Generator Agent (LangGraph) Overview 🔎 A GIF animation generator that integrates LangGraph for workflow management, GPT-4 for text generation, and DALL-E for image creation, producing custom animations from user prompts. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that generates character descriptions, plots, and image prompts using GPT-4, creates images with DALL-E 3, and assembles them into GIFs using PIL. Employs asynchronous programming for efficient parallel processing. TTS Poem Generator Agent (LangGraph) Overview 🔎 An advanced text-to-speech (TTS) agent using LangGraph and OpenAI's APIs classifies input text, processes it based on content type, and generates corresponding speech output. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow that classifies input text using GPT models, applies content-specific processing, and converts the processed text to speech using OpenAI's TTS API. The system adapts its output based on the identified content type (general, poem, news, or joke). Music Compositor Agent (LangGraph) Overview 🔎 An AI Music Compositor using LangGraph and OpenAI's language models generates custom musical compositions based on user input. The system processes the input through specialized components, each contributing to the final musical piece, which is then converted to a playable MIDI file. Implementation 🛠️ LangGraph orchestrates a workflow that transforms user input into a musical composition, using ChatOpenAI (GPT-4) to generate melody, harmony, and rhythm, which are then style-adapted. The final AI-generated composition is converted to a MIDI file using music21 and can be played back using pygame. Content Intelligence: Multi-Platform Content Generation Agent Overview 🔎 Content Intelligence demonstrates how to build an advanced content generation system that transforms input text into platform-optimized content across multiple social media channels. The system employs LangGraph for workflow orchestration to analyze content, conduct research, and generate tailored content while maintaining brand consistency across different platforms. Implementation 🛠️ Implements a sophisticated workflow using LangGraph to coordinate multiple specialized nodes (Summary, Research, Platform-Specific) through the content generation process. The system features TypedDict and Pydantic models for state management, integration with Tavily Search for research enhancement, and platform-specific content generation using GPT-4. The implementation includes parallel processing for multiple platforms and customizable content templates. Additional Resources 📚 YouTube Explanation Business Meme Generator Using LangGraph and Memegen.link Overview 🔎 The Business Meme Generator demonstrates how to create an AI-powered system that generates contextually relevant memes based on company website analysis. Using LangGraph for workflow orchestration, the system combines Groq's Llama model for text analysis and the Memegen.link API to automatically produce brand-aligned memes for digital marketing. Implementation 🛠️ Implements a state-managed workflow using LangGraph to coordinate website content analysis, meme concept generation, and image creation. The system features Pydantic models for data validation, asynchronous processing with aiohttp, and integration with external APIs (Groq, Memegen.link) to create a complete meme generation pipeline with customizable templates. Additional Resources 📚 YouTube Explanation Murder Mystery Game with LLM Agents Overview 🔎 A text-based detective game that utilizes autonomous LLM agents as interactive characters in a procedurally generated murder mystery. Drawing inspiration from the UNBOUNDED paper, the system creates unique scenarios each time, with players taking on the role of Sherlock Holmes to solve the case through character interviews and deductive reasoning. Implementation 🛠️ Leverages two LangGraph workflows - a main game loop for story/character generation and game progression, and a conversation sub-graph for character interactions. The system uses a combination of LLM-powered narrative generation, character AI, and structured game mechanics to create an immersive investigative experience with replayable storylines. Additional Resources 📚 YouTube Explanation 📊 Analysis and Information Processing Agents Memory-Enhanced Conversational Agent Overview 🔎 A memory-enhanced conversational AI agent incorporates short-term and long-term memory systems to maintain context within conversations and across multiple sessions, improving interaction quality and personalization. Implementation 🛠️ Integrates a language model with separate short-term and long-term memory stores, utilizes a prompt template incorporating both memory types, and employs a memory manager for storage and retrieval. The system includes an interaction loop that updates and utilizes memories for each response. Multi-Agent Collaboration System Overview 🔎 A multi-agent collaboration system combining historical research with data analysis, leveraging large language models to simulate specialized agents working together to answer complex historical questions. Implementation 🛠️ Utilizes a base Agent class to create specialized HistoryResearchAgent and DataAnalysisAgent, orchestrated by a HistoryDataCollaborationSystem. The system follows a five-step process: historical context provision, data needs identification, historical data provision, data analysis, and final synthesis. Self-Improving Agent Overview 🔎 A Self-Improving Agent using LangChain engages in conversations, learns from interactions, and continuously improves its performance over time through reflection and adaptation. Implementation 🛠️ Integrates a language model with chat history management, response generation, and a reflection mechanism. The system employs a learning system that incorporates insights from reflection to enhance future performance, creating a continuous improvement loop. Task-Oriented Agent Overview 🔎 A language model application using LangChain that summarizes text and translates the summary to Spanish, combining custom functions, structured tools, and an agent for efficient text processing. Implementation 🛠️ Utilizes custom functions for summarization and translation, wrapped as structured tools. Employs a prompt template to guide the agent, which orchestrates the use of tools. An agent executor manages the process, taking input text and producing both an English summary and its Spanish translation. Internet Search and Summarize Agent Overview 🔎 An intelligent web research assistant that combines web search capabilities with AI-powered summarization, automating the process of gathering information from the internet and distilling it into concise, relevant summaries. Implementation 🛠️ Integrates a web search module using DuckDuckGo's API, a result parser, and a text summarization engine leveraging OpenAI's language models. The system performs site-specific or general searches, extracts relevant content, generates concise summaries, and compiles attributed results for efficient information retrieval and synthesis. Multi agent research team - Autogen Overview 🔎 This technique explores a multi-agent system for collaborative research using the AutoGen library. It employs agents to solve tasks collaboratively, focusing on efficient execution and quality assurance. The system enhances research by distributing tasks among specialized agents. Implementation 🛠️ Agents are configured with specific roles using the GPT-4 model, including admin, developer, planner, executor, and quality assurance. Interaction management ensures orderly communication with defined transitions. Task execution involves collaborative planning, coding, execution, and quality checking, demonstrating a scalable framework for various domains. Additional Resources 📚 comprehensive solution with UI Blogpost Sales Call Analyzer Overview 🔎 An intelligent system that automates the analysis of sales call recordings by combining audio transcription with advanced natural language processing. The analyzer transcribes audio using OpenAI's Whisper, processes the text using NLP techniques, and generates comprehensive reports including sentiment analysis, key phrases, pain points, and actionable recommendations to improve sales performance. Implementation 🛠️ Utilizes multiple components in a structured workflow: OpenAI Whisper for audio transcription, CrewAI for task automation and agent management, and LangChain for orchestrating the analysis pipeline. The system processes audio through a series of steps from transcription to detailed analysis, leveraging custom agents and tasks to generate structured JSON reports containing insights about customer sentiment, sales opportunities, and recommended improvements. Additional Resources 📚 YouTube Explanation Weather Emergency & Response System Overview 🔎 A comprehensive system demonstrating two agent graph implementations for weather emergency response: a real-time graph processing live weather data, and a hybrid graph combining real and simulated data for testing high-severity scenarios. The system handles complete workflow from data gathering through emergency plan generation, with automated notifications and human verification steps. Implementation 🛠️ Utilizes LangGraph for orchestrating complex workflows with state management, integrating OpenWeatherMap API for real-time data, and Gemini for analysis and response generation. The system incorporates email notifications, social media monitoring simulation, and severity-based routing with configurable human verification for low/medium severity events. Additional Resources 📚 YouTube Explanation Self-Healing Codebase System Overview 🔎 An intelligent system that automatically detects, diagnoses, and fixes runtime code errors using LangGraph workflow orchestration and ChromaDB vector storage. The system maintains a memory of encountered bugs and their fixes through vector embeddings, enabling pattern recognition for similar errors across the codebase. Implementation 🛠️ Utilizes a state-based graph workflow that processes function definitions and runtime arguments through specialized nodes for error detection, code analysis, and fix generation. Incorporates ChromaDB for vector-based storage of bug patterns and fixes, with automated search and retrieval capabilities for similar error patterns, while maintaining code execution safety through structured validation steps. Additional Resources 📚 YouTube Explanation DataScribe: AI-Powered Schema Explorer Overview 🔎 An intelligent agent system that enables intuitive exploration and querying of relational databases through natural language interactions. The system utilizes a fleet of specialized agents, coordinated by a stateful Supervisor, to handle schema discovery, query planning, and data analysis tasks while maintaining contextual understanding through vector-based relationship graphs. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-agent workflow including discovery, inference, and planning agents, with NetworkX for relationship graph visualization and management. The system incorporates dynamic state management through TypedDict classes, maintains database context between sessions using a db_graph attribute, and includes safety measures to prevent unauthorized database modifications. Memory-Enhanced Email Agent (LangGraph & LangMem) Overview 🔎 An intelligent email assistant that combines three types of memory (semantic, episodic, and procedural) to create a system that improves over time. The agent can triage incoming emails, draft contextually appropriate responses using stored knowledge, and enhance its performance based on user feedback. Implementation 🛠️ Leverages LangGraph for workflow orchestration and LangMem for sophisticated memory management across multiple memory types. The system implements a triage workflow with memory-enhanced decision making, specialized tools for email composition and calendar management, and a self-improvement mechanism that updates its own prompts based on feedback and past performance. Additional Resources 📚 Blog Post 📰 News and Information Agents News TL;DR using LangGraph Overview 🔎 A news summarization system that generates concise TL;DR summaries of current events based on user queries. The system leverages large language models for decision making and summarization while integrating with news APIs to access up-to-date content, allowing users to quickly catch up on topics of interest through generated bullet-point summaries. Implementation 🛠️ Utilizes LangGraph to orchestrate a workflow combining multiple components: GPT-4o-mini for generating search terms and article summaries, NewsAPI for retrieving article metadata, BeautifulSoup for web scraping article content, and Asyncio for concurrent processing. The system follows a structured pipeline from query processing through article selection and summarization, managing the flow between components to produce relevant TL;DRs of current news articles. Additional Resources 📚 YouTube Explanation Blog Post AInsight: AI/ML Weekly News Reporter Overview 🔎 AInsight demonstrates how to build an intelligent news aggregation and summarization system using a multi-agent architecture. The system employs three specialized agents (NewsSearcher, Summarizer, Publisher) to automatically collect, process and summarize AI/ML news for general audiences through LangGraph-based workflow orchestration. Implementation 🛠️ Implements a state-managed multi-agent system using LangGraph to coordinate the news collection (Tavily API), technical content summarization (GPT-4), and report generation processes. The system features modular architecture with TypedDict-based state management, external API integration, and markdown report generation with customizable templates. Additional Resources 📚 YouTube Explanation Journalism-Focused AI Assistant Overview 🔎 A specialized AI assistant that helps journalists tackle modern journalistic challenges like misinformation, bias, and information overload. The system integrates fact-checking, tone analysis, summarization, and grammar review tools to enhance the accuracy and efficiency of journalistic work while maintaining ethical reporting standards. Implementation 🛠️ Leverages LangGraph to orchestrate a workflow of specialized components including language models for analysis and generation, web search integration via DuckDuckGo's API, document parsing tools like PyMuPDFLoader and WebBaseLoader, text splitting with RecursiveCharacterTextSplitter, and structured JSON outputs. Each component works together through a unified workflow to analyze content, verify facts, detect bias, extract quotes, and generate comprehensive reports. Blog Writer (Open AI Swarm) Overview 🔎 A multi-agent system for collaborative blog post creation using OpenAI's Swarm package. It leverages specialized agents to perform research, planning, writing, and editing tasks efficiently. Implementation 🛠️ Utilizes OpenAI's Swarm Package to manage agent interactions. Includes an admin, researcher, planner, writer, and editor, each with specific roles. The system follows a structured workflow: topic setting, outlining, research, drafting, and editing. This approach enhances content creation through task distribution, specialization, and collaborative problem-solving. Additional Resources 📚 Swarm Repo Podcast Internet Search and Generate Agent 🎙️ Overview 🔎 A two step agent that first searches the internet for a given topic and then generates a podcast on the topic found. The search step uses a search agent and search function to find the most relevant information. The second step uses a podcast generation agent and generation function to create a podcast on the topic found. Implementation 🛠️ Utilizes LangGraph to orchestrate a two-step workflow. The first step involves a search agent and function to gather information from the internet. The second step uses a podcast generation agent and function to create a podcast based on the gathered information. 🛍️ Shopping and Product Analysis Agents ShopGenie - Redefining Online Shopping Customer Experience Overview 🔎 An AI-powered shopping assistant that helps customers make informed purchasing decisions even without domain expertise. The system analyzes product information from multiple sources, compares specifications and reviews, identifies the best option based on user needs, and delivers recommendations through email with supporting video reviews, creating a comprehensive shopping experience. Implementation 🛠️ Uses LangGraph to orchestrate a workflow combining Tavily for web search, Llama-3.1-70B for structured data analysis and product comparison, and YouTube API for review video retrieval. The system processes search results through multiple nodes including schema mapping, product comparison, review identification, and email generation. Key features include structured Pydantic models for consistent data handling, retry mechanisms for robust API interactions, and email delivery through SMTP for sharing recommendations. Additional Resources 📚 YouTube Explanation Car Buyer AI Agent Overview 🔎 The Smart Product Buyer AI Agent demonstrates how to build an intelligent system that assists users in making informed purchasing decisions. Using LangGraph and LLM-based intelligence, the system processes user requirements, scrapes product listings from websites like AutoTrader, and provides detailed analysis and recommendations for car purchases. Implementation 🛠️ Implements a state-based workflow using LangGraph to coordinate user interaction, web scraping, and decision support. The system features TypedDict state management, async web scraping with Playwright, and integrates with external APIs for comprehensive product analysis. The implementation includes a Gradio interface for real-time chat interaction and modular scraper architecture for easy extension to additional product categories. Additional Resources 📚 YouTube Explanation 🎯 Task Management and Productivity Agents Taskifier - Intelligent Task Allocation & Management Overview 🔎 An intelligent task management system that analyzes user work styles and creates personalized task breakdown strategies, born from the observation that procrastination often stems from task ambiguity among students and early-career professionals. The system evaluates historical work patterns, gathers relevant task information through web search, and generates customized step-by-step approaches to optimize productivity and reduce workflow paralysis. Implementation 🛠️ Leverages LangGraph for orchestrating a multi-step workflow including work style analysis, information gathering via Tavily API, and customized plan generation. The system maintains state through the process, integrating historical work pattern data with fresh task research to output detailed, personalized task execution plans aligned with the user's natural working style. Additional Resources 📚 YouTube Explanation Grocery Management Agents System Overview 🔎 A multi-agent system built with CrewAI that automates grocery management tasks including receipt interpretation, expiration date tracking, inventory management, and recipe recommendations. The system uses specialized agents to extract data from receipts, estimate product shelf life, track consumption, and suggest recipes to minimize food waste. Implementation 🛠️ Implements four specialized agents using CrewAI - a Receipt Interpreter that extracts item details from receipts, an Expiration Date Estimator that determines shelf life using online sources, a Grocery Tracker that maintains inventory based on consumption, and a Recipe Recommender that suggests meals using available ingredients. Each agent has specific tools and tasks orchestrated through a crew workflow. Additional Resources 📚 YouTube Explanation 🔍 Quality Assurance and Testing Agents LangGraph-Based Systems Inspector Overview 🔎 A comprehensive testing and validation tool for LangGraph-based applications that automatically analyzes system architecture, generates test cases, and identifies potential vulnerabilities through multi-agent inspection. The inspector employs specialized AI testers to evaluate different aspects of the system, from basic functionality to security concerns and edge cases. Implementation 🛠️ Integrates LangGraph for workflow orchestration, multiple LLM-powered testing agents, and a structured evaluation pipeline that includes static analysis, test case generation, and results verification. The system uses Pydantic for data validation, NetworkX for graph representation, and implements a modular architecture that allows for parallel test execution and comprehensive result analysis. Additional Resources 📚 YouTube Explanation Blog Post EU Green Deal FAQ Bot Overview 🔎 The EU Green Deal FAQ Bot demonstrates how to build a RAG-based AI agent that helps businesses understand EU green deal policies. The system processes complex regulatory documents into manageable chunks and provides instant, accurate answers to common questions about environmental compliance, emissions reporting, and waste management requirements. Implementation 🛠️ Implements a sophisticated RAG pipeline using FAISS vectorstore for document storage, semantic chunking for preprocessing, and multiple specialized agents (Retriever, Summarizer, Evaluator) for query processing. The system features query rephrasing for improved accuracy, cross-reference with gold Q&A datasets for answer validation, and comprehensive evaluation metrics to ensure response quality and relevance. Additional Resources 📚 YouTube Explanation Systematic Review Automation System + Paper Draft Creation Overview 🔎 A comprehensive system for automating academic systematic reviews using a directed graph architecture and LangChain components. The system generates complete, publication-ready systematic review papers, automatically processing everything from literature search through final draft generation with multiple revision cycles. Implementation 🛠️ Utilizes a state-based graph workflow that handles paper search and selection (up to 3 papers), PDF processing, and generates a complete academic paper with all standard sections (abstract, introduction, methods, results, conclusions, references). The system incorporates multiple revision cycles with automated critique and improvement phases, all orchestrated through LangGraph state management. Additional Resources 📚 YouTube Explanation 🌟 Special Advanced Technique 🌟 Sophisticated Controllable Agent for Complex RAG Tasks 🤖 Overview 🔎 An advanced RAG solution designed to tackle complex questions that simple semantic similarity-based retrieval cannot solve. This approach uses a sophisticated deterministic graph as the "brain" 🧠 of a highly controllable autonomous agent, capable of answering non-trivial questions from your own data. Implementation 🛠️ • Implement a multi-step process involving question anonymization, high-level planning, task breakdown, adaptive information retrieval and question answering, continuous re-planning, and rigorous answer verification to ensure grounded and accurate responses. Getting Started To begin exploring and building GenAI agents: Clone this repository: Navigate to the technique you're interested in: Follow the detailed implementation guide in each technique's notebook. Contributing We welcome contributions from the community! If you have a new technique or improvement to suggest: Fork the repository Create your feature branch: git checkout -b feature/AmazingFeature Commit your changes: git commit -m 'Add some AmazingFeature' Push to the branch: git push origin feature/AmazingFeature Open a pull request Contributors License This project is licensed under a custom non-commercial license - see the LICENSE file for details. ⭐️ If you find this repository helpful, please consider giving it a star! Keywords: GenAI, Generative AI, Agents, NLP, AI, Machine Learning, Natural Language Processing, LLM, Conversational AI, Task-Oriented AI

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

aima-python
github
LLM Vibe Score0.575
Human Vibe Score0.33114909407186394
aimacodeMar 28, 2025

aima-python

aima-python Python code for the book Artificial Intelligence: A Modern Approach. You can use this in conjunction with a course on AI, or for study on your own. We're looking for solid contributors to help. Updates for 4th Edition The 4th edition of the book as out now in 2020, and thus we are updating the code. All code here will reflect the 4th edition. Changes include: Move from Python 3.5 to 3.7. More emphasis on Jupyter (Ipython) notebooks. More projects using external packages (tensorflow, etc.). Structure of the Project When complete, this project will have Python implementations for all the pseudocode algorithms in the book, as well as tests and examples of use. For each major topic, such as search, we provide the following files: search.ipynb and search.py: Implementations of all the pseudocode algorithms, and necessary support functions/classes/data. The .py file is generated automatically from the .ipynb file; the idea is that it is easier to read the documentation in the .ipynb file. search_XX.ipynb: Notebooks that show how to use the code, broken out into various topics (the XX). tests/test_search.py: A lightweight test suite, using assert statements, designed for use with py.test, but also usable on their own. Python 3.7 and up The code for the 3rd edition was in Python 3.5; the current 4th edition code is in Python 3.7. It should also run in later versions, but does not run in Python 2. You can install Python or use a browser-based Python interpreter such as repl.it. You can run the code in an IDE, or from the command line with python -i filename.py where the -i option puts you in an interactive loop where you can run Python functions. All notebooks are available in a binder environment. Alternatively, visit jupyter.org for instructions on setting up your own Jupyter notebook environment. Features from Python 3.6 and 3.7 that we will be using for this version of the code: f-strings: all string formatting should be done with f'var = {var}', not with 'var = {}'.format(var) nor 'var = %s' % var. typing module: declare functions with type hints: def successors(state) -> List[State]:; that is, give type declarations, but omit them when it is obvious. I don't need to say state: State, but in another context it would make sense to say s: State. Underscores in numerics: write a million as 1000000 not as 1000000. dataclasses module: replace namedtuple with dataclass. [//]: (There is a sibling [aima-docker]https://github.com/rajatjain1997/aima-docker project that shows you how to use docker containers to run more complex problems in more complex software environments.) Installation Guide To download the repository: git clone https://github.com/aimacode/aima-python.git Then you need to install the basic dependencies to run the project on your system: You also need to fetch the datasets from the aima-data repository: Wait for the datasets to download, it may take a while. Once they are downloaded, you need to install pytest, so that you can run the test suite: pip install pytest Then to run the tests: py.test And you are good to go! Index of Algorithms Here is a table of algorithms, the figure, name of the algorithm in the book and in the repository, and the file where they are implemented in the repository. This chart was made for the third edition of the book and is being updated for the upcoming fourth edition. Empty implementations are a good place for contributors to look for an issue. The aima-pseudocode project describes all the algorithms from the book. An asterisk next to the file name denotes the algorithm is not fully implemented. Another great place for contributors to start is by adding tests and writing on the notebooks. You can see which algorithms have tests and notebook sections below. If the algorithm you want to work on is covered, don't worry! You can still add more tests and provide some examples of use in the notebook! | Figure | Name (in 3rd edition) | Name (in repository) | File | Tests | Notebook |:-------|:----------------------------------|:------------------------------|:--------------------------------|:-----|:---------| | 2 | Random-Vacuum-Agent | RandomVacuumAgent | [agents.py][agents] | Done | Included | | 2 | Model-Based-Vacuum-Agent | ModelBasedVacuumAgent | [agents.py][agents] | Done | Included | | 2.1 | Environment | Environment | [agents.py][agents] | Done | Included | | 2.1 | Agent | Agent | [agents.py][agents] | Done | Included | | 2.3 | Table-Driven-Vacuum-Agent | TableDrivenVacuumAgent | [agents.py][agents] | Done | Included | | 2.7 | Table-Driven-Agent | TableDrivenAgent | [agents.py][agents] | Done | Included | | 2.8 | Reflex-Vacuum-Agent | ReflexVacuumAgent | [agents.py][agents] | Done | Included | | 2.10 | Simple-Reflex-Agent | SimpleReflexAgent | [agents.py][agents] | Done | Included | | 2.12 | Model-Based-Reflex-Agent | ReflexAgentWithState | [agents.py][agents] | Done | Included | | 3 | Problem | Problem | [search.py][search] | Done | Included | | 3 | Node | Node | [search.py][search] | Done | Included | | 3 | Queue | Queue | [utils.py][utils] | Done | No Need | | 3.1 | Simple-Problem-Solving-Agent | SimpleProblemSolvingAgent | [search.py][search] | Done | Included | | 3.2 | Romania | romania | [search.py][search] | Done | Included | | 3.7 | Tree-Search | depth/breadthfirsttree_search | [search.py][search] | Done | Included | | 3.7 | Graph-Search | depth/breadthfirstgraph_search | [search.py][search] | Done | Included | | 3.11 | Breadth-First-Search | breadthfirstgraph_search | [search.py][search] | Done | Included | | 3.14 | Uniform-Cost-Search | uniformcostsearch | [search.py][search] | Done | Included | | 3.17 | Depth-Limited-Search | depthlimitedsearch | [search.py][search] | Done | Included | | 3.18 | Iterative-Deepening-Search | iterativedeepeningsearch | [search.py][search] | Done | Included | | 3.22 | Best-First-Search | bestfirstgraph_search | [search.py][search] | Done | Included | | 3.24 | A\*-Search | astar_search | [search.py][search] | Done | Included | | 3.26 | Recursive-Best-First-Search | recursivebestfirst_search | [search.py][search] | Done | Included | | 4.2 | Hill-Climbing | hill_climbing | [search.py][search] | Done | Included | | 4.5 | Simulated-Annealing | simulated_annealing | [search.py][search] | Done | Included | | 4.8 | Genetic-Algorithm | genetic_algorithm | [search.py][search] | Done | Included | | 4.11 | And-Or-Graph-Search | andorgraph_search | [search.py][search] | Done | Included | | 4.21 | Online-DFS-Agent | onlinedfsagent | [search.py][search] | Done | Included | | 4.24 | LRTA\*-Agent | LRTAStarAgent | [search.py][search] | Done | Included | | 5.3 | Minimax-Decision | minimax_decision | [games.py][games] | Done | Included | | 5.7 | Alpha-Beta-Search | alphabeta_search | [games.py][games] | Done | Included | | 6 | CSP | CSP | [csp.py][csp] | Done | Included | | 6.3 | AC-3 | AC3 | [csp.py][csp] | Done | Included | | 6.5 | Backtracking-Search | backtracking_search | [csp.py][csp] | Done | Included | | 6.8 | Min-Conflicts | min_conflicts | [csp.py][csp] | Done | Included | | 6.11 | Tree-CSP-Solver | treecspsolver | [csp.py][csp] | Done | Included | | 7 | KB | KB | [logic.py][logic] | Done | Included | | 7.1 | KB-Agent | KB_AgentProgram | [logic.py][logic] | Done | Included | | 7.7 | Propositional Logic Sentence | Expr | [utils.py][utils] | Done | Included | | 7.10 | TT-Entails | tt_entails | [logic.py][logic] | Done | Included | | 7.12 | PL-Resolution | pl_resolution | [logic.py][logic] | Done | Included | | 7.14 | Convert to CNF | to_cnf | [logic.py][logic] | Done | Included | | 7.15 | PL-FC-Entails? | plfcentails | [logic.py][logic] | Done | Included | | 7.17 | DPLL-Satisfiable? | dpll_satisfiable | [logic.py][logic] | Done | Included | | 7.18 | WalkSAT | WalkSAT | [logic.py][logic] | Done | Included | | 7.20 | Hybrid-Wumpus-Agent | HybridWumpusAgent | | | | | 7.22 | SATPlan | SAT_plan | [logic.py][logic] | Done | Included | | 9 | Subst | subst | [logic.py][logic] | Done | Included | | 9.1 | Unify | unify | [logic.py][logic] | Done | Included | | 9.3 | FOL-FC-Ask | folfcask | [logic.py][logic] | Done | Included | | 9.6 | FOL-BC-Ask | folbcask | [logic.py][logic] | Done | Included | | 10.1 | Air-Cargo-problem | air_cargo | [planning.py][planning] | Done | Included | | 10.2 | Spare-Tire-Problem | spare_tire | [planning.py][planning] | Done | Included | | 10.3 | Three-Block-Tower | threeblocktower | [planning.py][planning] | Done | Included | | 10.7 | Cake-Problem | havecakeandeatcake_too | [planning.py][planning] | Done | Included | | 10.9 | Graphplan | GraphPlan | [planning.py][planning] | Done | Included | | 10.13 | Partial-Order-Planner | PartialOrderPlanner | [planning.py][planning] | Done | Included | | 11.1 | Job-Shop-Problem-With-Resources | jobshopproblem | [planning.py][planning] | Done | Included | | 11.5 | Hierarchical-Search | hierarchical_search | [planning.py][planning] | Done | Included | | 11.8 | Angelic-Search | angelic_search | [planning.py][planning] | Done | Included | | 11.10 | Doubles-tennis | doubletennisproblem | [planning.py][planning] | Done | Included | | 13 | Discrete Probability Distribution | ProbDist | [probability.py][probability] | Done | Included | | 13.1 | DT-Agent | DTAgent | [probability.py][probability] | Done | Included | | 14.9 | Enumeration-Ask | enumeration_ask | [probability.py][probability] | Done | Included | | 14.11 | Elimination-Ask | elimination_ask | [probability.py][probability] | Done | Included | | 14.13 | Prior-Sample | prior_sample | [probability.py][probability] | Done | Included | | 14.14 | Rejection-Sampling | rejection_sampling | [probability.py][probability] | Done | Included | | 14.15 | Likelihood-Weighting | likelihood_weighting | [probability.py][probability] | Done | Included | | 14.16 | Gibbs-Ask | gibbs_ask | [probability.py][probability] | Done | Included | | 15.4 | Forward-Backward | forward_backward | [probability.py][probability] | Done | Included | | 15.6 | Fixed-Lag-Smoothing | fixedlagsmoothing | [probability.py][probability] | Done | Included | | 15.17 | Particle-Filtering | particle_filtering | [probability.py][probability] | Done | Included | | 16.9 | Information-Gathering-Agent | InformationGatheringAgent | [probability.py][probability] | Done | Included | | 17.4 | Value-Iteration | value_iteration | [mdp.py][mdp] | Done | Included | | 17.7 | Policy-Iteration | policy_iteration | [mdp.py][mdp] | Done | Included | | 17.9 | POMDP-Value-Iteration | pomdpvalueiteration | [mdp.py][mdp] | Done | Included | | 18.5 | Decision-Tree-Learning | DecisionTreeLearner | [learning.py][learning] | Done | Included | | 18.8 | Cross-Validation | cross_validation | [learning.py][learning]\* | | | | 18.11 | Decision-List-Learning | DecisionListLearner | [learning.py][learning]\* | | | | 18.24 | Back-Prop-Learning | BackPropagationLearner | [learning.py][learning] | Done | Included | | 18.34 | AdaBoost | AdaBoost | [learning.py][learning] | Done | Included | | 19.2 | Current-Best-Learning | currentbestlearning | knowledge.py | Done | Included | | 19.3 | Version-Space-Learning | versionspacelearning | knowledge.py | Done | Included | | 19.8 | Minimal-Consistent-Det | minimalconsistentdet | knowledge.py | Done | Included | | 19.12 | FOIL | FOIL_container | knowledge.py | Done | Included | | 21.2 | Passive-ADP-Agent | PassiveADPAgent | [rl.py][rl] | Done | Included | | 21.4 | Passive-TD-Agent | PassiveTDAgent | [rl.py][rl] | Done | Included | | 21.8 | Q-Learning-Agent | QLearningAgent | [rl.py][rl] | Done | Included | | 22.1 | HITS | HITS | [nlp.py][nlp] | Done | Included | | 23 | Chart-Parse | Chart | [nlp.py][nlp] | Done | Included | | 23.5 | CYK-Parse | CYK_parse | [nlp.py][nlp] | Done | Included | | 25.9 | Monte-Carlo-Localization | montecarlolocalization | [probability.py][probability] | Done | Included | Index of data structures Here is a table of the implemented data structures, the figure, name of the implementation in the repository, and the file where they are implemented. | Figure | Name (in repository) | File | |:-------|:--------------------------------|:--------------------------| | 3.2 | romania_map | [search.py][search] | | 4.9 | vacumm_world | [search.py][search] | | 4.23 | onedimstate_space | [search.py][search] | | 6.1 | australia_map | [search.py][search] | | 7.13 | wumpusworldinference | [logic.py][logic] | | 7.16 | hornclausesKB | [logic.py][logic] | | 17.1 | sequentialdecisionenvironment | [mdp.py][mdp] | | 18.2 | waitingdecisiontree | [learning.py][learning] | Acknowledgements Many thanks for contributions over the years. I got bug reports, corrected code, and other support from Darius Bacon, Phil Ruggera, Peng Shao, Amit Patil, Ted Nienstedt, Jim Martin, Ben Catanzariti, and others. Now that the project is on GitHub, you can see the contributors who are doing a great job of actively improving the project. Many thanks to all contributors, especially @darius, @SnShine, @reachtarunhere, @antmarakis, @Chipe1, @ad71 and @MariannaSpyrakou. [agents]:../master/agents.py [csp]:../master/csp.py [games]:../master/games.py [grid]:../master/grid.py [knowledge]:../master/knowledge.py [learning]:../master/learning.py [logic]:../master/logic.py [mdp]:../master/mdp.py [nlp]:../master/nlp.py [planning]:../master/planning.py [probability]:../master/probability.py [rl]:../master/rl.py [search]:../master/search.py [utils]:../master/utils.py [text]:../master/text.py

awesome-ai-in-finance
github
LLM Vibe Score0.58
Human Vibe Score1
georgezouqMar 28, 2025

awesome-ai-in-finance

Awesome AI in Finance There are millions of trades made in the global financial market every day. Data grows very quickly and people are hard to understand. With the power of the latest artificial intelligence research, people analyze & trade automatically and intelligently. This list contains the research, tools and code that people use to beat the market. [中文资源] Contents LLMs Papers Courses & Books Strategies & Research Time Series Data Portfolio Management High Frequency Trading Event Drive Crypto Currencies Strategies Technical Analysis Lottery & Gamble Arbitrage Data Sources Research Tools Trading System TA Lib Exchange API Articles Others LLMs 🌟🌟 MarS - A Financial Market Simulation Engine Powered by Generative Foundation Model. 🌟🌟 Financial Statement Analysis with Large Language Models - GPT-4 can outperform professional financial analysts in predicting future earnings changes, generating useful narrative insights, and resulting in superior trading strategies with higher Sharpe ratios and alphas, thereby suggesting a potential central role for LLMs in financial decision-making. PIXIU - An open-source resource providing a financial large language model, a dataset with 136K instruction samples, and a comprehensive evaluation benchmark. FinGPT - Provides a playground for all people interested in LLMs and NLP in Finance. MACD + RSI + ADX Strategy (ChatGPT-powered) by TradeSmart - Asked ChatGPT on which indicators are the most popular for trading. We used all of the recommendations given. A ChatGPT trading algorithm delivered 500% returns in stock market. My breakdown on what this means for hedge funds and retail investors Use chatgpt to adjust strategy parameters Hands-on LLMs: Train and Deploy a Real-time Financial Advisor - Train and deploy a real-time financial advisor chatbot with Falcon 7B and CometLLM. ChatGPT Strategy by OctoBot - Use ChatGPT to determine which cryptocurrency to trade based on technical indicators. Papers The Theory of Speculation L. Bachelier, 1900 - The influences which determine the movements of the Stock Exchange are. Brownian Motion in the Stock Market Osborne, 1959 - The common-stock prices can be regarded as an ensemble of decisions in statistical equilibrium. An Investigation into the Use of Reinforcement Learning Techniques within the Algorithmic Trading Domain, 2015 A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem Reinforcement Learning for Trading, 1994 Dragon-Kings, Black Swans and the Prediction of Crises Didier Sornette - The power laws in the distributions of event sizes under a broad range of conditions in a large variety of systems. Financial Trading as a Game: A Deep Reinforcement Learning Approach - Deep reinforcement learning provides a framework toward end-to-end training of such trading agent. Machine Learning for Trading - With an appropriate choice of the reward function, reinforcement learning techniques can successfully handle the risk-averse case. Ten Financial Applications of Machine Learning, 2018 - Slides review few important financial ML applications. FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance, 2020 - Introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies. Deep Reinforcement Learning for Automated Stock Trading: An Ensemble Strategy, 2020 - Propose an ensemble strategy that employs deep reinforcement schemes to learn a stock trading strategy by maximizing investment return. Courses & Books & Blogs 🌟 QuantResearch - Quantitative analysis, strategies and backtests https://letianzj.github.io/ NYU: Overview of Advanced Methods of Reinforcement Learning in Finance Udacity: Artificial Intelligence for Trading AI in Finance - Learn Fintech Online. Advanced-Deep-Trading - Experiments based on "Advances in financial machine learning" book. Advances in Financial Machine Learning - Using advanced ML solutions to overcome real-world investment problems. Build Financial Software with Generative AI - Book about how to build financial software hands-on using generative AI tools like ChatGPT and Copilot. Mastering Python for Finance - Sources codes for: Mastering Python for Finance, Second Edition. MLSys-NYU-2022 - Slides, scripts and materials for the Machine Learning in Finance course at NYU Tandon, 2022. Train and Deploy a Serverless API to predict crypto prices - In this tutorial you won't build an ML system that will make you rich. But you will master the MLOps frameworks and tools you need to build ML systems that, together with tons of experimentation, can take you there. Strategies & Research Time Series Data Price and Volume process with Technology Analysis Indices 🌟🌟 stockpredictionai - A complete process for predicting stock price movements. 🌟 Personae - Implements and environment of Deep Reinforcement Learning & Supervised Learning for Quantitative Trading. 🌟 Ensemble-Strategy - Deep Reinforcement Learning for Automated Stock Trading. FinRL - A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance. AutomatedStockTrading-DeepQ-Learning - Build a Deep Q-learning reinforcement agent model as automated trading robot. tfdeeprltrader - Trading environment(OpenAI Gym) + PPO(TensorForce). trading-gym - Trading agent to train with episode of short term trading itself. trading-rl - Deep Reinforcement Learning for Financial Trading using Price Trailing. deeprltrader - Trading environment(OpenAI Gym) + DDQN (Keras-RL). Quantitative-Trading - Papers and code implementing Quantitative-Trading. gym-trading - Environment for reinforcement-learning algorithmic trading models. zenbrain - A framework for machine-learning bots. DeepLearningNotes - Machine learning in quant analysis. stockmarketreinforcementlearning - Stock market trading OpenAI Gym environment with Deep Reinforcement Learning using Keras. Chaos Genius - ML powered analytics engine for outlier/anomaly detection and root cause analysis.. mlforecast - Scalable machine learning based time series forecasting. Portfolio Management Deep-Reinforcement-Stock-Trading - A light-weight deep reinforcement learning framework for portfolio management. qtrader - Reinforcement Learning for portfolio management. PGPortfolio - A Deep Reinforcement Learning framework for the financial portfolio management problem. DeepDow - Portfolio optimization with deep learning. skfolio - Python library for portfolio optimization built on top of scikit-learn. High Frequency Trading High-Frequency-Trading-Model-with-IB - A high-frequency trading model using Interactive Brokers API with pairs and mean-reversion. 🌟 SGX-Full-OrderBook-Tick-Data-Trading-Strategy - Solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data. HFTBitcoin - Analysis of High Frequency Trading on Bitcoin exchanges. Event Drive 🌟🌟 stockpredictionai - Complete process for predicting stock price movements. 🌟 trump2cash - A stock trading bot powered by Trump tweets. Crypto Currencies Strategies LSTM-Crypto-Price-Prediction - Predicting price trends in crypto markets using an LSTM-RNN for trading. tforcebtctrader - TensorForce Bitcoin trading bot. Tensorflow-NeuroEvolution-Trading-Bot - A population model that trade cyrpto and breed and mutate iteratively. gekkoga - Genetic algorithm for solving optimization of trading strategies using Gekko. GekkoANNStrategies - ANN trading strategies for the Gekko trading bot. gekko-neuralnet - Neural network strategy for Gekko. bitcoinprediction - Code for "Bitcoin Prediction" by Siraj Raval on YouTube. Technical Analysis quant-trading - Python quantitative trading strategies. Gekko-Bot-Resources - Gekko bot resources. gekkotools - Gekko strategies, tools etc. gekko RSIWR - Gekko RSIWR strategies. gekko HL - Calculate down peak and trade on. EthTradingAlgorithm - Ethereum trading algorithm using Python 3.5 and the library ZipLine. gekkotradingstuff - Awesome crypto currency trading platform. forex.analytics - Node.js native library performing technical analysis over an OHLC dataset with use of genetic algorithmv. BitcoinMACDStrategy - Bitcoin MACD crossover trading strategy backtest. crypto-signal - Automated crypto trading & technical analysis (TA) bot for Bittrex, Binance, GDAX, and more. Gekko-Strategies - Strategies to Gekko trading bot with backtests results and some useful tools. gekko-gannswing - Gann's Swing trade strategy for Gekko trade bot. Lottery & Gamble LotteryPredict - Use LSTM to predict lottery. Arbitrage ArbitrageBot - Arbitrage bot that currently works on bittrex & poloniex. r2 - Automatic arbitrage trading system powered by Node.js + TypeScript. cryptocurrency-arbitrage - A crypto currency arbitrage opportunity calculator. Over 800 currencies and 50 markets. bitcoin-arbitrage - Bitcoin arbitrage opportunity detector. blackbird - Long / short market-neutral strategy. Data Sources Traditional Markets 🌟 Quandl - Get millions of financial and economic dataset from hundreds of publishers via a single free API. yahoo-finance - Python module to get stock data from Yahoo! Finance. Tushare - Crawling historical data of Chinese stocks. Financial Data - Stock Market and Financial Data API. Crypto Currencies CryptoInscriber - A live crypto currency historical trade data blotter. Download live historical trade data from any crypto exchange. Gekko-Datasets - Gekko trading bot dataset dumps. Download and use history files in SQLite format. Research Tools Synthical - AI-powered collaborative environment for Research. 🌟🌟 TensorTrade - Trade efficiently with reinforcement learning. ML-Quant - Quant resources from ArXiv (sanity), SSRN, RePec, Journals, Podcasts, Videos, and Blogs. JAQS - An open source quant strategies research platform. pyfolio - Portfolio and risk analytics in Python. alphalens - Performance analysis of predictive (alpha) stock factors. empyrical - Common financial risk and performance metrics. Used by Zipline and pyfolio. zvt - Zero vector trader. Trading System For Back Test & Live trading Traditional Market System 🌟🌟🌟 OpenBB - AI-powered opensource research and analytics workspace. 🌟🌟 zipline - A python algorithmic trading library. 🌟 TradingView - Get real-time information and market insights. rqalpha - A extendable, replaceable Python algorithmic backtest & trading framework. backtrader - Python backtesting library for trading strategies. kungfu - Kungfu Master trading system. lean - Algorithmic trading engine built for easy strategy research, backtesting and live trading. Combine & Rebuild pylivetrader - Python live trade execution library with zipline interface. CoinMarketCapBacktesting - As backtest frameworks for coin trading strategy. Crypto Currencies zenbot - Command-line crypto currency trading bot using Node.js and MongoDB. bot18 - High-frequency crypto currency trading bot developed by Zenbot. magic8bot - Crypto currency trading bot using Node.js and MongoDB. catalyst - An algorithmic trading library for Crypto-Assets in python. QuantResearchDev - Quant Research dev & Traders open source project. MACD - Zenbot MACD Auto-Trader. abu - A quant trading system base on python. Plugins CoinMarketCapBacktesting - Tests bt and Quantopian Zipline as backtesting frameworks for coin trading strategy. Gekko-BacktestTool - Batch backtest, import and strategy params optimalization for Gekko Trading Bot. TA Lib pandastalib - A Python Pandas implementation of technical analysis indicators. finta - Common financial technical indicators implemented in Python-Pandas (70+ indicators). tulipnode - Official Node.js wrapper for Tulip Indicators. Provides over 100 technical analysis overlay and indicator functions. techan.js - A visual, technical analysis and charting (Candlestick, OHLC, indicators) library built on D3. Exchange API Do it in real world! IbPy - Python API for the Interactive Brokers on-line trading system. HuobiFeeder - Connect HUOBIPRO exchange, get market/historical data for ABAT trading platform backtest analysis and live trading. ctpwrapper - Shanghai future exchange CTP api. PENDAX - Javascript SDK for Trading/Data API and Websockets for cryptocurrency exchanges like FTX, FTXUS, OKX, Bybit, & More Framework tf-quant-finance - High-performance TensorFlow library for quantitative finance. Visualizing playground - Play with neural networks. netron - Visualizer for deep learning and machine learning models. KLineChart - Highly customizable professional lightweight financial charts GYM Environment 🌟 TradingGym - Trading and Backtesting environment for training reinforcement learning agent. TradzQAI - Trading environment for RL agents, backtesting and training. btgym - Scalable, event-driven, deep-learning-friendly backtesting library. Articles The-Economist - The Economist. nyu-mlif-notes - NYU machine learning in finance notes. Using LSTMs to Turn Feelings Into Trades Others zipline-tensorboard - TensorBoard as a Zipline dashboard. gekko-quasar-ui - An UI port for gekko trading bot using Quasar framework. Floom AI gateway and marketplace for developers, enables streamlined integration and least volatile approach of AI features into products Other Resource 🌟🌟🌟 Stock-Prediction-Models - Stock-Prediction-Models, Gathers machine learning and deep learning models for Stock forecasting, included trading bots and simulations. 🌟🌟 Financial Machine Learning - A curated list of practical financial machine learning (FinML) tools and applications. This collection is primarily in Python. 🌟 Awesome-Quant-Machine-Learning-Trading - Quant / Algorithm trading resources with an emphasis on Machine Learning. awesome-quant - A curated list of insanely awesome libraries, packages and resources for Quants (Quantitative Finance). FinancePy - A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives. Explore Finance Service Libraries & Projects - Explore a curated list of Fintech popular & new libraries, top authors, trending project kits, discussions, tutorials & learning resources on kandi.

ai-flow
github
LLM Vibe Score0.461
Human Vibe Score0.01809909681901274
DahnM20Mar 25, 2025

ai-flow

Open-source tool to seamlessly connect multiple AI model APIs into repeatable workflows. 🔗 Website • 📚 Documentation 🎉🚀 Latest Release: v0.10.0 🚀🎉 New Nodes: Claude 3.7, OpenRouter, Generate Random Number Configuration can now be done entirely in the UI !AI-Flow Intro Overview AI-Flow is an open-source, user-friendly UI that lets you visually design, manage, and monitor AI-driven workflows by seamlessly connecting multiple AI model APIs (e.g., OpenAI, StabilityAI, Replicate, Claude, Deepseek). Features Visual Workflow Builder: Drag-and-drop interface for crafting AI workflows. Real-Time Monitoring: Watch your workflow execute and track results. Parallel Processing: Nodes run in parallel whenever possible. Model Management: Easily organize and manage diverse AI models. Import/Export: Share or back up your workflows effortlessly. Supported Models Replicate: LLaMa, Mistral, FaceSwap, InstantMesh, MusicGen, and more. OpenAI: GPT-4o, TTS, o1, o3. StabilityAI: Stable Diffusion 3.5, SDXL, Stable Video Diffusion, plus additional tools. Others: Claude, Deepseek. !Scenario Example Open Source vs. Cloud AI-Flow is fully open source and available under the MIT License, empowering you to build and run your AI workflows on your personal machine. For those seeking enhanced functionality and a polished experience, AI-Flow Pro on our cloud platform (app.ai-flow.net) offers advanced features, including: Subflows & Loops: Create complex, nested workflows and iterate tasks effortlessly. API-Triggered Flows: Initiate workflows via API calls for seamless automation. Integrated Services: Connect with external services such as Google Search, Airtable, Zapier, and Make. Simplified Interface: Transform workflows into streamlined tools with an intuitive UI. !Pro VS Open Source The cloud version builds upon the foundation of the open-source project, giving you more power and flexibility while still letting you use your own API keys. Installation Note: To unlock full functionality, AI-Flow requires S3-compatible storage (with proper CORS settings) to host resources. Without it, features like File Upload or nodes that rely on external providers (e.g., StabilityAI) may not work as expected. Also, set REPLICATEAPIKEY in your environment to use the Replicate node. Local Installation (Without Docker) Clone the Repository: UI Setup: Backend Setup: Windows Users: Run the Application: Start the backend: In a new terminal, start the UI: Open your browser and navigate to http://localhost:3000. Docker Installation Prepare Docker Compose: Navigate to the docker directory: Update the REPLICATEAPIKEY in the YAML file. Launch with Docker Compose: Access the Application: Open http://localhost:80 in your browser. To stop, run: Contributing We welcome contributions! If you encounter issues or have feature ideas, please open an issue or submit a pull request. License This project is released under the MIT License.

aima-java
github
LLM Vibe Score0.521
Human Vibe Score0.06620214044837505
aimacodeMar 25, 2025

aima-java

AIMA3e-Java (JDK 8+) Java implementation of algorithms from Russell and Norvig's Artificial Intelligence - A Modern Approach 3rd Edition. You can use this in conjunction with a course on AI, or for study on your own. We're looking for solid contributors to help. Getting Started Links Overview of Project Interested in Contributing Setting up your own workspace Comments on architecture and design Demo Applications that can be run from your browser (unfortunately not up to date) Javadoc for the aima-core project (outdated) Download the latest official (but outdated) version = 1.9.1 (Dec 18 2016) Latest Maven Information (for integration as a third party library) Index of Implemented Algorithms |Figure|Page|Name (in 3rd edition)|Code | -------- |:--------:| :-----| :----- | |2|34|Environment|Environment| |2.1|35|Agent|Agent| |2.3|36|Table-Driven-Vacuum-Agent|TableDrivenVacuumAgent| |2.7|47|Table-Driven-Agent|TableDrivenAgentProgram| |2.8|48|Reflex-Vacuum-Agent|ReflexVacuumAgent| |2.10|49|Simple-Reflex-Agent|SimpleReflexAgentProgram| |2.12|51|Model-Based-Reflex-Agent|ModelBasedReflexAgentProgram| |3|66|Problem|Problem| |3.1|67|Simple-Problem-Solving-Agent|SimpleProblemSolvingAgent| |3.2|68|Romania|SimplifiedRoadMapOfRomania| |3.7|77|Tree-Search|TreeSearch| |3.7|77|Graph-Search|GraphSearch| |3.10|79|Node|Node| |3.11|82|Breadth-First-Search|BreadthFirstSearch| |3.14|84|Uniform-Cost-Search|UniformCostSearch| |3|85|Depth-first Search|DepthFirstSearch| |3.17|88|Depth-Limited-Search|DepthLimitedSearch| |3.18|89|Iterative-Deepening-Search|IterativeDeepeningSearch| |3|90|Bidirectional search|BidirectionalSearch| |3|92|Best-First search|BestFirstSearch| |3|92|Greedy best-First search|GreedyBestFirstSearch| |3|93|A\* Search|AStarSearch| |3.26|99|Recursive-Best-First-Search |RecursiveBestFirstSearch| |4.2|122|Hill-Climbing|HillClimbingSearch| |4.5|126|Simulated-Annealing|SimulatedAnnealingSearch| |4.8|129|Genetic-Algorithm|GeneticAlgorithm| |4.11|136|And-Or-Graph-Search|AndOrSearch| |4|147|Online search problem|OnlineSearchProblem| |4.21|150|Online-DFS-Agent|OnlineDFSAgent| |4.24|152|LRTA\*-Agent|LRTAStarAgent| |5.3|166|Minimax-Decision|MinimaxSearch| |5.7|170|Alpha-Beta-Search|AlphaBetaSearch| |6|202|CSP|CSP| |6.1|204|Map CSP|MapCSP| |6.3|209|AC-3|AC3Strategy| |6.5|215|Backtracking-Search|AbstractBacktrackingSolver| |6.8|221|Min-Conflicts|MinConflictsSolver| |6.11|224|Tree-CSP-Solver|TreeCspSolver| |7|235|Knowledge Base|KnowledgeBase| |7.1|236|KB-Agent|KBAgent| |7.7|244|Propositional-Logic-Sentence|Sentence| |7.10|248|TT-Entails|TTEntails| |7|253|Convert-to-CNF|ConvertToCNF| |7.12|255|PL-Resolution|PLResolution| |7.15|258|PL-FC-Entails?|PLFCEntails| |7.17|261|DPLL-Satisfiable?|DPLLSatisfiable| |7.18|263|WalkSAT|WalkSAT| |7.20|270|Hybrid-Wumpus-Agent|HybridWumpusAgent| |7.22|272|SATPlan|SATPlan| |9|323|Subst|SubstVisitor| |9.1|328|Unify|Unifier| |9.3|332|FOL-FC-Ask|FOLFCAsk| |9.6|338|FOL-BC-Ask|FOLBCAsk| |9|345|CNF|CNFConverter| |9|347|Resolution|FOLTFMResolution| |9|354|Demodulation|Demodulation| |9|354|Paramodulation|Paramodulation| |9|345|Subsumption|SubsumptionElimination| |10.9|383|Graphplan|GraphPlan| |11.5|409|Hierarchical-Search|HierarchicalSearchAlgorithm| |11.8|414|Angelic-Search|---| |13.1|484|DT-Agent|DT-Agent| |13|484|Probability-Model|ProbabilityModel| |13|487|Probability-Distribution|ProbabilityDistribution| |13|490|Full-Joint-Distribution|FullJointDistributionModel| |14|510|Bayesian Network|BayesianNetwork| |14.9|525|Enumeration-Ask|EnumerationAsk| |14.11|528|Elimination-Ask|EliminationAsk| |14.13|531|Prior-Sample|PriorSample| |14.14|533|Rejection-Sampling|RejectionSampling| |14.15|534|Likelihood-Weighting|LikelihoodWeighting| |14.16|537|GIBBS-Ask|GibbsAsk| |15.4|576|Forward-Backward|ForwardBackward| |15|578|Hidden Markov Model|HiddenMarkovModel| |15.6|580|Fixed-Lag-Smoothing|FixedLagSmoothing| |15|590|Dynamic Bayesian Network|DynamicBayesianNetwork| |15.17|598|Particle-Filtering|ParticleFiltering| |16.9|632|Information-Gathering-Agent|InformationGatheringAgent| |17|647|Markov Decision Process|MarkovDecisionProcess| |17.4|653|Value-Iteration|ValueIteration| |17.7|657|Policy-Iteration|PolicyIteration| |17.9|663|POMDP-Value-Iteration|POMDPValueIteration| |18.5|702|Decision-Tree-Learning|DecisionTreeLearner| |18.8|710|Cross-Validation-Wrapper|CrossValidation| |18.11|717|Decision-List-Learning|DecisionListLearner| |18.24|734|Back-Prop-Learning|BackPropLearning| |18.34|751|AdaBoost|AdaBoostLearner| |19.2|771|Current-Best-Learning|CurrentBestLearning| |19.3|773|Version-Space-Learning|VersionSpaceLearning| |19.8|786|Minimal-Consistent-Det|MinimalConsistentDet| |19.12|793|FOIL|FOIL| |21.2|834|Passive-ADP-Agent|PassiveADPAgent| |21.4|837|Passive-TD-Agent|PassiveTDAgent| |21.8|844|Q-Learning-Agent|QLearningAgent| |22.1|871|HITS|HITS| |23.5|894|CYK-Parse|CYK| |25.9|982|Monte-Carlo-Localization|MonteCarloLocalization| Index of implemented notebooks |Chapter No|Name |Status (in 3rd edition)|Status (in 4th edition) | -------- |:--------:| :-----| :----- | |3| Solving Problems by Searching| In Progress| Not started| |6| Constraint Satisfaction Problems |In Progress|---| |12| Knowledge Representation|Done|---| |13| Quantifying Uncertainty |Done | --- | |14| Probabilistic Reasoning|In Progress| ---| Before starting to work on a new notebook: Open a new issue with the following heading: Notebook: Chapter Name - Version . Check that the issue is not assigned to anyone. Mention a topics list of what you will be implementing in the notebook for that particular chapter. You can iteratively refine the list once you start working. Start a discussion on what can go in that particular notebook. "---" indicates algorithms yet to be implemented. Index of data structures Here is a table of the data structures yet to be implemented. |Fig|Page|Name (in book)|Code| | -------- |:--------:| :-----| :----- | |9.8|341|Append|---| |10.1|369|AIR-CARGO-TRANSPORT-PROBLEM|---| |10.2|370|SPARE-TIRE-PROBLEM|---| |10.3|371|BLOCKS-WORLD |---| |10.7|380|HAVE-CAKE-AND-EAT-CAKE-TOO-PROBLEM|---| |11.1|402|JOB-SHOP-SCHEDULING-PROBLEM|---| |11.4|407|REFINEMENT-HIGH-LEVEL-ACTIONS|---| |23.6|895|SENTENCE-TREE|---| |29.1|1062|POWERS-OF-2|---|

Vibe Coding is Here - How AI is Changing How We Build Online
youtube
LLM Vibe Score0
Human Vibe Score0.28
a16zMar 13, 2025

Vibe Coding is Here - How AI is Changing How We Build Online

Vibe Coding: The Future of Software Development? (with Yoko Li & Justine Moore | a16z) What if you could build an app just by describing it? That’s the idea behind vibe coding — a new AI-driven approach that’s reshaping software development for engineers and non-technical users alike. Instead of writing detailed code, users guide an AI coding agent with simple prompts like “make this look cleaner” or “I want a button that does X.” In this episode, we sit down with Yoko Li and Justine Moore from a16z to break down the rise of vibe coding, its impact on software development, and why AI-powered text-to-web tools are taking off. We explore: How vibe coding works and why it’s gaining traction The emerging companies leading the space (Cursor, Lovable, Bolt, VZero, and more) Why engineers and total beginners are both using these tools The challenges of AI-driven development (when “vibes” go wrong!) Where this trend is heading—and what it means for the future of coding From software for one to enterprise-level applications, vibe coding is opening up new possibilities for creating on the web. Tune in to learn how it’s changing the way we build. Learn more and check out everything a16z is doing, including articles, projects, and more podcasts here – https://a16z.com/ai-web-app-builders/ Follow everyone on X: Yoko Li - https://x.com/stuffyokodraws Justine Moore - https://x.com/venturetwins Steph Smith - https://x.com/stephsmithio

ai-builder
github
LLM Vibe Score0.508
Human Vibe Score0.11051158244693815
thewebalchemistMar 12, 2025

ai-builder

AI-Driven Website Generator Description: The AI-Driven Website Generator is a project that aims to simplify the website creation process by utilizing AI technology, specifically GPT-3, to automatically generate customized landing pages for businesses. With this generator, you can quickly create visually appealing and responsive landing pages by providing a business name or specific instructions. The generator starts by taking input in the form of a business name or a set of instructions provided by the user. It then utilizes GPT-3 to analyze the input and generate the necessary HTML, CSS, and JavaScript code required to create a functional landing page. The generated code is designed to be compatible with modern web browsers and responsive across different devices. Key Features: Automatic generation of landing pages using AI technology. Customizable output based on business names or user instructions. Responsive and visually appealing user interfaces generated with Tailwind CSS. Efficient and streamlined website creation process. Flexibility to incorporate additional features or components as needed. How It Works The website generator utilizes the power of GPT-3 to analyze the input provided and generate the necessary HTML, CSS, and JavaScript code required to create a functional landing page. The generated code is designed to be compatible with modern web browsers and responsive across different devices. Contributing Contributions to the AI-Driven Website Generator project are welcome! If you have any ideas, suggestions, or bug reports, please feel free to open an issue or submit a pull request. Your contributions will help enhance the functionality and performance of the generator. License This project is licensed under the MIT License. Feel free to modify and distribute it according to the terms of the license. With the AI-Driven Website Generator, you can revolutionize the website creation process by harnessing the power of AI to generate customized landing pages effortlessly. Say goodbye to manual coding and design work, and experience the convenience and speed of generating professional-looking landing pages with just a few clicks.

Mastering-AI-for-Entrepreneurs-9-Free-Courses
github
LLM Vibe Score0.203
Human Vibe Score0
Softtechhub1Feb 1, 2025

Mastering-AI-for-Entrepreneurs-9-Free-Courses

Mastering-AI-for-Entrepreneurs-9-Free-Courses Introduction: The Entrepreneur's AI RevolutionArtificial Intelligence (AI) is changing the way we do business. It's not just for tech giants anymore. Small businesses and startups are using AI to work smarter, not harder. As an entrepreneur, you need to understand AI to stay ahead.Why AI is a must-have skill for entrepreneursAI is everywhere. It's in the apps we use, the products we buy, and the services we rely on. Businesses that use AI are seeing big improvements:They're making better decisions with data-driven insightsThey're automating routine tasks, freeing up time for creativityThey're personalizing customer experiences, boosting satisfaction and salesIf you're not using AI, you're falling behind. But here's the good news: you don't need to be a tech wizard to harness the power of AI.Breaking the barriers to AI learningThink AI is too complex? Think again. You don't need a computer science degree to understand and use AI in your business. Many AI tools are designed for non-technical users. They're intuitive and user-friendly.The best part? You can learn about AI for free. There are tons of high-quality courses available at no cost. These courses are designed for busy entrepreneurs like you. They cut through the jargon and focus on practical applications.What to expect from this articleWe've handpicked nine free courses that will turn you into an AI-savvy entrepreneur. Each course is unique, offering different perspectives and skills. We'll cover:What makes each course specialWhat you'll learnHow it applies to your businessWho it's best suited forReady to dive in? Let's explore these game-changing courses that will boost your AI knowledge and give your business an edge.1. Google AI Essentials: A Beginner's Guide to Practical AIWhy This Course Is EssentialGoogle AI Essentials is perfect if you're just starting out. It's designed for people who don't have a tech background. The course focuses on how AI can help you in your day-to-day work, not on complex theories.What You'll LearnThis course is all about making AI work for you. You'll discover how to:Use AI to boost your productivity. Generate ideas, create content, and manage tasks more efficiently.Streamline your workflows. Learn how AI can help with everyday tasks like drafting emails and organizing your schedule.Use AI responsibly. Understand the potential biases in AI and how to use it ethically.Key TakeawaysYou'll earn a certificate from Google. This looks great on your resume or LinkedIn profile.You'll learn how to work alongside AI tools to get better results in your business.You'll gain practical skills you can use right away to improve your work.Get StartedEnroll in Google AI Essentials2. Introduction to Generative AI: A Quick Start for EntrepreneursWhy This Course Works for Busy EntrepreneursThis course is short and sweet. In just 30 minutes, you'll get a solid grasp of generative AI. It's perfect if you're short on time but want to understand the basics.What You'll LearnThe fundamentals of generative AI: what it is, how it works, and its limitsHow generative AI differs from other types of AIReal-world applications of generative AI in businessHow It Helps Your BusinessAfter this course, you'll be able to:Make smarter decisions about using AI tools in your businessSpot opportunities where generative AI could solve problems or create valueUnderstand the potential and limitations of this technologyGet StartedEnroll in Introduction to Generative AI3. Generative AI with Large Language Models: Advanced Skills for EntrepreneursWhy This Course Stands OutThis course digs deeper into the technical side of AI. It's ideal if you have some coding experience and want to understand how AI models work under the hood.What You'll LearnYou'll gain key skills for working with Large Language Models (LLMs):How to gather and prepare data for AI modelsChoosing the right model for your needsEvaluating model performance and improving resultsYou'll also learn about:The architecture behind transformer models (the tech powering many AI tools)Techniques for fine-tuning models to your specific business needsWho Should Take This CourseThis course is best for entrepreneurs who:Have basic Python programming skillsUnderstand the fundamentals of machine learningWant to go beyond using AI tools to actually building and customizing themGet StartedEnroll in Generative AI with Large Language Models4. AI for Everyone by Andrew Ng: Simplifying AI for Business LeadersWhy It's Perfect for BeginnersAndrew Ng is a leading figure in AI education. He's known for making complex topics easy to understand. This course is designed for non-technical learners. You don't need any coding or math skills to benefit from it.What You'll LearnHow AI works at a high levelHow to spot problems in your business that AI can solveWays to assess how AI might impact your business processes and strategiesWhy Entrepreneurs Love This CourseIt explains AI concepts in plain English, without technical jargonYou can complete it in just 8 hours, fitting it into your busy scheduleIt focuses on the business value of AI, not just the technologyGet StartedStart with AI for Everyone on Coursera5. Generative AI: Introduction and ApplicationsWhy This Course Is Ideal for EntrepreneursThis course offers a broad view of generative AI applications. You'll learn about AI in text, image, audio, and more. It's packed with hands-on experience using popular AI tools.What You'll LearnThe basics and history of generative AI technologiesHow different industries are using AI, from marketing to creative projectsPractical skills through labs using tools like ChatGPT, DALL-E, and Stable DiffusionHow It Stands OutYou'll hear from real AI practitioners about their experiencesThe course teaches you how to use generative AI to innovate and improve efficiency in your businessGet StartedEnroll in Generative AI: Introduction and Applications6. Generative AI for Everyone by Andrew Ng: Unlocking ProductivityWhy This Course Is a Must-HaveThis course focuses on using generative AI tools for everyday business tasks. It's all about boosting your productivity and efficiency.What You'll LearnHands-on exercises to integrate AI tools into your daily workReal examples of how businesses are using generative AI to save time and moneyTechniques for prompt engineering to get better results from AI toolsHow It Helps EntrepreneursYou'll learn to automate repetitive tasks, freeing up time for strategic thinkingYou'll discover new ways to use AI tools in your business processesYou'll gain confidence in experimenting with AI to solve business challengesGet StartedGo deeper with DeepLearning.AI7. Generative AI for Business Leaders by LinkedIn LearningWhy This Course Focuses on Business ApplicationsThis course is tailored for leaders who want to integrate AI into their business operations. It provides practical insights for improving workflows and decision-making.What You'll LearnStrategies for using AI to optimize your business operationsHow to save time and resources with AI-powered toolsPractical methods for implementing AI in your company, regardless of sizeKey BenefitsThe course is designed for busy professionals, allowing you to learn at your own paceYou'll gain insights you can apply immediately to your businessIt covers both the potential and the limitations of AI in business settingsGet StartedLevel up on LinkedIn Learning8. AI for Beginners by Microsoft: A Structured Learning PathWhy This Course Builds a Strong AI FoundationMicrosoft's AI for Beginners is a comprehensive 12-week program. It covers core AI concepts in a structured, easy-to-follow format. The course combines theoretical knowledge with hands-on practice through quizzes and labs.What You'll LearnThe basics of AI, machine learning, and data scienceStep-by-step guidance to build a strong knowledge basePractical applications of AI in various business contextsHow to Approach This CourseDedicate 2-3 hours per week to complete the curriculumUse the structured format to gradually build your confidence in AI conceptsApply what you learn to real business scenarios as you progressGet StartedBuild foundations with Microsoft9. AI for Business Specialization by UPenn: Strategic Thinking with AIWhy This Course Is Perfect for Business LeadersThis specialization focuses on AI's transformative impact on core business functions. It covers how AI is changing marketing, finance, and operations.What You'll LearnHow to build an AI strategy tailored to your business needsWays to leverage AI to drive innovation across different departmentsTechniques for integrating AI into your business modelHow to Make the Most of This CourseTake detailed notes on how each module applies to your own business challengesUse the specialization to develop a long-term AI vision for your companyNetwork with other business leaders taking the course to share insights and experiencesGet StartedScale up with UPenn's business focusConclusion: Your Path to Becoming an AI-powered EntrepreneurWe've covered nine fantastic free courses that can transform you into an AI-savvy entrepreneur. Let's recap:Google AI Essentials: Perfect for beginners, focusing on practical AI applications.Introduction to Generative AI: A quick start to understand the basics of generative AI.Generative AI with Large Language Models: For those ready to dive into the technical side.AI for Everyone: A non-technical introduction to AI's business impact.Generative AI: Introduction and Applications: A broad look at generative AI across industries.Generative AI for Everyone: Focused on boosting productivity with AI tools.Generative AI for Business Leaders: Tailored for integrating AI into business operations.AI for Beginners: A structured path to build a strong AI foundation.AI for Business Specialization: Strategic thinking about AI in business functions.Remember, you don't need to tackle all these courses at once. Start small and build your knowledge gradually. Pick the course that aligns best with your current needs and business goals.Embracing AI is not just about staying competitive; it's about opening new doors for innovation and growth. These courses will help you see opportunities where AI can solve problems, improve efficiency, and create value for your business.The AI revolution is happening now. The sooner you start learning, the better positioned you'll be to lead in this new era. Each step you take in understanding AI is a step towards future-proofing your business.So, what are you waiting for? Choose a course, dive in, and start your journey to becoming an AI-powered entrepreneur today. The future of your business may depend on it.MORE ARTICLES FOR YOUHumanizzer Fastpass Bundle – OTO1 to OTO4: Get (Humanizzer + All OTOs) Fastpass for Massive 75% Discount Available Limited-Time OneHumanizzer Review: Build Lifelike Human AI Agents That Talk, Listen & Engage Face-To-Face!—In Your Voice, Just Like You!EasyListDetox App Review: A Windows tool with Giveaway Rights for effortlessly cleaning your email lists of duplicates, invalid, and disposable addresses. Simple, efficient, and time-savingAI Copy Kit Review: Google’s Latest AI Tech Tensorflow (Tf) Create Jaw-Dropping And Advanced Ultra HD Videos, Ultra Shorts, 4K Images, Voiceovers, and Any Other GPT 4-Powered Amazing Content In Minutes Without Any Complicated Tools!From Good to Great: 15 Books to Inspire Personal and Business TransformationFTC Affiliate Commission Disclaimer: Some links in this article may earn us a commission if you make a purchase. This doesn't affect our recommendations.

airflow-tutorial
github
LLM Vibe Score0.508
Human Vibe Score0.13240553426231688
hgrifJan 19, 2025

airflow-tutorial

Airflow tutorial This tutorial is loosely based on the Airflow tutorial in the official documentation. It will walk you through the basics of setting up Airflow and creating an Airflow workflow. This tutorial was published on the blog of GoDataDriven. Setup You can skip this section if Airflow is already set up. Make sure that you can run airflow commands, know where to put your DAGs and have access to the web UI. Install Airflow Airflow is installable with pip via a simple pip install apache-airflow. Either use a separate python virtual environment or install it in your default python environment. To use the conda virtual environment as defined in environment.yml in this git-repo: Install miniconda. Make sure that conda is on your path: Create the virtual environment from environment.yml: Activate the virtual environment: You should now have an (almost) working Airflow installation. Alternatively, install Airflow yourself by running: Airflow used to be packaged as airflow but is packaged as apache-airflow since version 1.8.1. Make sure that you install any extra packages with the right Python package: e.g. use pip install apache-airflow[dask] if you've installed apache-airflow and do not use pip install airflow[dask]. Leaving out the prefix apache- will install an old version of Airflow next to your current version, leading to a world of hurt. You may run into problems if you don't have the right binaries or Python packages installed for certain backends or operators. When specifying support for e.g. PostgreSQL when installing extra Airflow packages, make sure the database is installed; do a brew install postgresql or apt-get install postgresql before the pip install apache-airflow[postgres]. Similarly, when running into HiveOperator errors, do a pip install apache-airflow[hive] and make sure you can use Hive. Run Airflow Before you can use Airflow you have to initialize its database. The database contains information about historical & running workflows, connections to external data sources, user management, etc. Once the database is set up, Airflow's UI can be accessed by running a web server and workflows can be started. The default database is a SQLite database, which is fine for this tutorial. In a production setting you'll probably be using something like MySQL or PostgreSQL. You'll probably want to back it up as this database stores the state of everything related to Airflow. Airflow will use the directory set in the environment variable AIRFLOW_HOME to store its configuration and our SQlite database. This directory will be used after your first Airflow command. If you don't set the environment variable AIRFLOW_HOME, Airflow will create the directory ~/airflow/ to put its files in. Set environment variable AIRFLOW_HOME to e.g. your current directory $(pwd): or any other suitable directory. Next, initialize the database: Now start the web server and go to localhost:8080 to check out the UI: It should look something like this: With the web server running workflows can be started from a new terminal window. Open a new terminal, activate the virtual environment and set the environment variable AIRFLOW_HOME for this terminal as well: Make sure that you're an in the same directory as before when using $(pwd). Run a supplied example: And check in the web UI that it has run by going to Browse -> Task Instances. This concludes all the setting up that you need for this tutorial. Tips Both Python 2 and 3 are be supported by Airflow. However, some of the lesser used parts (e.g. operators in contrib) might not support Python 3. For more information on configuration check the sections on Configuration and Security of the Airflow documentation. Check the Airflow repository for upstart and systemd templates. Airflow logs extensively, so pick your log folder carefully. Set the timezone of your production machine to UTC: Airflow assumes it's UTC. Workflows We'll create a workflow by specifying actions as a Directed Acyclic Graph (DAG) in Python. The tasks of a workflow make up a Graph; the graph is Directed because the tasks are ordered; and we don't want to get stuck in an eternal loop so the graph also has to be Acyclic. The figure below shows an example of a DAG: The DAG of this tutorial is a bit easier. It will consist of the following tasks: print 'hello' wait 5 seconds print 'world and we'll plan daily execution of this workflow. Create a DAG file Go to the folder that you've designated to be your AIRFLOWHOME and find the DAGs folder located in subfolder dags/ (if you cannot find, check the setting dagsfolder in $AIRFLOW_HOME/airflow.cfg). Create a Python file with the name airflow_tutorial.py that will contain your DAG. Your workflow will automatically be picked up and scheduled to run. First we'll configure settings that are shared by all our tasks. Settings for tasks can be passed as arguments when creating them, but we can also pass a dictionary with default values to the DAG. This allows us to share default arguments for all the tasks in our DAG is the best place to set e.g. the owner and start date of our DAG. Add the following import and dictionary to airflow_tutorial.py to specify the owner, start time, and retry settings that are shared by our tasks: Configure common settings These settings tell Airflow that this workflow is owned by 'me', that the workflow is valid since June 1st of 2017, it should not send emails and it is allowed to retry the workflow once if it fails with a delay of 5 minutes. Other common default arguments are email settings on failure and the end time. Create the DAG We'll now create a DAG object that will contain our tasks. Name it airflowtutorialv01 and pass default_args: With schedule_interval='0 0 *' we've specified a run at every hour 0; the DAG will run each day at 00:00. See crontab.guru for help deciphering cron schedule expressions. Alternatively, you can use strings like '@daily' and '@hourly'. We've used a context manager to create a DAG (new since 1.8). All the tasks for the DAG should be indented to indicate that they are part of this DAG. Without this context manager you'd have to set the dag parameter for each of your tasks. Airflow will generate DAG runs from the startdate with the specified scheduleinterval. Once a DAG is active, Airflow continuously checks in the database if all the DAG runs have successfully ran since the start_date. Any missing DAG runs are automatically scheduled. When you initialize on 2016-01-04 a DAG with a startdate at 2016-01-01 and a daily scheduleinterval, Airflow will schedule DAG runs for all the days between 2016-01-01 and 2016-01-04. A run starts after the time for the run has passed. The time for which the workflow runs is called the execution_date. The daily workflow for 2016-06-02 runs after 2016-06-02 23:59 and the hourly workflow for 2016-07-03 01:00 starts after 2016-07-03 01:59. From the ETL viewpoint this makes sense: you can only process the daily data for a day after it has passed. This can, however, ask for some juggling with date for other workflows. For Machine Learning models you may want to use all the data up to a given date, you'll have to add the scheduleinterval to your executiondate somewhere in the workflow logic. Because Airflow saves all the (scheduled) DAG runs in its database, you should not change the startdate and scheduleinterval of a DAG. Instead, up the version number of the DAG (e.g. airflowtutorialv02) and avoid running unnecessary tasks by using the web interface or command line tools Timezones and especially daylight savings can mean trouble when scheduling things, so keep your Airflow machine in UTC. You don't want to skip an hour because daylight savings kicks in (or out). Create the tasks Tasks are represented by operators that either perform an action, transfer data, or sense if something has been done. Examples of actions are running a bash script or calling a Python function; of transfers are copying tables between databases or uploading a file; and of sensors are checking if a file exists or data has been added to a database. We'll create a workflow consisting of three tasks: we'll print 'hello', wait for 10 seconds and finally print 'world'. The first two are done with the BashOperator and the latter with the PythonOperator. Give each operator an unique task ID and something to do: Note how we can pass bash commands in the BashOperator and that the PythonOperator asks for a Python function that can be called. Dependencies in tasks are added by setting other actions as upstream (or downstream). Link the operations in a chain so that sleep will be run after printhello and is followed by printworld; printhello -> sleep -> printworld: After rearranging the code your final DAG should look something like: Test the DAG First check that DAG file contains valid Python code by executing the file with Python: You can manually test a single task for a given execution_date with airflow test: This runs the task locally as if it was for 2017-07-01, ignoring other tasks and without communicating to the database. Activate the DAG Now that you're confident that your dag works, let's set it to run automatically! To do so, the scheduler needs to be turned on; the scheduler monitors all tasks and all DAGs and triggers the task instances whose dependencies have been met. Open a new terminal, activate the virtual environment and set the environment variable AIRFLOW_HOME for this terminal, and type Once the scheduler is up and running, refresh the DAGs page in the web UI. You should see airflowtutorialv01 in the list of DAGs with an on/off switch next to it. Turn on the DAG in the web UI and sit back while Airflow starts backfilling the dag runs! Tips Make your DAGs idempotent: rerunning them should give the same results. Use the the cron notation for schedule_interval instead of @daily and @hourly. @daily and @hourly always run after respectively midnight and the full hour, regardless of the hour/minute specified. Manage your connections and secrets with the Connections and/or Variables. Exercises You now know the basics of setting up Airflow, creating a DAG and turning it on; time to go deeper! Change the interval to every 30 minutes. Use a sensor to add a delay of 5 minutes before starting. Implement templating for the BashOperator: print the executiondate instead of 'hello' (check out the original tutorial and the example DAG). Implement templating for the PythonOperator: print the executiondate with one hour added in the function printworld() (check out the documentation of the PythonOperator). Resources Data Pipelines with Apache Airflow Airflow documentation ETL best practices with Airflow Airflow: Tips, Tricks, and Pitfalls Kubernetes Custom controller for deploying Airflow

teach-AI-in-business
github
LLM Vibe Score0.443
Human Vibe Score0.018525334165293606
aenyneJan 9, 2025

teach-AI-in-business

Teaching AI in Business ![HitCount] I am collecting material for teaching AI-related issues to non-tech people. The links should provide for a general understanding of AI without going too deep into technical issues. Please contribute! Make this Issue your First Issue I am collecting material for teaching AI-related issues to non-tech people. The links should have provide for a general understanding of AI without going too deep into technical issues. Please contribute! Kindly use only those Resources with NO CODE NEW Check out also the AI Wiki NEW Online Videos & Courses | Link to Issue | Description | |---|---| | Top Trending Technologies | Youtube Channel to master top trending technologyies including artificial intelligence | | AI4All | AI 4 All is a resource for AI facilitators to bring AI to scholars and students | | Elements of AI | Elements of AI is a free open online course to teach AI principles | | Visual Introduction to Machine Learning | Visual introduction to Machine Learning is a beautiful website that gives a comprehensive introduction and easily understood first encounter with machine learning | | CS50's Introduction to Artificial Intelligence with Python | Learn to use machine learning in Python in this introductory course on artificial intelligence.| | Crash course for AI | This is a fun video series that introduces students and educators to Artificial Intelligence and also offers additional more advanced videos. Learn about the basics, neural networks, algorithms, and more. | Youtuber Channel Machine Learning Tutorial | Youtube Channel Turorial Teachable Machine for beginner | | Artificial Intelligence (AI) |Learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems | | AI For Everyone by Andrew Ng | AI For Everyone is a course especially for people from a non-technical background to understand AI strategies | | How far is too far? The age of AI| This is a Youtube Orignals series by Robert Downey| | Fundamentals of Artificial Intelligence|This course is for absolute beginners with no technical knowledge.| | Bandit Algorithm (Online Machine Learning)|No requirement of technical knowledge, but a basic understending of Probability Ttheory would help| | An Executive's Guide to AI|This is an interactive guide to teaching business professionals how they might employ artificial intelligence in their business| | AI Business School|Series of videos that teach how AI may be incorporated in various business industries| | Artificial Intelligence Tutorial for Beginners | This video will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples. | | Indonesian Machine Learning Tutorial | Turorial Teachable Machine to train a computer for beginner | | Indonesian Youtube Playlist AI Tutorial | Youtube Playlist AI Tutorial For Beginner | | Artificial Intelligence Search Methods For Problem Solving By Prof. Deepak Khemani|These video lectures are for absolute beginners with no technical knowledge| | AI Basics Tutorial | This video starts from the very basics of AI and ML, and finally has a hands-on demo of the standard MNIST Dataset Number Detection model using Keras and Tensorflow.| | Simple brain.js Tutorial | This video explains a very simple javascript AI library called brain.js so you can easily run AI in the browser.| | Google AI| A complete kit for by google official for non-tech guy to start all over from basics, till advanced | | Microsoft AI for Beginners| A self-driven curriculum by Microsoft, which includes 24 lessons on AI. | Train Your Own AI | Link to Issue | Description | |---|---| | Teachable Machine | Use Teachable Machine to train a computer to recognize your own images, sounds, & poses | | eCraft2Learn | Resource and interactive space (Snap, a visual programming environment like Scratch) to learn how to create AI programs | | Google Quick Draw | Train an AI to guess from drawings| | Deepdream Generator| Merge Pictures to Deep Dreams using the Deepdream Generator| | Create ML|Quickly build and train Core ML models on your Mac with no code.| | What-If Tool|Visually probe the behavior of trained machine learning models, with minimal coding.| | Metaranx|Use and build artificial intelligence tools to analyze and make decisions about your data. Drag-and-drop. No code.| | obviously.ai|The total process of building ML algorithms, explaining results, and predicting outcomes in one single click.| Articles | By & Title | Description | |---|---| | Artificial Intelligence | Wikipedia Page of AI | | The Non-Technical AI Guide | One of the good blog post that could help AI more understandable for people without technical background | | LIAI | A detailed introduction to AI and neural networks | | Layman's Intro | A layman's introduction to AI | | AI and Machine Learning: A Nontechnical Overview | AI and Machine Learning: A Nontechnical Overview from OREILLY themselves is a guide to learn anyone everything they need to know about AI, focussed on non-tech people | | What business leaders need to know about artifical intelligence|Short article that summarizes the essential aspects of AI that business leaders need to understand| | How Will No-Code Impact the Future of Conversational AI | A humble explanation to the current state of converstational AI i.e.Chatbots and how it coul evolve with the current trend of no coding. | | Investopedia | Basic explanation of what AI is in a very basic and comprehensive way | | Packtpub | A non programmer’s guide to learning Machine learning | | Builtin | Artificial Intelligence.What is Artificial Intelligence? How Does AI Work? | | Future Of Life | Benefits & Risks of Artificial Intelligence | | NSDM India -Arpit | 100+ AI Tools For Non-Coders That Will Make Your Marketing Better. | | AI in Marketing for Startups & Non-technical Marketers | A practical guide for non-technical people | | Blog - Machine Learning MAstery | Blogs and Articles by Jason Browniee on ML | | AI Chatbots without programming| Chatbots are increasingly in demand among global businesses. This course will teach you how to build, analyze, deploy and monetize chatbots - with the help of IBM Watson and the power of AI.| Book Resources for Further Reading | Author | Book | Description & Notes | |---|---|---| | Ethem Alpaydin|Machine Learning: The New AI | Graph Theory with Applications to Engineering & Computer Science. A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. | | Charu C. Aggarwal| Neural Networks and Deep Learning | This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. | | Hal Daumé III | A Course in Machine Learning | The purpose of this book is to provide a gentle and pedagogically organized introduction to the field. A second goal of this book is to provide a view of machine learning that focuses on ideas and models, not on math. | | Ian Goodfellow and Yoshua Bengio and Aaron Courville| Deep Learning | The book starts with a discussion on machine learning basics, including the applied mathematics and algorithms needed to effectively study deep learning from an academic perspective. There is no code covered in the book, making it perfect for a non-technical AI enthusiast. | | Peter Harrington|Machine Learning in Action| (Source: https://github.com/kerasking/book-1/blob/master/ML%20Machine%20Learning%20in%20Action.pdf) This book acts as a guide to walk newcomers through the techniques needed for machine learning as well as the concepts behind the practices.| | Jeff Heaton| Artificial Intelligence for Humans |This book helps its readers get an overview and understanding of AI algorithms. It is meant to teach AI for those who don’t have an extensive mathematical background. The readers need to have only a basic knowledge of computer programming and college algebra.| | John D. Kelleher, Brian Mac Namee and Aoife D'Arcy|Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press)|This book covers all the fundamentals of machine learning, diving into the theory of the subject and using practical applications, working examples, and case studies to drive the knowledge home.| | Deepak Khemani| [A First Course in Artificial Intelligence] | It is an introductory course on Artificial Intelligence, a knowledge-based approach using agents all across and detailed, well-structured algorithms with proofs. This book mainly follows a bottom-up approach exploring the basic strategies needed problem-solving on the intelligence part. | | Maxim Lapan | Deep Reinforcement Learning Hands-On - Second Edition | Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | | Tom M Mitchell | Machine Learning | This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. | | John Paul Mueller and Luca Massaron|Machine Learning For Dummies|This book aims to get readers familiar with the basic concepts and theories of machine learning and how it applies to the real world. And "Dummies" here refers to absolute beginners with no technical background.The book introduces a little coding in Python and R used to teach machines to find patterns and analyze results. From those small tasks and patterns, we can extrapolate how machine learning is useful in daily lives through web searches, internet ads, email filters, fraud detection, and so on. With this book, you can take a small step into the realm of machine learning and we can learn some basic coding in Pyton and R (if interested)| | Michael Nielsen| Neural Networks and Deep Learning |Introduction to the core principles of Neural Networks and Deep Learning in AI| | Simon Rogers and Mark Girolami| A Course in Machine Learning |A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC.| |Peter Norvig| Paradigm of Artificial Intelligence Programming |Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts.| | Stuart Russel & Peter Norvig | Artificial Intelligence: A Modern Approach, 3rd Edition | This is the prescribed text book for my Introduction to AI university course. It starts off explaining all the basics and definitions of what AI is, before launching into agents, algorithms, and how to apply them. Russel is from the University of California at Berkeley. Norvig is from Google.| | Richard S. Sutton and Andrew G. Barto| Reinforcement Learning: An Introduction |Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.| | Alex Smola and S.V.N. Vishwanathan | Introduction to Machine Learning | Provides the reader with an overview of the vast applications of ML, including some basic tools of statistics and probability theory. Also includes discussions on sophisticated ideas and concepts. | | Shai Shalev-Shwartz and Shai Ben-David | Understanding Machine Learning From Theory to Algorithms |The primary goal of this book is to provide a rigorous, yet easy to follow, introduction to the main concepts underlying machine learning. | | Chandra S.S.V | Artificial Intelligence and Machine Learning | This book is primarily intended for undergraduate and postgraduate students of computer science and engineering. This textbook covers the gap between the difficult contexts of Artificial Intelligence and Machine Learning. It provides the most number of case studies and worked-out examples. In addition to Artificial Intelligence and Machine Learning, it also covers various types of learning like reinforced, supervised, unsupervised and statistical learning. It features well-explained algorithms and pseudo-codes for each topic which makes this book very useful for students. | | Oliver Theobald|Machine Learning For Absolute Beginners: A Plain English Introduction|This is an absolute beginners ML guide.No mathematical background is needed, nor coding experience — this is the most basic introduction to the topic for anyone interested in machine learning.“Plain” language is highly valued here to prevent beginners from being overwhelmed by technical jargon. Clear, accessible explanations and visual examples accompany the various algorithms to make sure things are easy to follow.| | Tom Taulli | Artificial Intelligence Basics: A Non-Technical Introduction | This book equips you with a fundamental grasp of Artificial Intelligence and its impact. It provides a non-technical introduction to important concepts such as Machine Learning, Deep Learning, Natural Language Processing, Robotics and more. Further the author expands on the questions surrounding the future impact of AI on aspects that include societal trends, ethics, governments, company structures and daily life. | |Cornelius Weber, Mark Elshaw, N. Michael Mayer| Reinforcement Learning |Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning.| |John D. Kelleher, Brian Mac Namee, Aoife D'arcy| Algorithms, Worked Examples, and Case Studies | A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. |

AI-Generated Text to CAD is Here #cad #productdesign #3dmodeling #futuretech #productdevelopment
youtube
LLM Vibe Score0.3
Human Vibe Score0.21
Kalil 4.0Jan 3, 2025

AI-Generated Text to CAD is Here #cad #productdesign #3dmodeling #futuretech #productdevelopment

A new tool by Zoo.dev automatically generates 3D models from simple text prompts. The California-based startup says its Text-to-CAD tool revolutionizes product design by simplifying the creation of initial 3D models. Without advanced CAD skills, designers, engineers, and even non-technical users can describe their concepts using natural language. Zoo.dev's Text-to-CAD tool is offered as a freemium model. Users get 40 free minutes per month. Additional usage is charged at $0.50 per minute. Zoo.dev also offers extensions for its open-source tool, including a Blender add-on and a Github-based viewer. The AI-driven CAD design tool uses machine learning to interpret prompts and generate editable 3D files that can be imported into popular platforms like SolidWorks, Autodesk Fusion 360, FreeCAD, Onshape, and Blender. It exports the 3D models in several widely used formats including STEP, STL, GLTF, GLB, FBX, and PLY. While it's still in its early stages, the potential for widespread adoption of AI-driven 3D modeling is significant. As technology improves and integrates with advanced manufacturing workflows, tools like Zoo.dev's can accelerate product development and democratize access to design across industries. Platforms like Autodesk 360 Fusion and Solidworks allow for script-based generation of designs, but these require programming expertise. Generative design tools that are rising in popularity require inputting constraints rather than natural language instructions.

The 8 AI Skills That Will Separate Winners From Losers in 2025
youtube
LLM Vibe Score0.446
Human Vibe Score0.92
13 Best AI Tools For Startups & Entrepreneurs [2024]
youtube
LLM Vibe Score0.401
Human Vibe Score0.33
Business SolutionDec 15, 2023

13 Best AI Tools For Startups & Entrepreneurs [2024]

Here are the best AI tools for startups and entrepreneurs: Bubble ▶ Bubble free plan: https://businessolution.org/get/bubble/ Taskade ▶ Taskade free plan : https://businessolution.org/get/taskade/ Process Street ▶ Process Street free trial: https://businessolution.org/get/process-street/ CustomGPT ▶ Try CustomGPT for free: https://businessolution.org/get/customgpt/ MeetGeek ▶ MeetGeek free plan: https://businessolution.org/get/meetgeek-ai/ Mixo ▶ Try Mixo for free: https://businessolution.org/get/mixo/ Tidio ▶ Tidio free plan (+20% OFF): https://businessolution.org/get/tidio/ AdCreative.ai ▶ AdCreative.ai 25% OFF: https://businessolution.org/get/adcreative/ LeadFuze ▶ LeadFuze free trial: https://businessolution.org/get/leadfuze/ HubSpot ▶ HubSpot free plan: https://businessolution.org/get/hubspot/ ClickFunnels 2.0 ▶ ClickFunnels 2.0 free trial: https://businessolution.org/get/clickfunnels-2-0/ GoHire ▶ GoHire free trial: https://businessolution.org/get/gohire-2/ DeepBrain ▶ Try DeepBrain for free: https://businessolution.org/get/deepbrain/ Timestamps: 0:00 – AI Tools for Startups 0:17 – Bubble.io 2:26 – Taskade 4:35 – Process Street 6:20 – CustomGPT 7:44 – MeetGeek 8:31 – Mixo 9:09 – Tidio 10:15 – AdCreative.ai 11:34 – LeadFuze 12:51 – HubSpot 14:48 – ClickFunnels 2.0 16:10 – GoHire 17:25 – DeepBrain 👉‍ See all 17 AI tools for startups in this article: https://businessolution.org/ai-tools-for-startups/ In today's fast-paced and competitive business landscape, startups are constantly seeking innovative ways to gain a competitive edge and drive growth. Enter the realm of artificial intelligence (AI) tools for startups – a game-changing technology that holds the potential to revolutionize how new businesses operate, strategize, and scale. From automating repetitive tasks to unlocking valuable insights from data, AI tools offer startups an unprecedented opportunity to streamline operations, enhance decision-making, and deliver exceptional customer experiences. Imagine having access to intelligent algorithms that can analyze market trends, predict consumer behavior, and optimize resource allocation with unparalleled accuracy. These AI tools can empower startups to make data-driven decisions with confidence while freeing up valuable time and resources for creative problem-solving and strategic planning. By harnessing the power of AI technology, startups can navigate the complexities of today's business environment with agility, precision, and scalability like never before. Join us as we delve into the world of AI tools for startups and explore how this transformative technology is poised to reshape the entrepreneurial landscape in profound ways.

Just completed a new type of language learning website - read popular stories scaled to different reading levels
reddit
LLM Vibe Score0
Human Vibe Score1
creedaaronThis week

Just completed a new type of language learning website - read popular stories scaled to different reading levels

As a language learner and software developer, I bootstrapped my project superlang.com over the past year working on the side. There is a mobile friendly web app now, and iOS/Android apps coming in a few months. A year ago I discovered the concept of "comprehensible input" as a way to help me learn German. Even if it's not a silver bullet, it sounded pretty great. Rather than drilling vocab or looking at grammar charts, I could "just read" and acquire the language. I picked up some fairy tales in German, and stories like Alice in Wonderland. Unfortunately, I couldn't really read them. I had to stop every sentence to look up words and try and decipher sentence constructions. Then I turned to some purpose built simple stories for German beginners. But there was a different problem... these were not really stories with any real plot. I could only read so many "Hans goes to the market" type stories before losing interest. My idea was to try to get the best of both worlds somehow. What if I could take a real story, say Alice in Wonderland (or even War and Peace), and dial the difficulty down to my level without losing the plotline. That way, beginners can start right away with something basically comprehensible. Then, you could also re-read the same story at increasing difficulty levels as you gain confidence. As a cherry on top, more illustrations would help with comprehension so each page could have a picture. Is it revolutionary? Maybe, maybe not. I am building off a well established idea of "graded readers" which are simplified stories meant for learning languages. And there are somewhat similar ideas out there now that AI is good at simplifying text, but none that really take this idea where it needs to be with many preloaded stories, multiple difficulty levels, high quality human verified text, and all the bells and whistles. I spent a year building Superlang and it is ready to put out there. Some quick notes: There are 3 languages so far, intended for native English speakers: German, French, and Spanish There are 3 difficulty levels you can set on each story: beginner (roughly A1-A2), intermediate (roughly A2-B1), and advanced (the same level as the original story, but typically B2+) There is premium version as producing the content was somewhat expensive. You can still do a lot of reading on the free version. I have done no marketing yet, except for this post :) The implementation is a combination of AI, and human proofreading and reviewing. In particular, the simplification of stories is very heavily AI driven. The illustrations for each page are AI as well. For translation, as many of you may be aware new LLM models are typically better than Google translate, but still far from perfect. I am very much a proponent of keeping real people in the loop, and so I have real people proofread the translations. That's why there are only about 700 pages of content so far and not tens of thousands. Let me know what you think, and if you find it helpful! Alice in Wonderland - beginner level German Romeo and Juliet - beginner level Spanish

Experienced Software Developer looking for startup to help. I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
DB010112This week

Experienced Software Developer looking for startup to help. I will not promote

My passion for programming started at the age of 9 when I began playing video games. It was during this time that I first dived into programming, creating scripts for SA:MP (San Andreas Multiplayer) using the Pawn language. SA:MP is a modification for the popular game Grand Theft Auto: San Andreas, allowing players to experience multiplayer gameplay. My early experiences in programming were all about problem-solving—finding ways to enhance the game and improve the player experience. This was when I realized how satisfying it is to solve a problem through code, and that feeling has stayed with me throughout my career. I am a self-taught programmer, and everything I know today comes from my own initiative to learn and improve. After five years of working with local clients, I decided to expand my knowledge and started learning more widely applicable programming languages like Java and Python. I’ve always been the type of person who thrives on challenges. Whenever I encounter a problem, I don’t just look for a quick fix—I dive deep into researching and understanding the problem, and I find a solution that works in the long run. This is what drives me. The ability to solve problems, no matter how complex, and the satisfaction that comes with it is what fuels my passion for programming. My big break came when I had the opportunity to work at \\\\. There, I replaced two senior and two junior developers, which led to significant cost savings for the company. I completed all tasks ahead of schedule, focusing on Java-based applications that were multithreaded and communicated with embedded systems. This experience taught me how to work under pressure and how to manage and solve complex technical problems efficiently. Following my time at \\\\, I transitioned into freelance work as a FullStack Developer, working with technologies such as HTML, CSS, Bootstrap, JavaScript, Django, Spring, MySQL, and PostgreSQL. As a freelancer, I was responsible for finding solutions to a wide range of problems, often working independently and making decisions on the fly. I learned that self-reliance is key in this industry, and being resourceful is one of the most important qualities a developer can have. Later, I joined \\\\ elecom, where I worked on system integration with foreign teams, BPM process solutions, and the merging of complex systems in Oracle databases. I continued to solve challenges, often working with teams across borders and tackling technical obstacles that required creative and well-thought-out solutions. Eventually, I founded my own company, \\\\, where I focus on developing software solutions, Artificial Intelligence (AI), Cybersecurity, and Ethical Hacking. As an entrepreneur, I take pride in finding innovative solutions to problems, whether they come from clients or from technical obstacles I encounter along the way. I’ve also had the privilege of working with the Serbian Ministry of Defense and the police, handling sensitive projects that demand both technical expertise and trustworthiness. Being a self-taught programmer means that I have had to learn and adapt on my own, and I’ve learned to embrace challenges as opportunities for growth. I am constantly driven by the process of solving problems, and it is what keeps me engaged and fulfilled in my work. I am always open to new collaborations and am eager to take on new challenges that push my boundaries in technology, cybersecurity, and software development.

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Non-technical founders with experienced outside vendor — ok?
reddit
LLM Vibe Score0
Human Vibe Score0
Secure-Proof-4872This week

Non-technical founders with experienced outside vendor — ok?

I’m a non-technical cofounder of early stage startup. (“Non-technical” but I’ve developed multimedia courseware and led teams in the past (LMS, edu content, no code). My question: how crucial is it that my other biz founder and I have a technical co-founder for our data- and AI-driven product rather than use an experienced vendor whose team has been doing machine learning and AI for 10 years? During our manual work as consultants we have identified a problem in a niche market that can be solved via a combo of hard-to-gather data and AI (and other market-specific stuff that that we will train our LLM on). We’ve done market research, designed and validated the solution with potential customers in numerous interviews via click-through prototypes/wireframes, quantified TAM, SAM, SOM, written biz plan, etc. We have deep experience in our market having proven expertise over years. But as we’ve been learning about fundraising (we hope to begin a seed round in early 2025) we continually hear about the importance of technical cofounder. We get it— but our product will only be half-developed by a technical dev team. The other aspect to the product is: gathering hard to find data, and figuring out relationships in the data — that we will do via mapping work with a cohort with unique expertise in our niche market. Also our outside vendor is very reputable with years’ experience in AI and machine learning prior to the latest gen-AI craze — he’s not a newbie and has an established dev team. And our platform is not a consumer product but a more complicated SaaS product. Like, you can’t just code it by yourself. Sure, in the long run we can hire/bring everything in house, but would investors shy away from working with us if our short-term dev effort does not have a “technical” co-founder? Thanks for your thoughts.

Experienced Software Developer looking for startup to help. I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
DB010112This week

Experienced Software Developer looking for startup to help. I will not promote

My passion for programming started at the age of 9 when I began playing video games. It was during this time that I first dived into programming, creating scripts for SA:MP (San Andreas Multiplayer) using the Pawn language. SA:MP is a modification for the popular game Grand Theft Auto: San Andreas, allowing players to experience multiplayer gameplay. My early experiences in programming were all about problem-solving—finding ways to enhance the game and improve the player experience. This was when I realized how satisfying it is to solve a problem through code, and that feeling has stayed with me throughout my career. I am a self-taught programmer, and everything I know today comes from my own initiative to learn and improve. After five years of working with local clients, I decided to expand my knowledge and started learning more widely applicable programming languages like Java and Python. I’ve always been the type of person who thrives on challenges. Whenever I encounter a problem, I don’t just look for a quick fix—I dive deep into researching and understanding the problem, and I find a solution that works in the long run. This is what drives me. The ability to solve problems, no matter how complex, and the satisfaction that comes with it is what fuels my passion for programming. My big break came when I had the opportunity to work at \\\\. There, I replaced two senior and two junior developers, which led to significant cost savings for the company. I completed all tasks ahead of schedule, focusing on Java-based applications that were multithreaded and communicated with embedded systems. This experience taught me how to work under pressure and how to manage and solve complex technical problems efficiently. Following my time at \\\\, I transitioned into freelance work as a FullStack Developer, working with technologies such as HTML, CSS, Bootstrap, JavaScript, Django, Spring, MySQL, and PostgreSQL. As a freelancer, I was responsible for finding solutions to a wide range of problems, often working independently and making decisions on the fly. I learned that self-reliance is key in this industry, and being resourceful is one of the most important qualities a developer can have. Later, I joined \\\\ elecom, where I worked on system integration with foreign teams, BPM process solutions, and the merging of complex systems in Oracle databases. I continued to solve challenges, often working with teams across borders and tackling technical obstacles that required creative and well-thought-out solutions. Eventually, I founded my own company, \\\\, where I focus on developing software solutions, Artificial Intelligence (AI), Cybersecurity, and Ethical Hacking. As an entrepreneur, I take pride in finding innovative solutions to problems, whether they come from clients or from technical obstacles I encounter along the way. I’ve also had the privilege of working with the Serbian Ministry of Defense and the police, handling sensitive projects that demand both technical expertise and trustworthiness. Being a self-taught programmer means that I have had to learn and adapt on my own, and I’ve learned to embrace challenges as opportunities for growth. I am constantly driven by the process of solving problems, and it is what keeps me engaged and fulfilled in my work. I am always open to new collaborations and am eager to take on new challenges that push my boundaries in technology, cybersecurity, and software development.

Am I on the right track?
reddit
LLM Vibe Score0
Human Vibe Score1
ayezee33This week

Am I on the right track?

This might be a little long for the average reader. But i'll do my best to format it so it's skimmable. Context I left my SaaS company 2 months ago. I was employee number 4 and helped them grow to 8 figures. I had a seat at the executive table and equity in the business. Burnt out and wanted to start my own thing. I forgot how hard it is to go from 0 👉 1 📚 Two schools of thought Build a product that solves your pain point and find others with that pain point Perform customer discovery calls until you get signal and start building + follow up with them 🥇 First approach For the last 45 days I built the product I wished I had when leading a 10 person marketing/sales team for the SaaS I was previously at. It checked all the boxes, pulled data, automated specific steps, showed the conversion tracking, data, etc. I launched it as a beta to my close network and the crowd went MILD. 😒 After some follow up - I realized I built something that already kind of exists and it's hard to convince others (even those who personally know me) that it's different or better. Undiscouraged, I am going to go back to the drawing board and try approach #2 above and schedule some customer discovery calls. 🥈 Second approach After trying and failing to turn the marketing numbers around at my last role I am convicted of 4 brutal truths about digital marketing today Truth #1 – AI-generated content is flooding the internet and ANYONE can and will be creating content with AI. Truth #2 – Ranking for high-volume keywords is harder than ever and probably not worth it anymore. Truth #3 – AI-driven efficiency is non-negotiable. If you haven’t installed AI in your business - you are WAY behind. Truth #4 – Most businesses are thinking about AI completely wrong. Easy button vs quality stair step. I have some early thoughts on how I would like to solve this (backed by data and some user stories). But my main question and the entire point of this post is.... ⁉️ Questions Before I schedule these product discovery calls should I make it clear where I am convicted and find those who want to talk (agree or disagree) with the above. Or just keep that out of the mix and ask them my product discovery questions regardless? I am probably overthinking it - but I just hit up my personal network with a beta launch, feels silly to go back with product discovery questions for them. Is there a good place (besides reddit) to pay people for product discovery calls? A quick Google Search and it's unclear to me.

36 startup ideas found by analyzing podcasts (problem, solution & source episode)
reddit
LLM Vibe Score0
Human Vibe Score1
joepigeonThis week

36 startup ideas found by analyzing podcasts (problem, solution & source episode)

Hey, I've been a bit of a podcast nerd for a long time. Around a year ago I began experimenting with transcription of podcasts for a SaaS I was running. I realized pretty quickly that there's a lot of knowledge and value in podcast discussions that is for all intents and purposes entirely unsearchable or discoverable to most people. I ended up stopping work on that SaaS product (party for lack of product/market fit, and partly because podcasting was far more interesting), and focusing on the podcast technology full-time instead. I'm a long-time lurker and poster of r/startups and thought this would make for some interesting content and inspiration for folks. Given I'm in this space, have millions of transcripts, and transcribe thousands daily... I've been exploring fun ways to expose some of the interesting knowledge and conversations taking place that utilize our own data/API. I'm a big fan of the usual startup podcasts (My First Million, Greg Isenberg, etc. etc.) and so I built an automation that turns all of the startup ideas discussed into a weekly email digest. I always struggle to listen to as many episodes as I'd actually like to, so I thought I'd summarise the stuff I care about instead (startup opportunities being discussed). I thought it would be interesting to post some of the ideas extracted so far. They range from being completely whacky and blue sky, to pretty boring but realistic. A word of warning before anyone complains – this is a big mixture of tech, ai, non-tech, local services, etc. ideas: Some of the ideas are completely mundane, but realistic (e.g. local window cleaning service) Some of the ideas are completely insane, blue sky, but sound super interesting Here's the latest 36 ideas: |Idea Name|Problem|Solution|Source| |:-|:-|:-|:-| |SalesForce-as-a-Service - White Label Enterprise Sales Teams|White-label enterprise sales teams for B2B SaaS. Companies need sales but can't hire/train. Recruit retail sellers, train for tech, charge 30% of deals closed.|Create a white-label enterprise sales team by recruiting natural salespeople from retail and direct sales backgrounds (e.g. mall kiosks, cutco knives). Train them specifically in B2B SaaS sales techniques and processes. Offer this trained sales force to tech companies on a contract basis.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |TechButler - Mobile Device Maintenance Service|Mobile tech maintenance service. Clean/optimize devices, improve WiFi, basic support. $100/visit to homes. Target affluent neighborhoods.|Mobile tech support service providing in-home device cleaning, optimization, and setup. Focus on common issues like WiFi improvement, device maintenance, and basic tech support.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |MemoryBox - At-Home Video Digitization Service|Door-to-door VHS conversion service. Parents have boxes of old tapes. Pick up, digitize, deliver. $30/tape with minimum order. Going extinct.|Door-to-door VHS to digital conversion service that handles everything from pickup to digital delivery. Make it extremely convenient for customers to preserve their memories.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |Elite Match Ventures - Success-Based Luxury Matchmaking|High-end matchmaking for 50M+ net worth individuals. Only charge $1M+ when they get married. No upfront fees. Extensive vetting process.|Premium matchmaking service exclusively for ultra-high net worth individuals with a pure contingency fee model - only get paid ($1M+) upon successful marriage. Focus on quality over quantity with extensive vetting and personalized matching.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |LocalHost - Simple Small Business Websites|Simple WordPress sites for local businesses. $50/month includes hosting, updates, security. Target restaurants and shops. Recurring revenue play.|Simplified web hosting and WordPress management service targeting local small businesses. Focus on basic sites with standard templates, ongoing maintenance, and reliable support for a fixed monthly fee.|My First Million - "Life Hacks From The King of Introverts + 7 Business Ideas| |VoiceJournal AI - Voice-First Smart Journaling|Voice-to-text journaling app with AI insights. 8,100 monthly searches. $15/month subscription. Partners with journaling YouTubers.|AI-powered journaling app that combines voice recording, transcription, and intelligent insights. Users can speak their thoughts, which are automatically transcribed and analyzed for patterns, emotions, and actionable insights.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |AIGenAds - AI-Generated UGC Content Platform|AI platform turning product briefs into UGC-style video ads. Brands spending $500/video for human creators. Generate 100 variations for $99/month.|AI platform that generates UGC-style video ads using AI avatars and scripting. System would allow rapid generation of multiple ad variations at a fraction of the cost. Platform would use existing AI avatar technology combined with script generation to create authentic-looking testimonial-style content.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |InfographAI - Automated Infographic Generation Platform|AI turning blog posts into branded infographics. Marketers spending hours on design. $99/month unlimited generation.|AI-powered platform that automatically converts blog posts and articles into visually appealing infographics. System would analyze content, extract key points, and generate professional designs using predefined templates and brand colors.|Where It Happens - "7 $1M+ AI startup ideas you can launch tomorrow with $0"| |KidFinance - Children's Financial Education Entertainment|Children's media franchise teaching financial literacy. Former preschool teacher creating 'Dora for money'. Books, videos, merchandise potential.|Character-driven financial education content for kids, including books, videos, and potentially TV show. Focus on making money concepts fun and memorable.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceTasker - Daily Financial Task Challenge|Free 30-day financial challenge with daily action items. People overwhelmed by money management. Makes $500k/year through books, speaking, and premium membership.|A free 30-day financial challenge delivering one simple, actionable task per day via email. Each task includes detailed scripts and instructions. Participants join a Facebook community for support and accountability. The program focuses on quick wins to build momentum. Automated delivery allows scaling.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |FinanceAcademy - Expert Financial Training Platform|Premium financial education platform. $13/month for expert-led courses and live Q&As. 4000+ members generating $40k+/month.|Premium membership site with expert-led courses, live Q&As, and community support. Focus on specific topics like real estate investing, business creation, and advanced money management.|The Side Hustle Show - "How a Free Challenge Turned Into a $500,000 a Year Business (Greatest Hits)"| |SecurityFirst Compliance - Real Security + Compliance Platform|Security-first compliance platform built by hackers. Companies spending $50k+ on fake security. Making $7M/year showing why current solutions don't work.|A compliance platform built by security experts that combines mandatory compliance requirements with real security measures. The solution includes hands-on security testing, expert guidance, and a focus on actual threat prevention rather than just documentation. It merges traditional compliance workflows with practical security implementations.|In the Pit with Cody Schneider| |LinkedInbound - Automated Professional Visibility Engine|LinkedIn automation for inbound job offers. Professionals spending hours on manual outreach. $99/month per job seeker.|Automated system for creating visibility and generating inbound interest on LinkedIn through coordinated profile viewing and engagement. Uses multiple accounts to create visibility patterns that trigger curiosity and inbound messages.|In the Pit with Cody Schneider| |ConvoTracker - Community Discussion Monitoring Platform|Community discussion monitoring across Reddit, Twitter, HN. Companies missing sales opportunities. $499/month per brand tracked.|Comprehensive monitoring system that tracks competitor mentions and industry discussions across multiple platforms (Reddit, Twitter, Hacker News, etc.) with automated alerts and engagement suggestions.|In the Pit with Cody Schneider| |ContentAds Pro - Smart Display Ad Implementation|Display ad implementation service for content creators. Bloggers losing thousands in ad revenue monthly. Makes $3-5k per site setup plus ongoing optimization fees.|Implementation of professional display advertising through networks like Mediavine that specialize in optimizing ad placement and revenue while maintaining user experience. Include features like turning off ads for email subscribers and careful placement to minimize impact on core metrics.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |MoneyAppReviews - Professional Side Hustle App Testing|Professional testing service for money-making apps. People wasting time on low-paying apps. Makes $20k/month from affiliate commissions and ads.|Professional app testing service that systematically reviews money-making apps and creates detailed, honest reviews including actual earnings data, time investment, and practical tips.|The Side Hustle Show - "636: Is Business Coaching Worth It? A Look Inside the last 12 months of Side Hustle Nation"| |LightPro - Holiday Light Installation Service|Professional Christmas light installation service. Homeowners afraid of ladders. $500-2000 per house plus storage.|Professional Christmas light installation service targeting residential and commercial properties. Full-service offering including design, installation, maintenance, removal and storage. Focus on safety and premium aesthetic results.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |FocusMatch - Research Participant Marketplace|Marketplace connecting companies to paid research participants. Companies spending weeks finding people. $50-150/hour per study.|Online platform connecting companies directly with paid research participants. Participants create detailed profiles and get matched to relevant studies. Companies get faster access to their target demographic while participants earn money sharing opinions.|The Side Hustle Show - "639: 30 Ways to Make Extra Money for the Holidays"| |SolarShine Pro - Specialized Solar Panel Cleaning Service|Solar panel cleaning service using specialized equipment. Panels lose 50% efficiency when dirty. $650 per job, automated scheduling generates $18k/month from repeat customers.|Professional solar panel cleaning service using specialized deionized water system and European cleaning equipment. Includes automated 6-month scheduling, professional liability coverage, and warranty-safe cleaning processes. Service is bundled with inspection and performance monitoring.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ExteriorCare Complete - One-Stop Exterior Maintenance Service|One-stop exterior home cleaning service (solar, windows, gutters, bird proofing). Automated scheduling. $650 average ticket. 60% repeat customers on 6-month contracts.|All-in-one exterior cleaning service offering comprehensive maintenance packages including solar, windows, gutters, roof cleaning and bird proofing. Single point of contact, consistent quality, and automated scheduling for all services.|The UpFlip Podcast - "156. $18K/Month with This ONE Service — Niche Business Idea"| |ContentMorph - Automated Cross-Platform Content Adaptation|AI platform converting blog posts into platform-optimized social content. Marketing teams spending 5hrs/post on manual adaptation. $199/mo per brand with 50% margins.|An AI-powered platform that automatically transforms long-form content (blog posts, podcasts, videos) into platform-specific formats (Instagram reels, TikToks, tweets). The system would preserve brand voice while optimizing for each platform's unique requirements and best practices.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |MarketerMatch - Verified Digital Marketing Talent Marketplace|Marketplace for pre-vetted digital marketing specialists. Entrepreneurs spending 15hrs/week on marketing tasks. Platform takes 15% commission averaging $900/month per active client.|A specialized marketplace exclusively for digital marketing professionals, pre-vetted for specific skills (video editing, social media, SEO, etc.). Platform includes skill verification, portfolio review, and specialization matching.|Entrepreneurs on Fire - "Digital Threads: The Entrepreneur Playbook for Digital-First Marketing with Neal Schaffer"| |Tiger Window Cleaning - Premium Local Window Service|Local window cleaning service targeting homeowners. Traditional companies charging 2x market rate. Making $10k/month from $200 initial investment.|Local window cleaning service combining competitive pricing ($5/pane), excellent customer service, and quality guarantees. Uses modern tools like water-fed poles for efficiency. Implements systematic approach to customer communication and follow-up.|The Side Hustle Show - "630: How this College Student’s Side Hustle Brings in $10k a Month"| |RealViz3D - Real Estate Visualization Platform|3D visualization service turning architectural plans into photorealistic renderings for real estate agents. Agents struggling with unbuilt property sales. Making $30-40k/year per operator.|Professional 3D modeling and rendering service that creates photorealistic visualizations of properties before they're built or renovated. The service transforms architectural plans into immersive 3D representations that show lighting, textures, and realistic details. This helps potential buyers fully understand and connect with the space before it physically exists.|Side Hustle School - "#2861 - TBT: An Architect’s Side Hustle in 3D Real Estate Modeling"| |Somewhere - Global Talent Marketplace|Platform connecting US companies with vetted overseas talent. Tech roles costing $150k locally filled for 50% less. Grew from $15M to $52M valuation in 9 months.|Platform connecting US companies with pre-vetted overseas talent at significantly lower rates while maintaining high quality. Handles payments, contracts, and quality assurance to remove friction from global hiring.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |GymLaunch - Rapid Gym Turnaround Service|Consultants flying to struggling gyms to implement proven member acquisition systems. Gym owners lacking sales expertise. Made $100k in first 21 days.|Expert consultants fly in to implement proven member acquisition systems, train staff, and rapidly fill gyms with new members. The service combines sales training, marketing automation, and proven conversion tactics to transform struggling gyms into profitable businesses within weeks.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |PublishPlus - Publishing Backend Monetization|Backend monetization system for publishing companies. One-time customers becoming recurring revenue. Grew business from $2M to $110M revenue.|Add complementary backend products and services to increase customer lifetime value. Develop software tools and additional services that natural extend from initial publishing product. Focus on high-margin recurring revenue streams.|My First Million - "I Lost Everything Twice… Then Made $26M In 18 Months| |WelcomeBot - Automated Employee Onboarding Platform|Automated employee welcome platform. HR teams struggling with consistent onboarding. $99/month per 100 employees.|An automated onboarding platform that creates personalized welcome experiences through pre-recorded video messages, scheduled check-ins, and automated swag delivery. The platform would ensure consistent high-quality onboarding regardless of timing or location.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |ProcessBrain - Business Knowledge Documentation Platform|SaaS platform turning tribal knowledge into documented processes. Business owners spending hours training new hires. $199/month per company.|A software platform that makes it easy to document and delegate business processes and procedures. The platform would include templates, guided documentation flows, and tools to easily share and update procedures. It would help businesses create a comprehensive playbook of their operations.|Entrepreneurs on Fire - "Free Training on Building Systems and Processes to Scale Your Business with Chris Ronzio: An EOFire Classic from 2021"| |TradeMatch - Modern Manufacturing Job Marketplace|Modern job board making manufacturing sexy again. Factory jobs paying $40/hr but can't recruit. $500 per successful referral.|A specialized job marketplace and recruitment platform focused exclusively on modern manufacturing and trade jobs. The platform would combine TikTok-style content marketing, referral programs, and modern UX to make manufacturing jobs appealing to Gen Z and young workers. Would leverage existing $500 referral fees and industry demand.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |GroundLevel - Executive Immersion Program|Structured program putting CEOs in front-line jobs. Executives disconnected from workers. $25k per placement.|A structured program that places executives and founders in front-line jobs (retail, warehouse, service) for 2-4 weeks with documentation and learning framework. Similar to Scott Heiferman's McDonald's experience but productized.|My First Million - "He Sold His Company For $15M, Then Got A Job At McDonald’s"| |OneStepAhead - Micro-Mentorship Marketplace|Marketplace for 30-min mentorship calls with people one step ahead. Professionals seeking specific guidance. Takes 15% of session fees.|MicroMentor Marketplace - Platform connecting people with mentors who are just one step ahead in their journey for focused, affordable micro-mentorship sessions.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |VulnerableLeader - Leadership Authenticity Training Platform|Leadership vulnerability training platform. Leaders struggling with authentic communication. $2k/month per company subscription.|Leadership Vulnerability Platform - A digital training platform combining assessment tools, guided exercises, and peer support to help leaders develop authentic communication skills. The platform would include real-world scenarios, video coaching, and measurable metrics for tracking leadership growth through vulnerability.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |NetworkAI - Smart Network Intelligence Platform|AI analyzing your network to find hidden valuable connections. Professionals missing opportunities in existing contacts. $49/month per user.|AI Network Navigator - Smart tool that analyzes your professional network across platforms, identifies valuable hidden connections, and suggests specific actionable ways to leverage relationships for mutual benefit.|Entrepreneurs on Fire - "How to Create an Unbroken Business with Michael Unbroken: An EOFire Classic from 2021"| |Porch Pumpkins - Seasonal Decoration Service|Full-service porch pumpkin decoration. Homeowners spend $300-1350 per season. One operator making $1M in 8 weeks seasonal revenue.|Full-service seasonal porch decoration service focused on autumn/Halloween, including design, installation, maintenance, and removal. Offering premium curated pumpkin arrangements with various package tiers.|My First Million - "The guy who gets paid $80K/yr to do nothing"| |Silent Companion - Professional Presence Service|Professional silent companions for lonely people. Huge problem in Japan/globally. $68/session, $80k/year per companion. Non-sexual, just presence.|A professional companion service where individuals can rent a non-judgmental, quiet presence for various activities. The companion provides silent company without the pressure of conversation or social performance. They accompany clients to events, meals, or just sit quietly together.|My First Million - "The guy who gets paid $80K/yr to do nothing"| Hope this is useful. If anyone would like to ensure I include any particular podcasts or episodes etc. in future posts, very happy to do so. I'll generally send \~5 ideas per week in a short weekly digest format (you can see the format I'd usually use in here: podcastmarketwatch.beehiiv.com). I find it mindblowing that the latest models with large context windows make it even possible to analyze full transcripts at such scale. It's a very exciting time we're living through! Would love some feedback on this stuff, happy to iterate and improve the analysis/ideas... or create a new newsletter on a different topic if anyone would like. Cheers!

I started a Tech Startup, and I feel totally STUCK.
reddit
LLM Vibe Score0
Human Vibe Score1
BetAltruistic6556This week

I started a Tech Startup, and I feel totally STUCK.

I made "Visual Love," a Computer Vision/AI-driven matchmaking platform. The idea is that although appearance is one of the biggest factors for starting a relationship, current matchmaking services and dating apps do not have the capability to search for people based on appearance. On Visual Love, you can find your ideal match simply by uploading a picture of your "ideal type." Also, you can connect with someone who thinks of you as their ideal type, simply by uploading your own picture. Or, there might be a perfect (mutually ideal) match. I made this CV/AI algorithm to scan faces, retrieve facial features, and make it possible to find the closest match among millions of others in a second. On average, regular dating app users swipe 8000 times over 8 months until they find their love. On Visual Love, users can find one in a million just in a second. You can try the tech demo on the website if you want to (find the link through my LinkedIn at the bottom of the post; I have to follow the "I will not promote" rule.) I thought this app would have the best chance in Asia, as people care a lot more about appearance in Asia (especially Korea and Japan). Also, my nationality is Korean, and I speak both Korean and Japanese as fluently as I speak English. So I came to Korea, and pitched to a number of VC/AC firms in Korea and Japan, and two of them were typically intersted in making investment. However, they both required me to provide market validation: how much it would cost per user acquisition, how much each user would pay on average, and etc, even after I provided them with a 3-years financial projection including market research based on other dating apps. ​ Everything might be going just as expected, or even better than anticipated, but I'm feeling very stuck now. I am not a business expert, and I don't have much idea on how to proceed from here. The problem is, it wouldn't quite work as expected when there are not many users. If I start with a small group of users, it's not any better than any other dating app. Matching users within a small group doesn't quite reflect the values of Visual Love. So I figured a way around: making a game version of Visual Love targeting 100k to 500k users to work as an initial distribution channel. This version will include finding look-alike celebrities, and solving look-alike face puzzles, and etc. But now, the problem is, I cannot continue this project by myself. I have no social/financial support, and I'm running low on cash. Also, although I'm from Korea, I lived in many different countries. I did my undergraduate in New York (Columbia University) and all my friends are in the US. I don't feel very included here. I can't stop feeling frustrated and distressed :( I'm sure Visual Love can reshape the future of the matchmaking market. But, only if I can continue this project by getting the fund I require. I'm open to any advice, and if you're interested in providing any help or working with me, please contact me through LinkedIn. https://www.linkedin.com/in/don-lee-3853b1264/

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!
reddit
LLM Vibe Score0
Human Vibe Score1
adriannelestrangeThis week

I studied how 7 Founders found their first 100 customers for their businesses. Summarizing it here!

I am learning marketing, and so I combed through the internet to find specific advice that helped founders reach 100 users and not random Google answers. Here’s what I found: Llama Life by Marie Marie founder of Llama Life, a productivity app ($51.4K+ revenue) got her first 100 users using Snowballing effect. She shared great advice that I want to add here verbatim, “Need to think about what you have that you can leverage based on your current situation. eg..When you have no customers, think about where you can post to get the 1st customer eg Product Hunt. If you do well on PH, say you get #3 product of the day, then you post somewhere else saying ‘I got #3 product of the day’.. to get your next few customers. Maybe that post is on reddit with some learnings that you found. If the reddit post does well, then you might post it on Twitter, saying reddit did well and what learnings you got from that etc. or even if it doesn’t do well you can still post about it.” Another tip she shared is to build related products that get more viral than the product itself. These are small stand-alone sites that would appeal to the same target audience, but by nature, are more shareable. On these sites, you can mention your startup like: ‘brought to you by Llama Life’ and then provide a link to the main website if someone is interested. If one of those gets viral or ranks on Google, you’ll have a passive traffic source. Scraping bee by Pierre Pierre, founder of Scraping Bee, a web scraping tool has now reached $1.5M ARR. Pierre and his cofounder Kevin started with 10 Free Beta Users in 2019, and after 6 months asked them to take a paid subscription if they wanted to continue using the product. That’s how they got their first user within 50 minutes of that email. Then they listed it on dozens of startup directories but their core strategy was writing the best possible content for their target audience — Developers. 3 very successful pieces of content that worked were : A small tutorial on how to scrape single-page application An extensive general guide about web scraping without getting blocked A complete introduction to web scraping with Python They didn’t do content marketing for the sake of content marketing but deep-dived into the value they were providing their customer. One of these got 70K visits, and all this together got them to over 100 users. WePay by Bill Clerico Bill Clerico left his cushy corporate job to build WePay which was then acquired for $400M got his first users by using his app. He got his first users by using his app! The app was for group payments. So he hosted a Poker tournament at his house and collected payments only with his app. Then they hosted a barbecue for fraternity treasurers at San Jose State & helped them do their annual dues collection. Good old word-of-mouth marketing, that however, started with an event where they used what they made! RealWorld by Genevieve Genevieve — Founder and CEO of Realworld stands by the old-school advice of value giving. RealWorld is an app that helps GenZ navigate adulthood. So, before launching their direct-to-consumer platform, they had an educational course that they sold to college career centers and students. They already had a pipeline of adults who turned to Realworld for their adulting challenges. From there, she gained her first 100 followers. Saner dot ai by Austin Austin got 100 users from Reddit for his startup Saner.ai. Reddit hates advertising, and so his tips to market your startup on Reddit is to Write value-driven posts on your niche. Instead of writing posts, find posts where people are looking for solutions DM people facing problems that your SaaS solves. But instead of selling, ask about their problem to see if your product is a good fit Heartfelt posts about why you built it, aren’t gonna cut it To find posts and people, search Reddit with relevant keywords and join all the subreddits A Stock Portfolio Newsletter A financial investor got his first 100 paid newsletter subscribers for his stock portfolio newsletter. His tips : Don’t reinvent the wheel. Work what’s already working. He saw a company making $500M+ from stock picking newsletter, so decided to try that. Find the gaps in “already working” and leverage them. That newsletter did not have portfolios of advisors writing them. That was his USP. He added his own portfolio to his newsletter. Now to 100 users, he partnered with a guy running an investing website and getting good traffic. That guy got a cut of his revenue, in exchange. That one simple step got him to 100 users. Hypefury by Yannick and Samy Yannick and Samy from Hypefury, Twitter and Social Media Automation tool got their first beta testers and users from a paid community. They launched Hypefury there and asked if someone wanted to try it. A couple of people tried it and gave feedback. Samy conducted user interviews and product demos for them, And shared the reviews on Twitter. That alone, along with word-of-mouth marketing on Twitter got them their first 100 users. To conclude: Don’t reinvent the wheel, try what’s working. Find the gaps in what’s working, and leverage that. Instead of thinking about millions of customers, think about the first 10. Then first 100. Leverage what you have. Get the first 10 customers, then talk about this to get the next 100. Use your app. Find ways, events, and opportunities to use your app in front of people. And get them to use it. Write content not only for SEO but also to help people. It won’t work tomorrow, but it will work for years after it picks up. Leverage other sources of traffic by partnering up! Do things that don’t scale. I’m also doing SaaS marketing deep dives over 30 pieces of content. I'm posting here for the first time, so I'm not sure if it will stay or not, sorry if it doesn't. I've helped a SaaS grow from $19K to $100K MRR as a marketer in last 2 years, and now I wanna dive deep. Cheers! (1/30)

Advice Needed
reddit
LLM Vibe Score0
Human Vibe Score1
Suspicious_Dig_3849This week

Advice Needed

Hey everyone, I’ve been diving into Artificial Intelligence, Machine Learning, and Deep Learning recently, but I find myself a little confused about how to approach the learning process effectively. My goal isn’t just to secure a job but to actually build cool AI products or startups—something innovative and impactful, like what companies such as OpenAI, Anthropic, or ElevenLabs are doing. I often see founders or engineers building incredible AI-driven startups, and I can’t help but wonder: • What kind of learning path did these people follow? • Surely they didn’t just stick to basic Udemy or YouTube courses that most people use for job prep. • What resources or approaches do serious AI practitioners use? I’ve heard that implementing research papers is a great way to gain a deep, intuitive understanding of AI concepts. But as someone who is still a beginner, I’m unsure how to start implementing papers without feeling overwhelmed. Here’s what I’m hoping to get clarity on: Where should I begin as a complete beginner? What resources, projects, or habits would you recommend to build solid fundamentals in AI/ML? How do I progress from beginner to a level where I can implement research papers? Are there intermediate steps I need to take before diving into papers? What would the ideal roadmap look like for someone who wants to build startups in AI? If you’re an AI practitioner, researcher, or startup founder, I’d love to hear about your experiences and learning pathways. What worked for you? What didn’t? Any advice or resources would be immensely appreciated. I’m ready to put in the hard work, I just want to make sure I’m moving in the right direction. Thanks in advance! Looking forward to learning from this community.

MarkDrop
reddit
LLM Vibe Score0
Human Vibe Score1
Willing-Ear-8271This week

MarkDrop

I’m excited to share my Python package, Markdrop, which has hit 5.01k+ downloads in just a month, so updated it just now! 🚀 It’s a powerful tool for converting PDF documents into structured formats like Markdown (.md) and HTML (.html) while automatically processing images and tables into descriptions for downstream use. Here's what Markdrop does: Key Features: PDF to Markdown/HTML Conversion: Converts PDFs into clean, structured Markdown files (.md) or HTML outputs, preserving the content layout. AI-Powered Descriptions: Replaces tables and images with descriptive summaries generated by LLM, making the content fully textual and easy to analyze. Earlier I added support of 6 different LLM Clients, but to improve the inference time, now this supports only GEMINI\API\KEY and OPENAI\API\KEY. Downloadable Tables: Can add accurate download buttons in HTML for tables, allowing users to download them as Excel files. Seamless Table and Image Handling: Extracts tables and images, generating detailed summaries for each, which are then embedded into the final Markdown document. At the end, one can have a .md file that contains only textual data, including the AI-generated summaries of tables, images, graphs, etc. This results in a highly portable format that can be used directly for several downstream tasks, such as: Can be directly integrated into a RAG pipeline for enhanced content understanding and querying on documents containg useful images and tabular data. Ideal for automated content summarization and report generation. Facilitates extracting key data points from tables and images for further analysis. The .md files can serve as input for machine learning tasks or data-driven projects. Ideal for data extraction, simplifying the task of gathering key data from tables and images. The downloadable table feature is perfect for analysts, reducing the manual task of copying tables into Excel. Markdrop streamlines workflows for document processing, saving time and enhancing productivity. You can easily install it via: pip install markdrop There’s also a Colab demo available to try it out directly: Open in Colab. Github Repo If you've used Markdrop or plan to, I’d love to hear your feedback! Share your experience, any improvements, or how it helped in your workflow. Check it out on PyPI and let me know your thoughts!

Backend dev wants to learn ML
reddit
LLM Vibe Score0
Human Vibe Score1
chipmuxThis week

Backend dev wants to learn ML

Hello ML Experts, I am staff engineer, working in a product based organization, handling the backend services. I see myself becoming Solution Architect and then Enterprise Architect one day. With the AI and ML trending now a days, So i feel ML should be an additional skill that i should acquire which can help me leading and architecting providing solutions to the problems more efficiently, I think however it might not replace the traditional SWEs working on backend APIs completely, but ML will be just an additional diamention similar to the knowledge of Cloud services and DevOps. So i would like to acquire ML knowledge, I dont have any plans to be an expert at it right now, nor i want to become a full time data scientist or ML engineer as of today. But who knows i might diverge, but thats not the plan currently. I did some quick promting with ChatGPT and was able to comeup with below learning path for me. So i would appreciate if some of you ML experts can take a look at below learning path and provide your suggestions 📌 PHASE 1: Core AI/ML & Python for AI (3-4 Months) Goal: Build a solid foundation in AI/ML with Python, focusing on practical applications. 1️⃣ Python for AI/ML (2-3 Weeks) Course: [Python for Data Science and Machine Learning Bootcamp]() (Udemy) Topics: Python, Pandas, NumPy, Matplotlib, Scikit-learn basics 2️⃣ Machine Learning Fundamentals (4-6 Weeks) Course: Machine Learning Specialization by Andrew Ng (C0ursera) Topics: Linear & logistic regression, decision trees, SVMs, overfitting, feature engineering Project: Build an ML model using Scikit-learn (e.g., predicting house prices) 3️⃣ Deep Learning & AI Basics (4-6 Weeks) Course: Deep Learning Specialization by Andrew Ng (C0ursera) Topics: Neural networks, CNNs, RNNs, transformers, generative AI (GPT, Stable Diffusion) Project: Train an image classifier using TensorFlow/Keras 📌 PHASE 2: AI/ML for Enterprise & Cloud Applications (3-4 Months) Goal: Learn how AI is integrated into cloud applications & enterprise solutions. 4️⃣ AI/ML Deployment & MLOps (4 Weeks) Course: MLOps Specialization by Andrew Ng (C0ursera) Topics: Model deployment, monitoring, CI/CD for ML, MLflow, TensorFlow Serving Project: Deploy an ML model as an API using FastAPI & Docker 5️⃣ AI/ML in Cloud (Azure, AWS, OpenAI APIs) (4-6 Weeks) Azure AI Services: Course: Microsoft AI Fundamentals (C0ursera) Topics: Azure ML, Azure OpenAI API, Cognitive Services AWS AI Services: Course: [AWS Certified Machine Learning – Specialty]() (Udemy) Topics: AWS Sagemaker, AI workflows, AutoML 📌 PHASE 3: AI Applications in Software Development & Future Trends (Ongoing Learning) Goal: Explore AI-powered tools & future-ready AI applications. 6️⃣ Generative AI & LLMs (ChatGPT, GPT-4, LangChain, RAG, Vector DBs) (4 Weeks) Course: [ChatGPT Prompt Engineering for Developers]() (DeepLearning.AI) Topics: LangChain, fine-tuning, RAG (Retrieval-Augmented Generation) Project: Build an LLM-based chatbot with Pinecone + OpenAI API 7️⃣ AI-Powered Search & Recommendations (Semantic Search, Personalization) (4 Weeks) Course: [Building Recommendation Systems with Python]() (Udemy) Topics: Collaborative filtering, knowledge graphs, AI search 8️⃣ AI-Driven Software Development (Copilot, AI Code Generation, Security) (Ongoing) Course: AI-Powered Software Engineering (C0ursera) Topics: AI code completion, AI-powered security scanning 🚀 Final Step: Hands-on Projects & Portfolio Once comfortable, work on real-world AI projects: AI-powered document processing (OCR + LLM) AI-enhanced search (Vector Databases) Automated ML pipelines with MLOps Enterprise AI Chatbot using LLMs ⏳ Suggested Timeline 📅 6-9 Months Total (10-12 hours/week) 1️⃣ Core ML & Python (3-4 months) 2️⃣ Enterprise AI/ML & Cloud (3-4 months) 3️⃣ AI Future Trends & Applications (Ongoing) Would you like a customized plan with weekly breakdowns? 🚀

I built a library to visualize and edit audio filters
reddit
LLM Vibe Score0
Human Vibe Score1
AlexStreletsThis week

I built a library to visualize and edit audio filters

Hey everyone! TLDR: No fancy AI Agents or trendy micro-SaaS here — just an old-school library. Scroll down for the demo link! 🙃 App Demo The Story Behind Several years ago, I deep-dived into reverse engineering the parameter system used in VAG (Volkswagen, Audi, Porsche, etc) infotainment units. I managed to decode their binary format for storing settings for each car type and body style. To explain it simply - their firmware contains equalizer settings for each channel of the on-board 5.1 speaker system based on cabin volume and other parameters, very similar to how home theater systems are configured (gains, delays, limiters, etc). I published this research for the car enthusiast community. While the interest was huge, the reach remained small since most community members weren't familiar with hex editors. Only a few could really replicate what I documented. After some time, I built a web application that visualized these settings and allowed to unpack, edit and repack that data back into the binary format. Nowadays The original project was pretty messy (spaghetti code, honestly) and had a very narrow focus. But then I realized the visualization library itself could be useful for any audio processing software. When I first tried to visualize audio filters with that project, I hit a wall. Most charting libraries are built for business data, all those "enterprise-ready visualization solutions". But NONE of them is designed for audio-specific needs. D3.js is the only real option here — it’s powerful but requires days of digging through docs just to get basic styling right. And if you want interactive features like drag-and-drop? Good luck with that. (Fun fact: due to D3's multiple abstraction layers, just the same filter calculations in DSSSP are 1.4-2x faster than D3's implementation). So, I built a custom vector-based graph from scratch with a modern React stack. The library focuses on one thing - audio filters. No unnecessary abstractions, no enterprise bloat, just fast and convenient (I hope!) tools for tools for audio processing software. Core Features Logarithmic frequency response visualization Interactive biquad filter manipulation Custom audio calculation engine Drag-and-drop + Mouse wheel controls Flexible theming API Technical Details Built with React + SVG (no Canvas) Zero external dependencies besides React Full TypeScript support Live Demo & Docs & GitHub This is the first public release, landing page is missing, and the backlog is huge, and docs do not cover some aspects. (You know, there's never a perfect timimng - I just had to stop implementing my ideas and make it community driven). I'd love to see what you could build with these components. What's missing? What could be improved? I'm still lacking the understanding of how it could gain some cash flow, while staying open-source. Any ideas?

I created leadsnavi that helps small businesses find quality leads without breaking the bank
reddit
LLM Vibe Score0
Human Vibe Score1
BrightCook5861This week

I created leadsnavi that helps small businesses find quality leads without breaking the bank

Hey Redditors, I’m excited to share LeadsNavi, a tool I built specifically to help small businesses and B2B professionals automatically generate leads and reach potential customers in a smarter way. After talking to a lot of small business owners, I realized how tough it is to juggle lead generation with limited resources. So, I decided to create a tool that could simplify the process and make it more accessible to those who don’t have the budget to invest in expensive solutions. What Exactly Is LeadsNavi? LeadsNavi is an intuitive, cost-effective platform that automates the process of lead generation. It's designed to make it easy for small businesses and entrepreneurs to identify quality leads and grow their customer base without the need for manual prospecting. Here’s what makes it stand out: Automatic Lead Tracking: Tracks visitors to your website and matches them with company data, so you get real insights into who’s interested in your business. AI-Powered Lead Recommendations: Based on your website’s traffic, LeadsNavi uses AI to suggest similar companies that could be interested in your product or service, helping you find new leads faster and more accurately. Affordable & Scalable: For only $49/month, you can use a highly effective tool that scales with your business. It’s designed to be affordable even for small businesses. CRM Integration: Connect your CRM to directly import leads and sync your outreach efforts. How Does It Work? LeadsNavi uses advanced algorithms to track website visitors' IP addresses and match them with a comprehensive business database. It provides details like company names, contact information, and helps you identify potential leads for follow-up. The best part? It works automatically, saving you hours of manual work and effort. Lead Identification: Get insights into which companies are visiting your website. AI-Driven Lead Recommendations: The AI analyzes your site’s traffic and suggests other companies in the same industry or with similar needs that might be a great fit for your product or service. Data-Enriched Leads: Gather real-time, actionable data on these leads to make your outreach more targeted. Easy Setup: Simply integrate with your website and CRM to start getting quality leads in minutes. Who’s It For? Small Businesses: You don’t have to be a marketing expert to generate quality leads. B2B Sales Teams: Perfect for anyone looking to target other businesses with a streamlined and automated approach. Entrepreneurs & Startups: Focus on scaling your business without worrying about lead generation overhead. Why Try It? LeadsNavi gives you the power to focus on what really matters—connecting with potential customers and scaling your business. If you’ve been struggling with finding quality leads, or if you’re just getting started, I believe LeadsNavi can help you save time, effort, and money. I’m offering a 14-day free trial, so you can see the tool in action before committing to anything. Give it a try and let me know what you think! I’d love to hear your thoughts, suggestions, and how it works for your business. https://preview.redd.it/fdwil4rssgle1.png?width=1867&format=png&auto=webp&s=eb73b41a2b7665ae1b651fe2a6b7459df6990530

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

[R] Forget the Data and Fine-tuning! Just Fold the Network to Compress [Feb, 2025]
reddit
LLM Vibe Score0
Human Vibe Score1
MegneousThis week

[R] Forget the Data and Fine-tuning! Just Fold the Network to Compress [Feb, 2025]

Abstract: We introduce model folding, a novel data-free model compression technique that merges structurally similar neurons across layers, significantly reducing the model size without the need for fine-tuning or access to training data. Unlike existing methods, model folding preserves data statistics during compression by leveraging k-means clustering, and using novel data-free techniques to prevent variance collapse or explosion. Our theoretical framework and experiments across standard benchmarks, including ResNet18 and LLaMA-7B, demonstrate that model folding achieves comparable performance to data-driven compression techniques and outperforms recently proposed data-free methods, especially at high sparsity levels. This approach is particularly effective for compressing large-scale models, making it suitable for deployment in resource-constrained environments. Our code is online. PDF Format: https://arxiv.org/pdf/2502.10216 Summary (AI used to summarize): Summary of Novel Contributions in "Just Fold the Network to Compress" Introduction Problem Addressed: Traditional model compression techniques (e.g., pruning, quantization) require fine-tuning or access to training data to maintain performance, limiting their use in data-constrained scenarios. Novelty: Data-Free Compression: Introduces model folding, a method that compresses models without fine-tuning or training data by merging structurally similar neurons. Variance Preservation: Addresses variance collapse (reduced activation variance degrading performance) and variance overshooting (excessive variance) through novel data-free techniques. Preliminaries Background: Prior work in neuron alignment (e.g., weight matching) and data-driven variance repair (e.g., REPAIR) relies on data or fine-tuning. Novelty: Data-Free Neuron Alignment: Extends weight matching to intra-model neuron clustering via k-means, avoiding dependency on input data. Theoretical Connection: Frames model folding as a k-means optimization problem, proving it minimizes Frobenius norm approximation error during compression. Model Folding Core Innovations: Layer-Wise Clustering: Merges neurons by applying k-means to weight matrices across consecutive layers, reducing redundancy while preserving inter-layer dependencies. Fold-AR (Approximate REPAIR): Estimates intra-cluster correlations to rescale activations, preventing variance collapse without data. Fold-DIR (Deep Inversion REPAIR): Uses synthetic data generated via Deep Inversion (optimizing noise to match BatchNorm statistics) to recalibrate activation variances. Handling Complex Architectures: Extends folding to residual connections and BatchNorm layers by clustering combined weight-normalization matrices. Experiments Key Results: High Sparsity Performance: Outperforms data-free methods (e.g., IFM, INN) by 10–15% accuracy at 70% sparsity on ResNet18/CIFAR10. LLM Compression: Achieves comparable perplexity to data-driven methods on LLaMA-7B without fine-tuning or data. Variance Alignment: Fold-AR and Fold-DIR maintain variance ratios close to 1, avoiding collapse/overshooting (Fig. 4). Limitations and Future Work Limitations: Effectiveness depends on model redundancy (less effective for compact models). Uniform sparsity per layer (future work may optimize layer-wise sparsity). Potential Benefits for SOTA Models Edge Deployment: Enables compression of large models (e.g., LLMs) for smartphones/IoT devices without data access or retraining. Privacy-Sensitive Domains: Critical for healthcare/finance where data cannot be used for calibration. Efficiency at Scale: Reduces LLM size by 20–50% with minimal performance loss, lowering inference costs. Robustness to OOD Data: Fold-AR/Fold-DIR mitigate performance drops caused by out-of-distribution calibration data in data-driven methods. Example Impact: A folded LLM could run on edge devices like NVIDIA Jetson Nano with ~50% fewer parameters, maintaining usability for tasks like text generation while reducing memory and energy consumption.

[D] Advanced courses update
reddit
LLM Vibe Score0
Human Vibe Score1
actbshThis week

[D] Advanced courses update

EDIT Jan 2021 : I am still updating the list as of Jan, 2021 and will most probably continue to do so for foreseeable future. So, please feel free to message me any courses you find interesting that fit here. - - We have a PhD level or Advanced courses thread in the sidebar but it's three year old now. There were two other 7-8 month old threads (1, 2) but they don't have many quality responses either. So, can we have a new one here? To reiterate - CS231n, CS229, ones from Udemy etc are not advanced. Advanced ML/DL/RL, attempts at building theory of DL, optimization theory, advanced applications etc are some examples of what I believe should belong here, much like the original sidebar post. You can also suggest (new) categories for the courses you share. :) - - Here are some courses we've found so far. ML >> Learning Discrete Latent Structure - sta4273/csc2547 Spring'18 Learning to Search - csc2547 Fall'19 Scalable and Flexible Models of Uncertainty - csc2541 Fundamentals of Machine Learning Over Networks - ep3260 Machine Learning on Graphs - cs224w, videos Mining Massive Data Sets - cs246 Interactive Learning - cse599 Machine Learning for Sequential Decision Making Under Uncertainty - ee290s/cs194 Probabilistic Graphical Methods - 10-708 Introduction to Causal Inference ML >> Theory Statistical Machine Learning - 10-702/36-702 with videos, 2016 videos Statistical Learning Theory - cs229T/stats231 Stanford Autumn'18-19 Statistical Learning Theory - cs281b /stat241b UC Berkeley, Spring'14 Statistical Learning Theory - csc2532 Uni of Toronto, Spring'20 ML >> Bayesian Bayesian Data Analysis Bayesian Methods Research Group, Moscow, Bayesian Methods in ML - spring2020, fall2020 Deep Learning and Bayesian Methods - summer school, videos available for 2019 version ML >> Systems and Operations Stanford MLSys Seminar Series Visual Computing Systems- cs348v - Another systems course that discusses hardware from a persepective of visual computing but is relevant to ML as well Advanced Machine Learning Systems - cs6787 - lecture 9 and onwards discuss hardware side of things Machine Learning Systems Design - cs329S Topics in Deployable ML - 6.S979 Machine Learning in Production / AI Engineering (17-445/17-645/17-745/11-695) AutoML - Automated Machine Learning DL >> Deep Unsupervised Learning - cs294 Deep Multi-task and Meta learning - cs330 Topics in Deep Learning - stat991 UPenn/Wharton most chapters start with introductory topics and dig into advanced ones towards the end. Deep Generative Models - cs236 Deep Geometric Learning of Big Data and Applications Deep Implicit Layers - NeurIPS 2020 tutorial DL >> Theory Topics course on Mathematics of Deep Learning - CSCI-GA 3033 Topics Course on Deep Learning - stat212b Analyses of Deep Learning - stats385, videos from 2017 version Mathematics of Deep Learning Geometry of Deep Learning RL >> Meta-Learning - ICML 2019 Tutorial , Metalearning: Applications to Data Mining - google books link Deep Multi-Task and Meta Learning - cs330, videos Deep Reinforcement Learning - cs285 Advanced robotics - cs287 Reinforcement Learning - cs234, videos for 2019 run Reinforcement Learning Summer School 2019: Bandits, RL & Deep RL Optimization >> Convex Optimization I - ee364a, has quite recent videos too. Convex Optimization II - ee364b, 2008 videos Convex Optimization and Approximation - ee227c Convex Optimization - ee227bt Variational Methods for Computer Vision Advanced Optimization and Randomized Algorithms - 10-801, videos Optimization Methods for Machine Learning and Engineering - Karlsruhe Institute of Technology Applications >> Computer Vision Computational Video Manipulation - cs448v Advanced Topics in ML: Modeling and Segmentation of Multivariate Mixed Data TUM AI Guest lecture series - many influential researchers in DL, vision, graphics talk about latest advances and their latest works. Advanced Deep Learning for Computer Vision - TUM ADL4CV Detection, Segmentation and Tracking - TUM CV3DST Guest lectures at TUM Dynamic Vision and Learning group Vision Seminar at MIT Autonomous Vision Group, Talk@Tübingen Seminar Applications >> Natural Language Processing Natural Language Processing with Deep Learning - cs224n ( not sure if it belongs here, people working in NLP can help me out) Neural networks for NLP - cs11-747 Natural Language Understanding - cs224u, video Applications >> 3D Graphics Non-Euclidean Methods in Machine Learning - cs468, 2020 Machine Learning for 3D Data - cs468, spring 2017 Data-Driven Shape Analysis - cs468, 2014 Geometric Deep Learning - Not a course but the website links a few tutorials on Geometric DL Deep Learning for Computer Graphics - SIGGRAPH 2019 Machine Learning for Machine Vision as Inverse Graphics - csc2547 Winter'20 Machine Learning Meets Geometry, winter 2020; Machine Learning for 3D Data, winter 2018 Edit: Upon suggestion, categorized the courses. There might be some misclassifications as I'm not trained on this task ;). Added some good ones from older (linked above) discussions.

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.
reddit
LLM Vibe Score0
Human Vibe Score0.6
AlexSnakeKingThis week

[Discussion] When ML and Data Science are the death of a good company: A cautionary tale.

TD;LR: At Company A, Team X does advanced analytics using on-prem ERP tools and older programming languages. Their tools work very well and are designed based on very deep business and domain expertise. Team Y is a new and ambitious Data Science team that thinks they can replace Team X's tools with a bunch of R scripts and a custom built ML platform. Their models are simplistic, but more "fashionable" compared to the econometric models used by Team X, and team Y benefits from the ML/DS moniker so leadership is allowing Team Y to start a large scale overhaul of the analytics platform in question. Team Y doesn't have the experience for such a larger scale transformation, and is refusing to collaborate with team X. This project is very likely going to fail, and cause serious harm to the company as a whole financially and from a people perspective. I argue that this is not just because of bad leadership, but also because of various trends and mindsets in the DS community at large. Update (Jump to below the line for the original story): Several people in the comments are pointing out that this just a management failure, not something due to ML/DS, and that you can replace DS with any buzz tech and the story will still be relevant. My response: Of course, any failure at an organization level is ultimately a management failure one way or the other. Moreover, it is also the case that ML/DS when done correctly, will always improve a company's bottom line. There is no scenario where the proper ML solution, delivered at a reasonable cost and in a timely fashion, will somehow hurt the company's bottom line. My point is that in this case management is failing because of certain trends and practices that are specific to the ML/DS community, namely: The idea that DS teams should operate independently of tech and business orgs -- too much autonomy for DS teams The disregard for domain knowledge that seems prevalent nowadays thanks to the ML hype, that DS can be generalists and someone with good enough ML chops can solve any business problem. That wasn't the case when I first left academia for the industry in 2009 (back then nobody would even bother with a phone screen if you didn't have the right domain knowledge). Over reliance on resources who check all the ML hype related boxes (knows Python, R, Tensorflow, Shiny, etc..., has the right Coursera certifications, has blogged on the topic, etc...), but are lacking in depth of experience. DS interviews nowadays all seem to be: Can you tell me what a p-value is? What is elastic net regression? Show me how to fit a model in sklearn? How do you impute NAs in an R dataframe? Any smart person can look those up on Stackoverflow or Cross-Validated,.....Instead teams should be asking stuff like: why does portfolio optimization use QP not LP? How does a forecast influence a customer service level? When should a recommendation engine be content based and when should it use collaborative filtering? etc... (This is a true story, happening to the company I currently work for. Names, domains, algorithms, and roles have been shuffled around to protect my anonymity)  Company A has been around for several decades. It is not the biggest name in its domain, but it is a well respected one. Risk analysis and portfolio optimization have been a core of Company A's business since the 90s. They have a large team of 30 or so analysts who perform those tasks on a daily basis. These analysts use ERP solutions implemented for them by one the big ERP companies (SAP, Teradata, Oracle, JD Edwards,...) or one of the major tech consulting companies (Deloitte, Accenture, PWC, Capgemini, etc...) in collaboration with their own in house engineering team. The tools used are embarrassingly old school: Classic RDBMS running on on-prem servers or maybe even on mainframes, code written in COBOL, Fortran, weird proprietary stuff like ABAP or SPSS.....you get the picture. But the models and analytic functions were pretty sophisticated, and surprisingly cutting edge compared to the published academic literature. Most of all, they fit well with the company's enterprise ecosystem, and were honed based on years of deep domain knowledge.  They have a tech team of several engineers (poached from the aforementioned software and consulting companies) and product managers (who came from the experienced pools of analysts and managers who use the software, or poached from business rivals) maintaining and running this software. Their technology might be old school, but collectively, they know the domain and the company's overall architecture very, very well. They've guided the company through several large scale upgrades and migrations and they have a track record of delivering on time, without too much overhead. The few times they've stumbled, they knew how to pick themselves up very quickly. In fact within their industry niche, they have a reputation for their expertise, and have very good relations with the various vendors they've had to deal with. They were the launching pad of several successful ERP consulting careers.  Interestingly, despite dealing on a daily basis with statistical modeling and optimization algorithms, none of the analysts, engineers, or product managers involved describe themselves as data scientists or machine learning experts. It is mostly a cultural thing: Their expertise predates the Data Science/ML hype that started circa 2010, and they got most of their chops using proprietary enterprise tools instead of the open source tools popular nowadays. A few of them have formal statistical training, but most of them came from engineering or domain backgrounds and learned stats on the fly while doing their job. Call this team "Team X".  Sometime around the mid 2010s, Company A started having some serious anxiety issues: Although still doing very well for a company its size, overall economic and demographic trends were shrinking its customer base, and a couple of so called disruptors came up with a new app and business model that started seriously eating into their revenue. A suitable reaction to appease shareholders and Wall Street was necessary. The company already had a decent website and a pretty snazzy app, what more could be done? Leadership decided that it was high time that AI and ML become a core part of the company's business. An ambitious Manager, with no science or engineering background, but who had very briefly toyed with a recommender system a couple of years back, was chosen to build a data science team, call it team "Y" (he had a bachelor's in history from the local state college and worked for several years in the company's marketing org). Team "Y" consists mostly of internal hires who decided they wanted to be data scientists and completed a Coursera certification or a Galvanize boot camp, before being brought on to the team, along with a few of fresh Ph.D or M.Sc holders who didn't like academia and wanted to try their hand at an industry role. All of them were very bright people, they could write great Medium blog posts and give inspiring TED talks, but collectively they had very little real world industry experience. As is the fashion nowadays, this group was made part of a data science org that reported directly to the CEO and Board, bypassing the CIO and any tech or business VPs, since Company A wanted to claim the monikers "data driven" and "AI powered" in their upcoming shareholder meetings. In 3 or 4 years of existence, team Y produced a few Python and R scripts. Their architectural experience  consisted almost entirely in connecting Flask to S3 buckets or Redshift tables, with a couple of the more resourceful ones learning how to plug their models into Tableau or how to spin up a Kuberneties pod.  But they needn't worry: The aforementioned manager, who was now a director (and was also doing an online Masters to make up for his qualifications gap and bolster his chances of becoming VP soon - at least he now understands what L1 regularization is), was a master at playing corporate politics and self-promotion. No matter how few actionable insights team Y produced or how little code they deployed to production, he always had their back and made sure they had ample funding. In fact he now had grandiose plans for setting up an all-purpose machine learning platform that can be used to solve all of the company's data problems.  A couple of sharp minded members of team Y, upon googling their industry name along with the word "data science", realized that risk analysis was a prime candidate for being solved with Bayesian models, and there was already a nifty R package for doing just that, whose tutorial they went through on R-Bloggers.com. One of them had even submitted a Bayesian classifier Kernel for a competition on Kaggle (he was 203rd on the leaderboard), and was eager to put his new-found expertise to use on a real world problem. They pitched the idea to their director, who saw a perfect use case for his upcoming ML platform. They started work on it immediately, without bothering to check whether anybody at Company A was already doing risk analysis. Since their org was independent, they didn't really need to check with anybody else before they got funding for their initiative. Although it was basically a Naive Bayes classifier, the term ML was added to the project tile, to impress the board.  As they progressed with their work however, tensions started to build. They had asked the data warehousing and CA analytics teams to build pipelines for them, and word eventually got out to team X about their project. Team X was initially thrilled: They offered to collaborate whole heartedly, and would have loved to add an ML based feather to their already impressive cap. The product owners and analysts were totally onboard as well: They saw a chance to get in on the whole Data Science hype that they kept hearing about. But through some weird mix of arrogance and insecurity, team Y refused to collaborate with them or share any of their long term goals with them, even as they went to other parts of the company giving brown bag presentations and tutorials on the new model they created.  Team X got resentful: from what they saw of team Y's model, their approach was hopelessly naive and had little chances of scaling or being sustainable in production, and they knew exactly how to help with that. Deploying the model to production would have taken them a few days, given how comfortable they were with DevOps and continuous delivery (team Y had taken several months to figure out how to deploy a simple R script to production). And despite how old school their own tech was, team X were crafty enough to be able to plug it in to their existing architecture. Moreover, the output of the model was such that it didn't take into account how the business will consume it or how it was going to be fed to downstream systems, and the product owners could have gone a long way in making the model more amenable to adoption by the business stakeholders. But team Y wouldn't listen, and their leads brushed off any attempts at communication, let alone collaboration. The vibe that team Y was giving off was "We are the cutting edge ML team, you guys are the legacy server grunts. We don't need your opinion.", and they seemed to have a complete disregard for domain knowledge, or worse, they thought that all that domain knowledge consisted of was being able to grasp the definitions of a few business metrics.  Team X got frustrated and tried to express their concerns to leadership. But despite owning a vital link in Company A's business process, they were only \~50 people in a large 1000 strong technology and operations org, and they were several layers removed from the C-suite, so it was impossible for them to get their voices heard.  Meanwhile, the unstoppable director was doing what he did best: Playing corporate politics. Despite how little his team had actually delivered, he had convinced the board that all analysis and optimization tasks should now be migrated to his yet to be delivered ML platform. Since most leaders now knew that there was overlap between team Y and team X's objectives, his pitch was no longer that team Y was going to create a new insight, but that they were going to replace (or modernize) the legacy statistics based on-prem tools with more accurate cloud based ML tools. Never mind that there was no support in the academic literature for the idea that Naive Bayes works better than the Econometric approaches used by team X, let alone the additional wacky idea that Bayesian Optimization would definitely outperform the QP solvers that were running in production.  Unbeknownst to team X, the original Bayesian risk analysis project has now grown into a multimillion dollar major overhaul initiative, which included the eventual replacement of all of the tools and functions supported by team X along with the necessary migration to the cloud. The CIO and a couple of business VPs are on now board, and tech leadership is treating it as a done deal. An outside vendor, a startup who nobody had heard of, was contracted to help build the platform, since team Y has no engineering skills. The choice was deliberate, as calling on any of the established consulting or software companies would have eventually led leadership to the conclusion that team X was better suited for a transformation on this scale than team Y.  Team Y has no experience with any major ERP deployments, and no domain knowledge, yet they are being tasked with fundamentally changing the business process that is at the core of Company A's business. Their models actually perform worse than those deployed by team X, and their architecture is hopelessly simplistic, compared to what is necessary for running such a solution in production.  Ironically, using Bayesian thinking and based on all the evidence, the likelihood that team Y succeeds is close to 0%. At best, the project is going to end up being a write off of 50 million dollars or more. Once the !@#$!@hits the fan, a couple of executive heads are going to role, and dozens of people will get laid off. At worst, given how vital risk analysis and portfolio optimization is to Company A's revenue stream, the failure will eventually sink the whole company. It probably won't go bankrupt, but it will lose a significant portion of its business and work force. Failed ERP implementations can and do sink large companies: Just see what happened to National Grid US, SuperValu or Target Canada.  One might argue that this is more about corporate disfunction and bad leadership than about data science and AI. But I disagree. I think the core driver of this debacle is indeed the blind faith in Data Scientists, ML models and the promise of AI, and the overall culture of hype and self promotion that is very common among the ML crowd.  We haven't seen the end of this story: I sincerely hope that this ends well for the sake of my colleagues and all involved. Company A is a good company, and both its customers and its employees deserver better. But the chances of that happening are negligible given all the information available, and this failure will hit my company hard.

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.
reddit
LLM Vibe Score0
Human Vibe Score1
SpicyCopyThis week

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.

Hey guys, I'm working in a growth marketing agency. Marketing tools are 30% of what we do, so we use them a lot and experiment with the new ones as much as possible. There are thousands of tools and it's easy to get lost, so I wanted to share the tools we use most on a daily basis. And divide the list into 14 categories. I thought this could be handy for Entrepreneurs subreddit. Why adopt tools? I see marketing tools as tireless colleagues. If you can't hire an employee, choosing the right tool can solve your problems, because they Are super cheap. Work 7/24 for you. Don’t make mistakes. Don’t need management. (or needless management) Help you to automate the majority of your lead gen process. Onwards to the list. (With the pricings post ended up quite long, you can find a link in the end if you want to check the prices) Email marketing tools #1 ActiveCampaign is armed with the most complicated email automation features and has the most intuitive user experience. It feels like you already know how to use it. \#2 Autopilot is visual marketing automation and customer journey tool that helps you acquire, nurture based on behaviors, interest etc. #3 Mailjet: This is the tool we use to send out bulky email campaigns such as newsletters. It doesn't have sexy features like others but does its job for a cheap price. Email address finders #4 Skrapp finds email of your contacts by name and company. It also works with LinkedIn Sales Navigator and can extract thousands of emails in bulk + have a browser add-on. #5 Hunter: Similar to Skrapp but doesn't work with LinkedIn Sales Navigator directly. In addition, there are email templates and you can set up email campaigns. Prospecting and outreach tools #6 Prospect combines the personal emails, follow-up calls, other social touches and helps you create multichannel campaigns.  #7 Reply is a more intuitive version of Prospect. It is easy to learn and use; their UX makes you feel good and sufficient.  CRM tools #8 Salesflare helps you to stop managing your data and start managing your customers. Not yet popular as Hubspot and etc but the best solution for smaller B2B businesses. (we're fans) \#9 Hubspot: The most popular CRM for good reason and has a broader product range you can adopt in your next steps. Try this if you have a bulky list of customers because it is free. #10 Pardot: Pardot is by Salesforce, it's armed with features that can close the gap between marketing and sales. Sales Tools #11 Salesforce is the best sales automation and lead management software. It helps you to create complicated segmentations and run, track, analyze campaigns from the same dashboard. #12 LinkedIn Sales Navigator gives you full access to LinkedIn's user database. You can even find a kidnapped CEO if you know how to use it with other marketing automation tools like Skrapp. #13 Pipedrive is a simple tool and excels in one thing. It tracks your leads and tells you when to take the next action. It makes sales easier. #14 Qwilr creates great-looking docs, at speed. You can design perfect proposals, quotes, client updates, and more in a flash. We use it a lot to close deals, it's effective. #15 Crystalknows is an add-on that tells you anyone’s personality on LinkedIn and gives you a detailed approach specific to that person. It's eerily accurate. #16 Leadfeeder shows you the companies that visited your website. Tells how they found you and what they’re interested in. It has a free version. Communication Tools #17 Intercom is a sweet and smart host that welcomes your visitors when you’re not home. It’s one of the best chatbot tools in the market. #18 Drift is famous for its conversational marketing features and more sales-focused than Intercom. #19 Manychat is a chatbot that helps you create high converting Facebook campaigns. #20 Plann3r helps you create your personalized meeting page. You can schedule meetings witch clients, candidates, and prospects. #21 Loom is a video messaging tool, it helps you to be more expressive and create closer relationships. #22 Callpage collects your visitors’ phone number and connects you with them in seconds. No matter where you are. Landing page tools #23 Instapage is the best overall landing page builder. It has a broad range of features and even squirrel can build a compelling landing page with templates. No coding needed. #24 Unbounce can do everything that Instapage does and lets you build a great landing page without a developer. But it's less intuitive. Lead generation / marketing automation tools #25 Phantombuster is by far the most used lead generation software in our tool kit. It extracts data, emails, sends requests, customized messages, and does many things on autopilot in any platform. You can check this, this and this if you want to see it in action. #26 Duxsoup is a Google Chrome add-on and can also automate some of LinkedIn lead generation efforts like Phantombuster. But not works in the cloud. #27 Zapier is a glue that holds all the lead generation tools together. With Zapier, You can connect different marketing tools and no coding required. Conversion rate optimization tools #28 Hotjar tracks what people are doing on your website by recording sessions and capturing mouse movements. Then it gives you a heatmap. #29 UsabilityHub shows your page to a digital crowd and measures the first impressions and helps you to validate your ideas. #30 Optinmonster is a top tier conversion optimization tool. It helps you to capture leads and enables you to increase conversions rates with many features. #31 Notifia is one mega tool of widgets that arms your website with the wildest social proof and lead capturing tactics. #32 Sumo is a much simpler version of Notifia. But Sumo has everything to help you capture leads and build your email lists. Web scrapers #33 Data Miner is a Google Chrome browser extension that helps you scrape data from web pages and into a CSV file or Excel spreadsheet. #34 Webscraper does the same thing as Data Miner; however, it is capable of handling more complex tasks. SEO and Content #35 Grammarly: Your English could be your first language and your grammar could be better than Shakespeare. Grammarly still can make your writing better. #36 Hemingwayapp is a copywriting optimization tool that gives you feedback about your copy and improves your readability score, makes your writing bolder and punchier. Free. #37 Ahrefs is an all-rounder search engine optimization tool that helps you with off-page, on-page or technical SEO. #38 SurferSEO makes things easier for your on-page SEO efforts. It’s a tool that analyzes top Google results for specific keywords and gives you a content brief based on that data. Video editing and design tools #39 Canva is a graphic design platform that makes everything easy. It has thousands of templates for anything from Facebook ads, stylish presentations to business cards.  #40 Kapwing is our go-to platform for quick video edits. It works on the browser and can help you to create stylish videos, add subtitles, resize videos, create memes, or remove backgrounds. #41 Animoto can turn your photos and video clip into beautiful video slideshows. It comes handy when you want to create an advertising material but don’t have a budget. Advertising tools #42 AdEspresso lets you create and test multiple ads with few clicks. You can optimize your FB, IG, and Google ads from this tool and measure your ads with in-depth analytics. #43 AdRoll is an AI-driven platform that connects and coordinates marketing efforts across ads, email, and online stores. Other tools #44 Replug helps you to shorten, track, optimize your links with call-to-actions, branded links, and retargeting pixels #45 Draw.io = Mindmaps, schemes, and charts. With Draw.io, you can put your brain in a digital paper in an organized way. #46 Built With is a tool that finds out what websites are built with. So you can see what tools they're using and so on. #47 Typeform can turn data collection into an experience with Typeform. This tool helps you to engage your audience with conversational forms or surveys and help you to collect more data. #48 Livestorm helped us a lot, especially in COVID-19 tiles. It’s a webinar software that works on your browser, mobile, and desktop. #49 Teachable \- If you have an online course idea but hesitating because of the production process, Teachable can help you. It's easy to configure and customizable for your needs. #50 Viral Loops provides a revolutionary referral marketing solution for modern marketers. You can create and run referral campaigns in a few clicks with templates. Remember, most of these tools have a free trial or free version. Going over them one by one can teach you a lot and help you grow your business with less work power in the early stages of your business. I hope you enjoyed the read and can find some tools to make things easier! Let me know about your favorite tools in the comments, so I can try them out. \------ If you want to check the prices and see a broader explanation about the tools, you can go here.

tools I use to not have to hire anyone
reddit
LLM Vibe Score0
Human Vibe Score1
Pio_SceThis week

tools I use to not have to hire anyone

I’ve spent unreasonable amount of time with AI tools and here’s curated list of ones I recommend for productivity (honestly, some of them can replace an employee): General assistants ChatGPT \- You probably know it. It’s a great tool for ideating, brainstorming, document summarization and quick question-answer work. There’s a desktop app available so you can quickly pop it up by pressing control + space, which makes it even better for productivity. Claude \- Another chat interface, similar to ChatGPT. It’s a different model provider so the answers and behavior might be different. From my experience, Claude 3.5 Sonnet is performing better than GPT-4o (but not o1) in tasks that focus on reasoning, code writing and copywriting. There’s also a desktop app available. Gemini \- Honestly, I’m not even sure where to put it. It’s Google’s model, one of the most powerful in terms of multimodal capabilities (text, image, audio). And it’s tailored for your Google Workspace. Email, docs, spreadsheets, meets, presentation. Anything. Research Perplexity \- Perplexity is an AI search engine that provides answers to questions with up-to-date information. So, forget Google. Use Perplexity to get answers to questions and dive down the rabbit hole. Exa AI \- Exa is another advanced search engine that combines AI-driven neural search with traditional keyword search. It understands the semantic meaning of queries and documents. And you can also choose what you want to search: academic articles, news, reports, tweets etc. Meetings, calendar and email Granola \- Great AI notepad for meetings. It’s a desktop app, so there’s no bot joining your meetings. It automatically transcribes and enhances meeting notes, helping organize and summarize key takeaways and generates action items, follow-up emails, etc. It also allows you to ask questions about the transcript and get answers. Reclaim \- AI-powered calendar that optimizes for productivity. Essentially, it automates meetings, tracks tasks, and protects deep work time. Cool thing is that it syncs with Google Calendar and Slack. Cora \- Batch processing emails is one of the main productivity tactics. Cora enables that. You only see emails that you need to respond to. And it generates automatic replies for you. All other emails are summarized twice a day. Knowledge summarization Particle News \- Short summaries of the daily news. Pretty straightforward. Notebook LM \- Notebook LM helps process and summarize various types of content, such as PDFs, websites, videos, and more. The cool thing is that it provides insights and connections between topics, cites sources and offers audio summaries. I use it when the content to read is too long and I’m on the go. Napkin \- For creating visuals from text. You can easily generate and customize infographics, diagrams etc. So, if you’re brainstorming, writing or preparing for a presentation, Napkin will work well. Writing and brainstorming Grammarly \- Well known grammar checker. It helps improve writing by focusing on clarity and tone. Sometimes the Grammarly icon popping up is annoying though. Flow \- Flow helps you write and edit notes by speaking. And it integrates across all the apps you use, adapts to your tone and style. Cool tool for just yapping! Automations Gumloop \- Think AI-first Zapier, but 100x more powerful. It's is a platform for automating complex work using AI via a no-code drag and drop interface. It’s very easy to automate work without needing engineers. And they have loads of templates. Wordware \- A platform for building AI agents with natural language. Honestly, for folks who are a bit more technical. You simply prompt LLM to perform a task for you. And you can build any integration you want. If you’re a builder, you can later on connect the agent via API. I strongly believe that technology is leverage. And with AI we can be in top 0.1% of people. If you want bit deeper dive into the topic, I shared that on my substack (available via link in my profile) Any other recommendations for apps I could use? What works if you want to keep the team super lean in early days?

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || ​ Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| ​ What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites ​ Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. ​ Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

Started a content marketing agency 6 years ago - $0 to $5,974,324 (2023 update)
reddit
LLM Vibe Score0
Human Vibe Score1
mr_t_forhireThis week

Started a content marketing agency 6 years ago - $0 to $5,974,324 (2023 update)

Hey friends, My name is Tyler and for the past 6 years, I’ve been documenting my experience building a content marketing agency called Optimist. Year 1 - 0 to $500k ARR Year 2 - $500k to $1MM ARR Year 3 - $1MM ARR to $1.5MM(ish) ARR Year 4 - $3,333,686 Revenue Year 5 - $4,539,659 Revenue How Optimist Works First, an overview/recap of the Optimist business model: We operate as a “collective” of full time/professional freelancers Everyone aside from me is a contractor Entirely remote/distributed team Each freelancer earns $65-85/hour Clients pay us a flat monthly fee for full-service content marketing (research, strategy, writing, editing, design/photography, reporting and analytics, targeted linkbuilding, and more) We recently introduced hourly engagements for clients who fit our model but have some existing in-house support Packages range in price from $10-20k/mo We offer profit share to everyone on our core team as a way to give everyone ownership in the company In 2022, we posted $1,434,665 in revenue. It was our highest revenue year to date and brings our lifetime total to $5,974,324. Here’s our monthly revenue from January 2017 to December of 2022. But, like every year, it was a mix of ups and downs. Here’s my dispatch for 2023. — Running a business is like spilling a drink. It starts as a small and simple thing. But, if you don’t clean it up, the spill will spread and grow — taking up more space, seeping into every crack. There’s always something you could be doing. Marketing you could be working on. Pitches you could be making. Networking you could be doing. Client work you could help with. It can be all-consuming. And it will be — if you don’t clean up the spill. I realized this year that I had no containment for the spill that I created. Running an agency was spilling over into nearly every moment of my life. When I wasn’t working, I was thinking about work. When I wasn’t thinking about work, I was dreaming about it. Over the years, I’ve shared about a lot of my personal feelings and experience as an entrepreneur. And I also discussed my reckoning with the limitations of running the business we’ve built. My acceptance that it was an airplane but not a rocket. And my plan to try to compartmentalize the agency to make room in my life for other things — new business ideas, new revenue streams, and maybe some non-income-producing activity. 🤷 What I found in 2022 was that the business wasn’t quite ready for me to make that move. It was still sucking up too much of my time and attention. There were still too many gaps to fill and I was the one who was often filling them. So what do you do? Ultimately you have two choices on the table anytime you run a business and it’s not going the way you want it: Walk away Turn the ship — slowly For a huge number of reasons (personal, professional, financial, etc), walking away from Optimist was not really even an option or the right move for me. But it did feel like things needed to change. I needed to keep turning the ship to get it to the place where it fit into my life — instead of my life fitting around the business. This means 2022 was a year of transition for the agency. (Again?) Refocusing on Profit Some money is better than no money. Right? Oddly, this was one of the questions I found myself asking in 2022. Over the years, we’ve been fortunate to have many clients who have stuck with us a long time. In some cases, we’ve had clients work with us for 2, 3, or even 4 years. (That’s over half of our existence!) But, things have gotten more expensive — we’ve all felt it. We’ve had to increase pay to remain competitive for top talent. Software costs have gone up. It’s eaten into our margin. Because of our increasing costs and evolving scope, many of our best, most loyal clients were our least profitable. In fact, many were barely profitable — if at all. We’ve tried to combat that by increasing rates on new, incoming clients to reflect our new costs and try to make up for shrinking margin on long-term clients. But we didn’t have a good strategy in place for updating pricing for current clients. And it bit us in the ass. Subsidizing lower-profit, long-term clients with new, higher-margin clients ultimately didn’t work out. Our margins continued to dwindle and some months we were barely breaking even while posting six-figures of monthly revenue. 2022 was our highest revenue year but one of our least profitable. It only left one option. We had to raise rates on some of our long-term clients. But, of course, raising rates on a great, long-term client can be delicate. You’ve built a relationship with these people over the years and you’re setting yourself up for an ultimatum — are you more valuable to the client or is the client more valuable to you? Who will blink first? We offered all of these clients the opportunity to move to updated pricing. Unfortunately, some of them weren’t on board. Again, we had 2 options: Keep them at a low/no profit rate Let them churn It seems intuitive that having a low-profit client is better than having no client. But we’ve learned an important lesson many times over the years. Our business doesn’t scale infinitely and we can only handle so many clients at a time. That means that low-profit clients are actually costing us money in some cases. Say our average client generates $2,500 per month in profit — $30,000 per year. If one of our clients is only generating $500/mo in profit, working with them means missing out on bringing on a more profitable client (assuming our team is currently at capacity). Instead of $30,000/year, we’re only making $6,000. Keeping that client costs us $24,000. That’s called opportunity cost. So it’s clear: We had to let these clients churn. We decided to churn about 25% of our existing clients. On paper, the math made sense. And we had a pretty consistent flow of new opportunities coming our way. At the time, it felt like a no-brainer decision. And I felt confident that we could quickly replace these low-profit clients with higher-margin ones. I was wrong. Eating Shit Right after we initiated proactively churning some of our clients, other clients — ones we planned to keep — gave us notice that they were planning to end the engagement. Ouch. Fuck. We went from a 25% planned drop in revenue to a nearly 40% cliff staring us right in the face. Then things got even worse. Around Q3 of this year, talk of recession and layoffs really started to intensify. We work primarily with tech companies and startups. And these were the areas most heavily impacted by the economic news. Venture funding was drying up. Our leads started to slow down. This put us in a tough position. Looking back now, I think it’s clear that I made the wrong decision. We went about this process in the wrong way. The reality sinks in when you consider the imbalance between losing a client and gaining a client. It takes 30 days for someone to fire us. It’s a light switch. But it could take 1-3 months to qualify, close, and onboard a new client. We have lots of upfront work, research, and planning that goes into the process. We have to learn a new brand voice, tone, and style. It’s a marathon. So, for every client we “trade”, there’s a lapse in revenue and work. This means that, in retrospect, I would probably have made this transition using some kind of staggered schedule rather than a cut-and-dry approach. We could have gradually off-boarded clients when we had more definitive work to replace them. I was too confident. But that’s a lesson I had to learn the hard way. Rebuilding & Resetting Most of the voluntary and involuntary churn happened toward the end of 2022. So we’re still dealing with the fall out. Right now, it feels like a period of rebuilding. We didn’t quite lose 50% of our revenue, but we definitely saw a big hit heading into 2023. To be transparent: It sucks. It feels like a gigantic mistake that I made which set us back significantly from our previous high point. I acted rashly and it cost us a lot of money — at least on the surface. But I remind myself of the situation we were in previously. Nearly twice the revenue but struggling to maintain profitability. Would it have been better to try to slowly fix that situation and battle through months of loss or barely-break-even profits? Or was ripping off the bandaid the right move after all? I’m an optimist. (Heh, heh) Plus, I know that spiraling over past decisions won’t change them or help me move forward. So I’m choosing to look at this as an opportunity — to rebuild, reset, and refocus the company. I get to take all of the tough lessons I’ve learned over the last 6 years and apply them to build the company in a way that better aligns with our new and current goals. It’s not quite a fresh, clean start, but by parting ways with some of our oldest clients, we’ve eliminated some of the “debt” that’s accumulated over the years. We get a chance to fully realize the new positioning that we rolled out last year. Many of those long-term clients who churned had a scope of work or engagement structure that didn’t fit with our new positioning and focus. So, by losing them, we’re able to completely close up shop on the SOWs that no longer align with the future version of Optimist. Our smaller roster of clients is a better fit for that future. My job is to protect that positioning by ensuring that while we’re rebuilding our new roster of clients we don’t get desperate. We maintain the qualifications we set out for future clients and only take on work that fits. How’s that for seeing the upside? Some other upside from the situation is that we got an opportunity to ask for candid feedback from clients who were leaving. We asked for insight about their decision, what factors they considered, how they perceived us, and the value of our work. Some of the reasons clients left were obvious and possibly unavoidable. Things like budget cuts, insourcing, and uncertainty about the economy all played at least some part of these decisions. But, reading between the lines, where was one key insight that really struck me. It’s one of those, “oh, yeah — duh — I already knew that,” things that can be difficult to learn and easy to forget…. We’re in the Relationship Business (Plan Accordingly) For all of our focus on things like rankings, keywords, content, conversions, and a buffet of relevant metrics, it can be easy to lose the forest for the trees. Yes, the work itself matters. Yes, the outcomes — the metrics — matter. But sometimes the relationship matters more. When you’re running an agency, you can live or die by someone just liking you. Admittedly, this feels totally unfair. It opens up all kinds of dilemmas, frustration, opportunity for bias and prejudice, and other general messiness. But it’s the real world. If a client doesn’t enjoy working with us — even if for purely personal reasons — they could easily have the power to end of engagement, regardless of how well we did our actual job. We found some evidence of this in the offboarding conversations we had with clients. In some cases, we had clients who we had driven triple- and quadruple-digital growth. Our work was clearly moving the needle and generating positive ROI and we had the data to prove it. But they decided to “take things in another direction” regardless. And when we asked about why they made the decision, it was clear that it was more about the working relationship than anything we could have improved about the service itself. The inverse is also often true. Our best clients have lasting relationships with our team. The work is important — and they want results. But even if things aren’t quite going according to plan, they’re patient and quick to forgive. Those relationships feel solid — unshakeable. Many of these folks move onto new roles or new companies and quickly look for an opportunity to work with us again. On both sides, relationships are often more important than the work itself. We’ve already established that we’re not building a business that will scale in a massive way. Optimist will always be a small, boutique service firm. We don’t need 100 new leads per month We need a small, steady roster of clients who are a great fit for the work we do and the value we create. We want them to stick around. We want to be their long-term partner. I’m not built for churn-and-burn agency life. And neither is the business. When I look at things through this lens, I realize how much I can cut from our overall business strategy. We don’t need an ultra-sophisticated, multi-channel marketing strategy. We just need strong relationships — enough of them to make our business work. There are a few key things we can take away from this as a matter of business strategy: Put most of our effort into building and strengthening relationships with our existing clients Be intentional about establishing a strong relationship with new clients as part of onboarding Focus on relationships as the main driver of future business development Embracing Reality: Theory vs Practice Okay, so with the big learnings out the way, I want to pivot into another key lesson from 2022. It’s the importance of understanding theory vs practice — specifically when it comes to thinking about time, work, and life. It all started when I was considering how to best structure my days and weeks around running Optimist, my other ventures, and my life goals outside of work. Over the years, I’ve dabbled in many different ways to block time and find focus — to compartmentalize all of the things that are spinning and need my attention. As I mapped this out, I realized that I often tried to spread myself too thin throughout the week. Not just that I was trying to do too much but that I was spreading that work into too many small chunks rather than carving out time for focus. In theory, 5 hours is 5 hours. If you have 5 hours of work to get done, you just fit into your schedule whenever you have an open time slot. In reality, a single 5-hour block of work is 10x more productive and satisfying than 10, 30-minute blocks of work spread out across the week. In part, this is because of context switching. Turning your focus from one thing to another thing takes time. Achieving flow and focus takes time. And the more you jump from one project to another, the more time you “lose” to switching. This is insightful for me both in the context of work and planning my day, but also thinking about my life outside of Optimist. One of my personal goals is to put a finite limit on my work time and give myself more freedom. I can structure that in many different ways. Is it better to work 5 days a week but log off 1 hour early each day? Or should I try to fit more hours into each workday so I can take a full day off? Of course, it’s the latter. Both because of the cost of context switching and spreading work into more, smaller chunks — but also because of the remainder that I end up with when I’m done working. A single extra hour in my day probably means nothing. Maybe I can binge-watch one more episode of a new show or do a few extra chores around the house. But it doesn’t significantly improve my life or help me find greater balance. Most things I want to do outside of work can’t fit into a single extra hour. A full day off from work unlocks many more options. I can take the day to go hiking or biking. I can spend the day with my wife, planning or playing a game. Or I can push it up against the weekend and take a 3-day trip. It gives me more of the freedom and balance that I ultimately want. So this has become a guiding principle for how I structure my schedule. I want to: Minimize context switching Maximize focused time for work and for non-work The idea of embracing reality also bleeds into some of the shifts in business strategy that I mentioned above. In theory, any time spent on marketing will have a positive impact on the company. In reality, focusing more on relationships than blasting tweets into the ether is much more likely to drive the kind of growth and stability that we’re seeking. As I think about 2023, I think this is a recurring theme. It manifests in many ways. Companies are making budget cuts and tough decisions about focus and strategy. Most of us are looking for ways to rein in the excess and have greater impact with a bit less time and money. We can’t do everything. We can’t even do most things. So our #1 priority should be to understand the reality of our time and our effort to make the most of every moment (in both work and leisure). That means thinking deeply about our strengths and our limitations. Being practical, even if it feels like sacrifice. Update on Other Businesses Finally, I want to close up by sharing a bit about my ventures outside of Optimist. I shared last year how I planned to shift some of my (finite) time and attention to new ventures and opportunities. And, while I didn’t get to devote as much as I hoped to these new pursuits, they weren’t totally in vain. I made progress across the board on all of the items I laid out in my post. Here’s what happened: Juice: The first Optimist spin-out agency At the end of 2021, we launched our first new service business based on demand from Optimist clients. Focused entirely on building links for SEO, we called the agency Juice. Overall, we made strong progress toward turning this into a legitimate standalone business in 2022. Relying mostly on existing Optimist clients and a few word-of-mouth opportunities (no other marketing), we built a team and set up a decent workflow and operations. There’s still many kinks and challenges that we’re working through on this front. All told, Juice posted almost $100,000 in revenue in our first full year. Monetizing the community I started 2022 with a focus on figuring out how to monetize our free community, Top of the Funnel. Originally, my plan was to sell sponsorships as the main revenue driver. And that option is still on the table. But, this year, I pivoted to selling paid content and subscriptions. We launched a paid tier for content and SEO entrepreneurs where I share more of my lessons, workflows, and ideas for building and running a freelance or agency business. It’s gained some initial traction — we reached \~$1,000 MRR from paid subscriptions. In total, our community revenue for 2022 was about $2,500. In 2023, I’m hoping to turn this into a $30,000 - $50,000 revenue opportunity. Right now, we’re on track for \~$15,000. Agency partnerships and referrals In 2022, we also got more serious about referring leads to other agencies. Any opportunity that was not a fit for Optimist or we didn’t have capacity to take on, we’d try to connect with another partner. Transparently, we struggled to operationalize this as effectively as I would have liked. In part, this was driven by my lack of focus here. With the other challenges throughout the year, I wasn’t able to dedicate as much time as I’d like to setting goals and putting workflows into place. But it wasn’t a total bust. We referred out several dozen potential clients to partner agencies. Of those, a handful ended up converting into sales — and referral commission. In total, we generated about $10,000 in revenue from referrals. I still see this as a huge opportunity for us to unlock in 2023. Affiliate websites Lastly, I mentioned spending some time on my new and existing affiliate sites as another big business opportunity in 2022. This ultimately fell to the bottom of my list and didn’t get nearly the attention I wanted. But I did get a chance to spend a few weeks throughout the year building this income stream. For 2022, I generated just under $2,000 in revenue from affiliate content. My wife has graciously agreed to dedicate some of her time and talent to these projects. So, for 2023, I think this will become a bit of a family venture. I’m hoping to build a solid and consistent workflow, expand the team, and develop a more solid business strategy. Postscript — AI, SEO, OMG As I’m writing this, much of my world is in upheaval. If you’re not in this space (and/or have possibly been living under a rock), the release of ChatGPT in late 2022 has sparked an arms race between Google, Bing, OpenAI, and many other players. The short overview: AI is likely to fundamentally change the way internet search works. This has huge impact on almost all of the work that I do and the businesses that I run. Much of our focus is on SEO and understanding the current Google algorithm, how to generate traffic for clients, and how to drive traffic to our sites and projects. That may all change — very rapidly. This means we’re standing at a very interesting point in time. On the one hand, it’s scary as hell. There’s a non-zero chance that this will fundamentally shift — possibly upturn — our core business model at Optimist. It could dramatically change how we work and/or reduce demand for our core services. No bueno. But it’s also an opportunity (there’s the optimist in me, again). I certainly see a world where we can become leaders in this new frontier. We can pivot, adjust, and capitalize on a now-unknown version of SEO that’s focused on understanding and optimizing for AI-as-search. With that, we may also be able to help others — say, those in our community? — also navigate this tumultuous time. See? It’s an opportunity. I wish I had the answers right now. But, it’s still a time of uncertainty. I just know that there’s a lot of change happening and I want to be in front of it rather than trying to play catch up. Wish me luck. — Alright friends — that's my update for 2023! I’ve always appreciated sharing these updates with the Reddit community, getting feedback, being asked tough questions, and even battling it out with some of my haters (hey!! 👋) As usual, I’m going to pop in throughout the next few days to respond to comments or answer questions. Feel free to share thoughts, ideas, and brutal takedowns in the comments. If you're interested in following the Optimist journey and the other projects I'm working on in 2023, you can follow me on Twitter. Cheers, Tyler P.S. - If you're running or launching a freelance or agency business and looking for help figuring it out, please DM me. Our subscription community, Middle of the Funnel, was created to provide feedback, lessons, and resources for other entrepreneurs in this space.

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)
reddit
LLM Vibe Score0
Human Vibe Score0.882
mr_t_forhireThis week

Started a content marketing agency 8 years ago - $0 to $7,863,052 (2025 update)

Hey friends, My name is Tyler and for the past 8 years, I’ve been documenting my experience building a content marketing agency called Optimist. Year 1 — 0 to $500k ARR Year 2 — $500k to $1MM ARR Year 3 — $1MM ARR to $1.5MM(ish) ARR Year 4 — $3,333,686 Revenue Year 5 — $4,539,659 Revenue Year 6 — $5,974,324 Revenue Year 7 - $6,815,503 Revenue (Edit: Seems like links are banned now. You can check my post history for all of my previous updates with lessons and learnings.) How Optimist Works First, an overview/recap of the Optimist business model: We operate as a “collective” of full time/professional freelancers Everyone aside from me is a contractor Entirely remote/distributed team We pay freelancers a flat fee for most work, working out to roughly $65-100/hour. Clients pay us a flat monthly fee for full-service content marketing (research, strategy, writing, editing, design/photography, reporting and analytics, targeted linkbuilding, and more)\ Packages range in price from \~$10-20k/mo \This is something we are revisiting now* The Financials In 2024, we posted $1,032,035.34 in revenue. This brings our lifetime revenue to $7,863,052. Here’s our monthly revenue from January 2017 to December of 2024. (Edit: Seems like I'm not allowed to link to the chart.) The good news: Revenue is up 23% YoY. EBITDA in Q4 trending up 1-2 points. We hosted our first retreat in 4 years, going to Ireland with about half the team. The bad news: Our revenue is still historically low. At $1MM for the year, we’re down about 33% from our previous years over $1.5MM. Revenue has been rocky. It doesn’t feel like we’ve really “recovered” from the bumps last year. The trend doesn’t really look great. Even though, anecdotally, it feels like we are moving in a good direction. EBITDA is still hovering at around 7%. Would love to get that closer to 20%. (For those who may ask: I’m calculating EBITDA after paying taxes and W2 portion of my income.) — Almost every year, my update starts the same way: This has been a year of growth and change. Both for my business—and me personally. 2024 was no different. I guess that tells you something about entrepreneurship. It’s a lot more like sailing a ship than driving a car. You’re constantly adapting, tides are shifting, and any blip of calm is usually just a moment before the next storm. As with past years, there’s a lot to unpack from the last 12 months. Here we go again. Everything is Burning In the last 2 years, everything has turned upside down in the world of content and SEO. Back in 2020, we made a big decision to re-position the agency. (See post history) We decided to narrow our focus to our most successful, profitable, and consistent segment of clients and re-work our entire operation to focus on serving them. We defined our ICP as: \~Series A ($10mm+ funding) with 6-12 months runway to scale organic as a channel Product-led company with “simple” sales cycle involving fewer stakeholders Demonstrable opportunity to use SEO to drive business growth Our services: Content focused on growing organic search (SEO) Full-service engagements that included research, planning, writing, design, reporting And our engagement structure: Engaged directly with an executive; ownership over strategy and day-to-day execution 1-2 points of contact or stakeholders Strategic partner that drives business growth (not a service vendor who makes content) Most importantly, we decided that we were no longer going to offer a broader range of content that we used to sell. That included everything from thought leadership content to case studies and ebooks. We doubled-down on “SEO content” for product-led SaaS companies. And this worked phenomenally for us. We started bringing on more clients than ever. We developed a lot of internal system and processes that helped us scale and take on more work than we’ve ever had and drive great outcomes for our ideal clients. But in 2023 and 2024, things started going awry. One big change, of course, was the rise of AI. Many companies and executives (and writers) feel that AI can write content just as well as an agency like ours. That made it a lot harder to sell a $10,000 per month engagement when they feel like the bulk of the work could be “done for free.” (Lots of thoughts on this if you want my opinions.) But it wasn’t just that. Google also started tinkering with their algorithm, introducing new features like AI Overviews, and generally changing the rules of the game. This created 3 big shifts in our world: The perceived value of content (especially “SEO content”) dropped dramatically in many people’s minds because of AI’s writing capabilities SEO became less predictable as a source of traffic and revenue It’s harder than ever for startups and smaller companies to rank for valuable keywords (let alone generate any meaningful traffic or revenue from them) The effect? The middle of the content market has hollowed out. People—like us—providing good, human-crafted content aimed on driving SEO growth saw a dramatic decline in demand. We felt it all year. Fewer and fewer leads. The leads we did see usually scoffed at our prices. They were indexing us against the cost of content mills and mass-produced AI articles. It was a time of soul-searching and looking for a way forward. I spent the first half of the year convinced that the only way to survive was to run toward the fire. We have to build our own AI workflows. We have to cut our rates internally. We have to get faster and cheaper to stay competitive with the agencies offering the same number of deliverables for a fraction of our rates. It’s the only way forward. But then I asked myself a question… Is this the game I actually want to play? As an entrepreneur, do I want to run a business where I’m competing mostly on price and efficiency rather than quality and value? Do I want to hop into a race toward cheaper and cheaper content? Do I want to help people chase a dwindling amount of organic traffic that’s shrinking in value? No. That’s not the game I want to play. That’s not a business I want to run. I don’t want to be in the content mill business. So I decided to turn the wheel—again. Repositioning Part II: Electric Boogaloo What do you do when the whole world shifts around you and the things that used to work aren’t working anymore? You pivot. You re-position the business and move in another direction. So that’s what we decided to do. Again. There was only one problem: I honestly wasn’t sure what opportunities existed in the content marketing industry outside of what we were already doing. We lived in a little echo chamber of startups and SEO. It felt like the whole market was on fire and I had fight through the smoke to find an escape hatch. So I started making calls. Good ol’ fashioned market research. I reached out to a few dozen marketing and content leaders at a bunch of different companies. I got on the phone and just asked lots of questions about their content programs, their goals, and their pain points. I wanted to understand what was happening in the market and how we could be valuable. And, luckily, this process really paid off. I learned a lot about the fragmentation happening across content and how views were shifting. I noticed key trends and how our old target market really wasn’t buying what we were selling. Startups and small companies are no longer willing to invest in an agency like ours. If they were doing content and SEO at all, they were focused entirely on using AI to scale output and minimize costs. VC money is still scarce and venture-backed companies are more focused on profitability than pure growth and raising another round. Larger companies (\~500+ employees) are doing more content than ever and drowning in content production. They want to focus on strategy but can barely tread water keeping up with content requests from sales, demand gen, the CEO, and everyone else. Many of the companies still investing in content are looking at channels and formats outside of SEO. Things like thought leadership, data reports, interview-driven content, and more. They see it as a way to stand out from the crowd of “bland SEO content.” Content needs are constantly in flux. They range from data reports and blog posts to product one-pagers. The idea of a fixed-scope retainer is a total mismatch for the needs of most companies. All of this led to the logical conclusion: We were talking to the wrong people about the wrong things\.\ Many companies came to one of two logical conclusions: SEO is a risky bet, so it’s gotta be a moonshot—super-low cost with a possibility for a big upside (i.e., use AI to crank out lots of content. If it works, great. If it doesn’t, then at least we aren’t out much money.) SEO is a risky bet, so we should diversify into other strategies and channels to drive growth (i.e., shift our budget from SEO and keyword-focused content to video, podcasts, thought leadership, social, etc) Unless we were going to lean into AI and dramatically cut our costs and rates, our old buyers weren’t interested. And the segment of the market that needs our help most are looking primarily for production support across a big range of content types. They’re not looking for a team to run a full-blown program focused entirely on SEO. So we had to go back to the drawing board. I’ve written before about our basic approach to repositioning the business. But, ultimately it comes down to identifying our unique strengths as a team and then connecting them to needs in the market. After reviewing the insights from my discussions and taking another hard look at our business and our strengths, I decided on a new direction: Move upmarket: Serve mid-size to enterprise businesses with \~500-5,000 employees instead of startups Focus on content that supports a broader range of business goals instead of solely on SEO and organic growth (e.g., sales, demand gen, brand, etc) Shift back to our broader playbook of content deliverables, including thought leadership, data studies, and more Focus on content execution and production to support an internally-directed content strategy across multiple functions In a way, it’s sort of a reverse-niche move. Rather than zooming in specifically on driving organic growth for startups, we want to be more of an end-to-end content production partner that solves issues of execution and operations for all kinds of content teams. It’s early days, but the response here has been promising. We’ve seen an uptick in leads through Q4. And more companies in our pipeline fit the new ICP. They’re bigger, often have more budget. (But they move more slowly). We should know by the end of the quarter if this maneuver is truly paying off. Hopefully, this will work out. Hopefully our research and strategy are right and we’ll find a soft landing serving a different type of client. If it doesn’t? Then it will be time to make some harder decisions. As I already mentioned, I’m not interested in the race to the bottom of AI content. And if that’s the only game left in town, then it might be time to think hard about a much bigger change. — To be done: Build new content playbooks for expanded deliverables Build new showcase page for expanded deliverables Retooling the Operation It’s easy to say we’re doing something new. It’s a lot harder to actually do it—and do it well. Beyond just changing our positioning, we have to do open-heart surgery on the entire content operation behind the scenes. We need to create new systems that work for a broader range of content types, formats, and goals. Here’s the first rub: All of our workflows are tooled specifically for SEO-focused content. Every template, worksheet, and process that we’ve built and scaled in the last 5 years assumes that the primary goal of every piece of content is SEO. Even something as simple as requiring a target keyword is a blocker in a world where we’re not entirely focused on SEO. This is relatively easy to fix, but it requires several key changes: Update content calendars to make keywords optional Update workflows to determine whether we need an optimization report for each deliverable Next, we need to break down the deliverables into parts rather than a single line item. In our old system, we would plan content as a single row in a Content Calendar spreadsheet. It was a really wide sheet with lots of fields where we’d define the dimensions of each individual article. This was very efficient and simple to follow. But every article had the same overall scope when it came to the workflow. In Asana (our project management tool), all of the steps in the creation were strung together in a single task. We would create a few basic templates for each client, and then each piece would flow through the same steps: Briefing Writing Editing Design etc. If we had anything that didn’t fit into the “standard” workflow, we’d just tag it in the calendar with an unofficial notation \[USING BRACKETS\]. It worked. But it wasn’t ideal. Now we need the steps to be more modular. Imagine, for example, a client asks us to create a mix of deliverables: 1 article with writing + design 1 content brief 1 long-form ebook with an interview + writing + design Each of these would require its own steps and its own workflow. We need to break down the work to accommodate for a wider variety of workflows and variables. This means we need to update the fields and structure of our calendar to accommodate for the new dimensions—while also keeping the planning process simple and manageable. This leads to the next challenge: The number of “products” that we’re offering could be almost infinite. Just looking at the example scope above, you can mix and match all of these different building blocks to create a huge variety of different types of work, each requiring its own workflow. This is part of the reason we pivoted away from this model to focus on a productized, SEO-focused content service back in 2020. Take something as simple as a case study. On the surface, it seems like one deliverable that can be easily scoped and priced, right? Well, unpack what goes into a case study: Is there already source material from the customer or do we need to conduct an interview? How long is it? Is it a short overview case study or a long-form narrative? Does it need images and graphics? How many? Each of these variables opens up 2-3 possibilities. And when you combine them, we end up with something like 10 possible permutations for this single type of deliverable. It gets a bit messy. But not only do we have to figure out how to scope and price all for all of these variables, we also have to figure out how to account for these variables in the execution. We have to specify—for every deliverable—what type it is, how long, which steps are involved and not involved, the timeline for delivery, and all of the other factors. We’re approaching infinite complexity, here. We have to figure out a system that allows for a high level of flexibility to serve the diverse needs of our clients but is also productized enough that we can build workflows, process, and templates to deliver the work. I’ve spent the last few months designing that system. Failed Attempt #1: Ultra-Productization In my first pass, I tried to make it as straight forward as possible. Just sit down, make a list of all of the possible deliverables we could provide and then assign them specific scopes and services. Want a case study? Okay that’ll include an interview, up to 2,000 words of content, and 5 custom graphics. It costs $X. But this solution quickly fell apart when we started testing it against real-world scenarios. What if the client provided the brief instead of us creating one? What if they didn’t want graphics? What if this particular case study really needs to be 3,000 words but all of the others should be 2,000? In order for this system to work, we’d need to individual scope and price all of these permutations of each productized service. Then we’d need to somehow keep track of all of these and make sure that we accurately scope, price, and deliver them across dozens of clients. It’s sort of like a restaurant handling food allergies by creating separate versions of every single dish to account for every individual type of allergy. Most restaurants have figured out that it makes way more sense to have a “standard” and an “allergy-free” version. Then you only need 2 options to cover 100% of the cases. Onto the next option. Failed Attempt #2: Deliverable-Agnostic Services Next, I sat down with my head of Ops, Katy, to try to map it out. We took a big step back and said: Why does the deliverable itself even matter? At the end of the day, what we’re selling is just a few types of work (research, writing, editing, design, etc) that can be packaged up in an infinite number of ways. Rather than try to define deliverables, shouldn’t we leave it open ended for maximum flexibility? From there, we decided to break down everything into ultra-modular building blocks. We started working on this super complex system of modular deliverables where we would have services like writing, design, editing, etc—plus a sliding scale for different scopes like the length of writing or the number of images. In theory, it would allow us to mix and match any combination of services to create custom deliverables for the client. In fact, we wanted the work to be deliverable-agnostic. That way we could mold it to fit any client’s needs and deliver any type of content, regardless of the format or goal. Want a 5,000-word case study with 15 custom graphics? That’ll be $X. Want a 2,000-word blog post with an interview and no visuals? $Y. Just want us to create 10 briefs, you handle the writing, and we do design? It’s $Z. Again, this feels like a reasonable solution. But it quickly spiraled out of amuck. (That’s an Office reference.) For this to work, we need to have incredibly precise scoping process for every single deliverable. Before we can begin work (or even quote a price), we need to know pretty much the exact word count of the final article, for example. In the real world? This almost never happens. The content is as long as the content needs to be. Clients rarely know if the blog post should be 2,000 words or 3,000 words. They just want good content. We have a general ballpark, but we can rarely dial it in within just 1,000 words until we’ve done enough research to create the brief. Plus, from a packaging and pricing perspective, it introduces all kind of weird scenarios where clients will owe exactly $10,321 for this ultra-specific combination of services. We were building an open system that could accommodate any and all types of potential deliverables. On the face that seems great because it makes us incredibly flexible. In reality, the ambiguity actually works against us. It makes it harder for us to communicate to clients clearly about what they’ll get, how much it will cost, and how long it will take. That, of course, also means that it hurts our client relationships. (This actually kind of goes back to my personal learnings, which I’ll mention in a bit. I tend to be a “let’s leave things vague so we don’t have to limit our options” kind of person. But I’m working on fixing this to be more precise, specific, and clear in everything that we do.) Dialing It In: Building a Closed System We were trying to build an open system. We need to build a closed system. We need to force clarity and get specific about what we do, what we don’t do, and how much it all costs. Then we need a system to expand on that closed system—add new types of deliverables, new content playbooks, and new workflows if and when the need arises. With that in mind, we can start by mapping out the key dimensions of any type of deliverable that we would ever want to deliver. These are the universal dimensions that determine the scope, workflow, and price of any deliverable—regardless of the specific type output. Dimensions are: Brief scope Writing + editing scope Design scope Interview scope Revision (rounds) Scope, essentially, just tells us how many words, graphics, interviews, etc are required for the content we’re creating. In our first crack at the system, we got super granular with these scopes. But to help force a more manageable system, we realized that we didn’t need tiny increments for most of this work. Instead, we just need boundaries—you pay $X for up to Y words. We still need some variability around the scope of these articles. Obviously, most clients won’t be willing to pay the same price for a 1,000-word article as a 10,000-word article. But we can be smarter about the realistic break points. We boiled it down to the most common ranges: (Up to) 250 words 1,000 words 3,000 words 6,000 words 10,000 words This gives us a much more manageable number of variables. But we still haven’t exactly closed the system. We need one final dimension: Deliverable type. This tells us what we’re actually building with these building blocks. This is how we’ll put a cap on the potentially infinite number of combinations we could offer. The deliverable type will define what the final product should look like (e.g., blog post, case study, ebook, etc). And it will also give us a way to put standards and expectations around different types of deliverables that we want to offer. Then we can expand on this list of deliverables to offer new services. In the mean time, only the deliverables that we have already defined are, “on the menu,” so to speak. If a client comes to us and asks for something like a podcast summary article (which we don’t currently offer), we’ll have to either say we can’t provide that work or create a new deliverable type and define the dimensions of that specific piece. But here’s the kicker: No matter the deliverable type, it has to still fit within the scopes we’ve already defined. And the pricing will be the same. This means that if you’re looking for our team to write up to 1,000 words of content, it costs the same amount—whether it’s a blog post, an ebook, a LinkedIn post, or anything else. Rather than trying to retool our entire system to offer this new podcast summary article deliverable, we’ll just create the new deliverable type, add it to the list of options, and it’s ready to sell with the pre-defined dimensions we’ve already identified. To do: Update onboarding workflow Update contracts and scope documents Dial in new briefing process Know Thyself For the last year, I’ve been going through personal therapy. (Huge shout out to my wife, Laura, for her support and encouragement throughout the process.) It’s taught me a lot about myself and my tendencies. It’s helped me find some of my weaknesses and think about how I can improve as a person, as a partner, and as an entrepreneur. And it’s forced me to face a lot of hard truths. For example, consider some of the critical decisions I’ve made for my business: Unconventional freelance “collective” model No formal management structure Open-ended retainers with near-infinite flexibility General contracts without defined scope “Take it or leave it” approach to sales and marketing Over the years, I’ve talked about almost everything on this list as a huge advantage. I saw these things as a reflection of how I wanted to do things differently and better than other companies. But now, I see them more as a reflection of my fears and insecurities. Why did I design my business like this? Why do I want so much “flexibility” and why do I want things left open-ended rather than clearly defined? One reason that could clearly explain it: I’m avoidant. If you’re not steeped in the world of therapy, this basically means that my fight or flight response gets turned all the way to “flight.” If I’m unhappy or uncomfortable, my gut reaction is usually to withdraw from the situation. I see commitment and specificity as a prelude to future conflict. And I avoid conflict whenever possible. So I built my business to minimize it. If I don’t have a specific schedule of work that I’m accountable for delivering, then we can fudge the numbers a bit and hope they even out in the end. If I don’t set a specific standard for the length of an article, then I don’t have to let the client know when their request exceeds that limit. Conflict….avoided? Now, that’s not to say that everything I’ve built was wrong or bad. There is a lot of value in having flexibility in your business. For example, I would say that our flexible retainers are, overall, an advantage. Clients have changing needs. Having flexibility to quickly adapt to those needs can be a huge value add. And not everything can be clearly defined upfront (at least not without a massive amount of time and work just to decide how long to write an article). Overly-rigid structures and processes can be just as problematic as loosey-goosey ones. But, on the whole, I realized that my avoidant tendencies and laissez faire approach to management have left a vacuum in many areas. The places where I avoided specificity were often the places where there was the most confusion, uncertainty, and frustration from the team and from clients. People simply didn’t know what to expect or what was expected of them. Ironically, this often creates the conflict I’m trying to avoid. For example, if I don’t give feedback to people on my team, then they feel uneasy about their work. Or they make assumptions about expectations that don’t match what I’m actually expecting. Then the client might get upset, I might get upset, and our team members may be upset. Conflict definitely not avoided. This happens on the client side, too. If we don’t define a specific timeline when something will be delivered, the client might expect it sooner than we can deliver—creating frustration when we don’t meet their expectation. This conflict actually would have been avoided if we set clearer expectations upfront. But we didn’t do that. I didn’t do that. So it’s time to step up and close the gaps. Stepping Up and Closing the Gaps If I’m going to address these gaps and create more clarity and stability, I have to step up. Both personally and professionally. I have to actually face the fear and uncertainty that drives me to be avoidant. And then apply that to my business in meaningful ways that aren’t cop-out ways of kinda-sorta providing structure without really doing it. I’ve gotta be all in. This means: Fill the gaps where I rely on other people to do things that aren’t really their job but I haven’t put someone in place to do it Set and maintain expectations about our internal work processes, policies, and standards Define clear boundaries on things like roles, timelines, budgets, and scopes Now, this isn’t going to happen overnight. And just because I say that I need to step up to close these gaps doesn’t mean that I need to be the one who’s responsible for them (at least not forever). It just means that, as the business leader, I need to make sure the gaps get filled—by me or by someone else who has been specifically charged with owning that part of the operation. So, this is probably my #1 focus over the coming quarter. And it starts by identifying the gaps that exist. Then, step into those gaps myself, pay someone else to fill that role, or figure out how to eliminate the gap another way. This means going all the way back to the most basic decisions in our business. One of the foundational things about Optimist is being a “different kind” of agency. I always wanted to build something that solved for the bureaucracy, hierarchy, and siloed structure of agencies. If a client has feedback, they should be able to talk directly to the person doing the work rather than going through 3 layers of account management and creative directors. So I tried to be clever. I tried to design all kinds of systems and processes that eliminated these middle rungs. (In retrospect, what I was actually doing was designing a system that played into my avoidant tendencies and made it easy to abdicate responsibility for lots of things.) Since we didn’t want to create hierarchy, we never implemented things like Junior and Senior roles. We never hired someone to manage or direct the individual creatives. We didn’t have Directors or VPs. (Hell, we barely had a project manager for the first several years of existence.) This aversion to hierarchy aligned with our values around elevating ownership and collective contribution. I still believe in the value a flat structure. But a flat structure doesn’t eliminate the complexity of a growing business. No one to review writers and give them 1:1 feedback? I guess I’ll just have to do that….when I have some spare time. No Content Director? Okay, well someone needs to manage our content playbooks and roll out new ones. Just add it to my task list. Our flat structure didn’t eliminate the need for these roles. It just eliminated the people to do them. All of those unfilled roles ultimately fell back on me or our ops person, Katy. Of course, this isn’t the first time we’ve recognized this. We’ve known there were growing holes in our business as it’s gotten bigger and more complex. Over the years, we’ve experimented with different ways to solve for it. The Old Solution: Distributed Ops One system we designed was a “distributed ops” framework. Basically, we had one person who was the head of ops (at the time, we considered anything that was non-client-facing to be “ops”). They’d plan and organize all of the various things that needed to happen around Optimist. Then they’d assign out the work to whoever was able to help. We had a whole system for tying this into the our profit share and even gave people “Partner” status based on their contributions to ops. It worked—kinda. One big downfall is that all of the tasks and projects were ad hoc. People would pick up jobs, but they didn’t have much context or expertise to apply. So the output often varied. Since we were trying to maintain a flat structure, there was minimal oversight or management of the work. In other words, we didn’t always get the best results. But, more importantly, we still didn’t close all of the gaps entirely. Because everything was an ad-hoc list of tasks and projects, we never really had the “big picture” view of everything that needed to be done across the business. This also meant we rarely had clarity on what was important, what was trivial, and what was critical. We need a better system. Stop Reinventing the Wheel (And Create a Damn Org Chart) It’s time to get serious about filling the gaps in our business. It can’t be a half-fix or an ad hoc set of projects and tasks. We need clarity on the roles that need to be filled and then fill them. The first step here is to create an org chart. A real one. Map out all of the jobs that need to be done for Optimist to be successful besides just writers and designers. Roles like: Content director Design director SEO manager Reporting Finance Account management Business development Sales Marketing Project management It feels a bit laughable listing all of these roles. Because most are either empty or have my name attached to them. And that’s the problem. I can’t do everything. And all of the empty roles are gaps in our structure—places where people aren’t getting the direction, feedback, or guidance they need to do their best work. Or where things just aren’t being done consistently. Content director, for example, should be responsible for steering the output of our content strategists, writers, and editors. They’re not micromanaging every deliverable. But they give feedback, set overall policy, and help our team identify opportunities to get better. Right now we don’t have anyone in that role. Which means it’s my job—when I have time. Looking at the org chart (a real org chart that I actually built to help with this), it’s plain as day how many roles look like this. Even if we aren’t going to implement a traditional agency structure and a strict hierarchy, we still need to address these gaps. And the only way for that to happen is face the reality and then create a plan to close the gaps. Now that we have a list of theoretical roles, we need to clearly define the responsibilities and boundaries of those roles to make sure they cover everything that actually needs to happen. Then we can begin the process of delegating, assigning, hiring, and otherwise addressing each one. So that’s what I need to do. To be done: Create job descriptions for all of the roles we need to fill Hire Biz Dev role Hire Account Lead role(s) Hire Head of Content Playing Offense As we move into Q1 of 2025 and I reflect on the tumultuous few years we’ve had, one thought keeps running through my head. We need to play offense. Most of the last 1-2 years was reacting to changes that were happening around us. Trying to make sense and chart a new path forward. Reeling. But what I really want—as a person and as an entrepreneur—is to be proactive. I want to think and plan ahead. Figure out where we want to go before we’re forced to change course by something that’s out of our control. So my overarching focus for Q1 is playing offense. Thinking longer term. Getting ahead of the daily deluge and creating space to be more proactive, innovative, and forward thinking. To do: Pilot new content formats Audit and update our own content strategy Improve feedback workflows Build out long-term roadmap for 1-2 years for Optimist Final Note on Follow-Through and Cadence In my reflection this year, one of the things I’ve realized is how helpful these posts are for me. I process by writing. So I actually end up making a lot of decisions and seeing things more clearly each time I sit down to reflect and write my yearly recap. It also gives me a space to hold myself accountable for the things I said I would do. So, I’m doing two things a bit differently from here on out. First: I’m identifying clear action items that I’m holding myself accountable for getting done in the next 3 months (listed in the above sections). In each future update, I’ll do an accounting of what I got done and what wasn’t finished (and why). Second: I’m going to start writing shorter quarterly updates. This will gives me more chances each year to reflect, process, and make decisions. Plus it gives me a shorter feedback loop for the action items that I identified above. (See—playing offense.) — Okay friends, enemies, and frenemies. This is my first update for 2025. Glad to share with y’all. And thanks to everyone who’s read, commented, reached out, and shared their own experiences over the years. We are all the accumulation of our connections and our experiences. As always, I will pop in to respond to comments and answer questions. Feel free to share your thoughts, questions, and general disdain down below. Cheers, Tyler

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]
reddit
LLM Vibe Score0
Human Vibe Score0.6
madscholarThis week

Where Do I Find Like-Minded, Unorthodox Co-founders? [Tech]

After more than 20 years in the tech industry I'm pretty fed up. I've been at it non-stop, so the burnout was building up for a while. Eventually, it's gotten so bad that it was no longer a question whether I need to take a break; I knew that I had to, for the sake of myself and loved ones. A few months ago I quit my well-paying, mid-level mgmt job to have some much-needed respite. I can't say that I've fully recovered, but I'm doing a bit better, so I'm starting to think about what's next. That said, the thoughts of going back into the rat race fill me with dread and anxiety. I've had an interesting career - I spent most of it in startups doing various roles from an SWE to a VP Eng, including having my own startup adventures for a couple of years. The last 4.5 years of my career have been in one of the fastest growing tech companies - it was a great learning experience, but also incredibly stressful, toxic and demoralizing. It's clear to me that I'm not cut out for the corporate world -- the ethos contradicts with my personality and beliefs -- but it's not just. I've accumulated "emotional scars" from practically every place I worked at and it made me loathe the industry to the degree that if I ever have another startup, it'd have to be by my own -- unorthodox -- ideals, even if it means a premature death due to lack of funding. I was young, stupid and overly confident when I had my first startup. I tried to do it "by the book" and dance to the tune of investors. While my startup failed for other, unrelated reasons, it gave me an opportunity to peak behind the curtain, experience the power dynamics, and get a better understanding to how the game is played - VCs and other person of interest have popularized the misconception that if a company doesn't scale, it would stagnate and eventually regress and die. This is nonsense. This narrative was created because it would make the capitalist pigs obsolete - they need companies to go through the entire alphabet before forcing them to sell or IPO. The sad reality is that the most entrepreneurs still believe in this paradigm and fall into the VC's honeypot traps. It's true that many businesses cannot bootstrap or scale without VC money, but it's equally true that far too many companies pivot/scale prematurely (and enshitify their product in the process) due to external pressures fueled by pure greed. This has a top-bottom effect - enshitification doesn't only effect users, but it also heavily effects the processes and structrures of companies, which can explain why the average tenure in tech is only \~2 years. I think that we live in an age where self-starting startups are more feasible than ever. It's not just the rise of AI and automation, but also the plethora of tools, services, and open-source projects that are available to all for free. On the one hand, this is fantastic, but on the other, the low barrier-to-entry creates oversaturation of companies which makes research & discovery incredibly hard - it is overwhelming to keep up with the pace and distill the signal from the noise, and there's a LOT of noise - there's not enough metaphorical real-estate for the graveyard of startups that will be defunct in the very near future. I'd like to experiment with startups again, but I don't want to navigate through this complex mine field all by myself - I want to find a like-minded co-founder who shares the same ideals as I do. It goes without saying that being on the same page isn't enough - I also want someone who's experienced, intelligent, creative, productive, well-rounded, etc. At the moment, I don't have anyone in my professional network who has/wants what it takes. I can look into startup bootcamps/accelerators like YC et al., and sure enough, I'll find talented individuals, but it'd be a mismatch from the get-go. For shits and giggles, this is (very roughly) how I envision the ideal company: Excellent work life balance: the goal is not to make a quick exit, become filthy rich, and turn into a self-absorbed asshole bragging about how they got so succesful. The goal is to generate a steady revenue stream while not succumbing to social norms that encourage greed. The entire purpose is to reach humble financial indepedence while maintaining a stress-free (as one possibly can) work environment. QOL should always be considered before ARR. Bootstraping: no external money. Not now, not later. No quid pro quo. No shady professionals or advisors. Company makes it or dies trying. Finances: very conservative to begin with - the idea is to play it safe and build a long fucking runaway before hiring. Spend every penny mindfully and frugally. Growth shouldn't be too quick & reckless. The business will be extremely efficient in spending. The only exception to the rule is crucial infrastructure and wages to hire top talent and keep salaries competitive and fair. Hiring: fully remote. Global presence, where applicable. Headcount will be limited to the absolute bare minimum. The goal is to run with a skeleton crew of the best generalists out there - bright, self-sufficient, highly motivated, autodidact, and creative individuals. Hiring the right people is everything and should be the company's top priority. Compensation & Perks: transperent and fair, incentivizing exceptional performance with revenue sharing bonuses. The rest is your typical best-in-class perks: top tier health/dental/vision insurance, generous PTO with mandatory required minimum, parental leave, mental wellness, etc. Process: processes will be extremely efficient, automated to the max, documented, unbloated, and data-driven through and through. Internal knowledge & data metrics will be accessible and transparent to all. Employees get full autonomy of their respective areas and are fully in charge of how they spend their days as long as they have agreed-upon, coherent, measurable metrics of success. Meetings will be reduced to the absolute minimum and would have to be justified and actionable - the ideal is that most communications will be done in written form, while face-to-face will be reserved for presentations/socializing. I like the Kaizen philosophy to continuously improve and optimize processes. Product: As previously stated, "data-driven through and through". Mindful approach to understand cost/benefit. Deliberate and measured atomic improvements to avoid feature creep and slow down the inevitable entropy. Most importantly, client input should be treated with the utmost attention but should never be the main driver for the product roadmap. This is a very controversial take, but sometimes it's better to lose a paying customer than to cave to their distracting/unreasonable/time-consuming demands. People Culture: ironicaly, this would be what most companies claim to have, but for realsies. Collaborative, open, blameless environment. People are treated like actual grown ups with flat structure, full autonomy, and unwavering trust. Socializing and bonding is highly encourged, but never required. Creativity and ingenuity is highly valued - people are encouraged to work on side projects one day of the week. Values: I can write a lot about it, but it really boils down to being kind and humble. We all know what happened with "don't be evil". It's incredibly hard to retain values over time, esp. when there are opposing views within a company. I don't know how to solve it, but I believe that there should be some (tried and true) internal checks & balances from the get go to ensure things are on track. I never mentioned what this hypothetical startup does. Sure, there's another very relevant layer of domain experience fit, but this mindset allows one to be a bit more fluid because the goal is not to disrupt an industry or "make the world a better place"; it's to see work for what it truly is - a mean to an end. It's far more important for me to align with a co-founder on these topics than on an actual idea or technical details. Pivoting and rebranding are so common that many VCs outweigh the make up and chemistry of the founding team (and their ability to execute) over the feasibility of their ideas.  To wrap this long-winded post, I'm not naive or disillusioned - utopias aren't real and profitable companies who operate at a 70-80% rate of what I propose are the real unicorns, but despite them being a tiny minority, I think they are the real forward thinkers of the industry. I might be wrong, but I hope that I'm right and that more and more startups will opt towards long-term sustainability over the promise of short-term gains because the status quo really stinks for most people. What do you folks think? Does anyone relate? Where can I find others like me? P.S I thought about starting a blog writing about these topics in length (everything that is wrong with tech & what can be done to improve it), but I have the Impostor Syndrom and I'm too self-conscious about how I come off. If you somehow enjoyed reading through that and would love to hear more of my thoughts and experiences in greater detail, please let me know. P.P.S If you have a company that is close to what I'm describing and you're hiring, let me know!

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || ​ Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| ​ What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites ​ Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. ​ Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.
reddit
LLM Vibe Score0
Human Vibe Score1
SpicyCopyThis week

I tested hundreds of marketing tools in the last three years and these 50 made it to the list. I'll sum up my top 50 marketing tools with one or two sentences + give you pricings.

Hey guys, I'm working in a growth marketing agency. Marketing tools are 30% of what we do, so we use them a lot and experiment with the new ones as much as possible. There are thousands of tools and it's easy to get lost, so I wanted to share the tools we use most on a daily basis. And divide the list into 14 categories. I thought this could be handy for Entrepreneurs subreddit. Why adopt tools? I see marketing tools as tireless colleagues. If you can't hire an employee, choosing the right tool can solve your problems, because they Are super cheap. Work 7/24 for you. Don’t make mistakes. Don’t need management. (or needless management) Help you to automate the majority of your lead gen process. Onwards to the list. (With the pricings post ended up quite long, you can find a link in the end if you want to check the prices) Email marketing tools #1 ActiveCampaign is armed with the most complicated email automation features and has the most intuitive user experience. It feels like you already know how to use it. \#2 Autopilot is visual marketing automation and customer journey tool that helps you acquire, nurture based on behaviors, interest etc. #3 Mailjet: This is the tool we use to send out bulky email campaigns such as newsletters. It doesn't have sexy features like others but does its job for a cheap price. Email address finders #4 Skrapp finds email of your contacts by name and company. It also works with LinkedIn Sales Navigator and can extract thousands of emails in bulk + have a browser add-on. #5 Hunter: Similar to Skrapp but doesn't work with LinkedIn Sales Navigator directly. In addition, there are email templates and you can set up email campaigns. Prospecting and outreach tools #6 Prospect combines the personal emails, follow-up calls, other social touches and helps you create multichannel campaigns.  #7 Reply is a more intuitive version of Prospect. It is easy to learn and use; their UX makes you feel good and sufficient.  CRM tools #8 Salesflare helps you to stop managing your data and start managing your customers. Not yet popular as Hubspot and etc but the best solution for smaller B2B businesses. (we're fans) \#9 Hubspot: The most popular CRM for good reason and has a broader product range you can adopt in your next steps. Try this if you have a bulky list of customers because it is free. #10 Pardot: Pardot is by Salesforce, it's armed with features that can close the gap between marketing and sales. Sales Tools #11 Salesforce is the best sales automation and lead management software. It helps you to create complicated segmentations and run, track, analyze campaigns from the same dashboard. #12 LinkedIn Sales Navigator gives you full access to LinkedIn's user database. You can even find a kidnapped CEO if you know how to use it with other marketing automation tools like Skrapp. #13 Pipedrive is a simple tool and excels in one thing. It tracks your leads and tells you when to take the next action. It makes sales easier. #14 Qwilr creates great-looking docs, at speed. You can design perfect proposals, quotes, client updates, and more in a flash. We use it a lot to close deals, it's effective. #15 Crystalknows is an add-on that tells you anyone’s personality on LinkedIn and gives you a detailed approach specific to that person. It's eerily accurate. #16 Leadfeeder shows you the companies that visited your website. Tells how they found you and what they’re interested in. It has a free version. Communication Tools #17 Intercom is a sweet and smart host that welcomes your visitors when you’re not home. It’s one of the best chatbot tools in the market. #18 Drift is famous for its conversational marketing features and more sales-focused than Intercom. #19 Manychat is a chatbot that helps you create high converting Facebook campaigns. #20 Plann3r helps you create your personalized meeting page. You can schedule meetings witch clients, candidates, and prospects. #21 Loom is a video messaging tool, it helps you to be more expressive and create closer relationships. #22 Callpage collects your visitors’ phone number and connects you with them in seconds. No matter where you are. Landing page tools #23 Instapage is the best overall landing page builder. It has a broad range of features and even squirrel can build a compelling landing page with templates. No coding needed. #24 Unbounce can do everything that Instapage does and lets you build a great landing page without a developer. But it's less intuitive. Lead generation / marketing automation tools #25 Phantombuster is by far the most used lead generation software in our tool kit. It extracts data, emails, sends requests, customized messages, and does many things on autopilot in any platform. You can check this, this and this if you want to see it in action. #26 Duxsoup is a Google Chrome add-on and can also automate some of LinkedIn lead generation efforts like Phantombuster. But not works in the cloud. #27 Zapier is a glue that holds all the lead generation tools together. With Zapier, You can connect different marketing tools and no coding required. Conversion rate optimization tools #28 Hotjar tracks what people are doing on your website by recording sessions and capturing mouse movements. Then it gives you a heatmap. #29 UsabilityHub shows your page to a digital crowd and measures the first impressions and helps you to validate your ideas. #30 Optinmonster is a top tier conversion optimization tool. It helps you to capture leads and enables you to increase conversions rates with many features. #31 Notifia is one mega tool of widgets that arms your website with the wildest social proof and lead capturing tactics. #32 Sumo is a much simpler version of Notifia. But Sumo has everything to help you capture leads and build your email lists. Web scrapers #33 Data Miner is a Google Chrome browser extension that helps you scrape data from web pages and into a CSV file or Excel spreadsheet. #34 Webscraper does the same thing as Data Miner; however, it is capable of handling more complex tasks. SEO and Content #35 Grammarly: Your English could be your first language and your grammar could be better than Shakespeare. Grammarly still can make your writing better. #36 Hemingwayapp is a copywriting optimization tool that gives you feedback about your copy and improves your readability score, makes your writing bolder and punchier. Free. #37 Ahrefs is an all-rounder search engine optimization tool that helps you with off-page, on-page or technical SEO. #38 SurferSEO makes things easier for your on-page SEO efforts. It’s a tool that analyzes top Google results for specific keywords and gives you a content brief based on that data. Video editing and design tools #39 Canva is a graphic design platform that makes everything easy. It has thousands of templates for anything from Facebook ads, stylish presentations to business cards.  #40 Kapwing is our go-to platform for quick video edits. It works on the browser and can help you to create stylish videos, add subtitles, resize videos, create memes, or remove backgrounds. #41 Animoto can turn your photos and video clip into beautiful video slideshows. It comes handy when you want to create an advertising material but don’t have a budget. Advertising tools #42 AdEspresso lets you create and test multiple ads with few clicks. You can optimize your FB, IG, and Google ads from this tool and measure your ads with in-depth analytics. #43 AdRoll is an AI-driven platform that connects and coordinates marketing efforts across ads, email, and online stores. Other tools #44 Replug helps you to shorten, track, optimize your links with call-to-actions, branded links, and retargeting pixels #45 Draw.io = Mindmaps, schemes, and charts. With Draw.io, you can put your brain in a digital paper in an organized way. #46 Built With is a tool that finds out what websites are built with. So you can see what tools they're using and so on. #47 Typeform can turn data collection into an experience with Typeform. This tool helps you to engage your audience with conversational forms or surveys and help you to collect more data. #48 Livestorm helped us a lot, especially in COVID-19 tiles. It’s a webinar software that works on your browser, mobile, and desktop. #49 Teachable \- If you have an online course idea but hesitating because of the production process, Teachable can help you. It's easy to configure and customizable for your needs. #50 Viral Loops provides a revolutionary referral marketing solution for modern marketers. You can create and run referral campaigns in a few clicks with templates. Remember, most of these tools have a free trial or free version. Going over them one by one can teach you a lot and help you grow your business with less work power in the early stages of your business. I hope you enjoyed the read and can find some tools to make things easier! Let me know about your favorite tools in the comments, so I can try them out. \------ If you want to check the prices and see a broader explanation about the tools, you can go here.

Watched 8 hours of MrBeast's content. Here are 7 psychological strategies he's used to get 34 billion views
reddit
LLM Vibe Score0
Human Vibe Score1
Positive-Bison5023This week

Watched 8 hours of MrBeast's content. Here are 7 psychological strategies he's used to get 34 billion views

MrBeast can fill giant stadiums and launch 8-figure candy companies on demand. He’s unbelievably popular. Recently, I listened to the brilliant marketer Phill Agnew (from The Nudge podcast) being interviewed on the Creator Science podcast. The episode focused on how MrBeast’s near-academic understanding of audience psychology is the key to his success. Better than anyone, MrBeast knows how to get you: \- Click on his content (increase his click-through rate) \- Get you to stick around (increase his retention rate) He gets you to click by using irresistible thumbnails and headlines. I watched 8 hours of his content. To build upon Phil Agnew’s work, I made a list of 7 psychological effects and biases he’s consistently used to write headlines that get clicked into oblivion. Even the most aggressively “anti-clickbait” purists out there would benefit from learning the psychology of why people choose to click on some content over others. Ultimately, if you don’t get the click, it really doesn’t matter how good your content is. Novelty Effect MrBeast Headline: “I Put 100 Million Orbeez In My Friend's Backyard” MrBeast often presents something so out of the ordinary that they have no choice but to click and find out more. That’s the “novelty effect” at play. Our brain’s reward system is engaged when we encounter something new. You’ll notice that the headline examples you see in this list are extreme. MrBeast takes things to the extreme. You don’t have to. Here’s your takeaway: Consider breaking the reader/viewer’s scrolling pattern by adding some novelty to your headlines. How? Here are two ways: Find the unique angle in your content Find an unusual character in your content Examples: “How Moonlight Walks Skyrocketed My Productivity”. “Meet the Artist Who Paints With Wine and Chocolate.” Headlines like these catch the eye without requiring 100 million Orbeez. Costly Signaling MrBeast Headline: "Last To Leave $800,000 Island Keeps It" Here’s the 3-step click-through process at play here: MrBeast lets you know he’s invested a very significant amount of time and money into his content. This signals to whoever reads the headline that it's probably valuable and worth their time. They click to find out more. Costly signaling is all amount showcasing what you’ve invested into the content. The higher the stakes, the more valuable the content will seem. In this example, the $800,000 island he’s giving away just screams “This is worth your time!” Again, they don’t need to be this extreme. Here are two examples with a little more subtlety: “I built a full-scale botanical garden in my backyard”. “I used only vintage cookware from the 1800s for a week”. Not too extreme, but not too subtle either. Numerical Precision MrBeast knows that using precise numbers in headlines just work. Almost all of his most popular videos use headlines that contain a specific number. “Going Through The Same Drive Thru 1,000 Times" “$456,000 Squid Game In Real Life!” Yes, these headlines also use costly signaling. But there’s more to it than that. Precise numbers are tangible. They catch our eye, pique our curiosity, and add a sense of authenticity. “The concreteness effect”: Specific, concrete information is more likely to be remembered than abstract, intangible information. “I went through the same drive thru 1000 times” is more impactful than “I went through the same drive thru countless times”. Contrast MrBeast Headline: "$1 vs $1,000,000 Hotel Room!" Our brains are drawn to stark contrasts and MrBeast knows it. His headlines often pit two extremes against each other. It instantly creates a mental image of both scenarios. You’re not just curious about what a $1,000,000 hotel room looks like. You’re also wondering how it could possibly compare to a $1 room. Was the difference wildly significant? Was it actually not as significant as you’d think? It increases the audience’s \curiosity gap\ enough to get them to click and find out more. Here are a few ways you could use contrast in your headlines effectively: Transformational Content: "From $200 to a $100M Empire - How A Small Town Accountant Took On Silicon Valley" Here you’re contrasting different states or conditions of a single subject. Transformation stories and before-and-after scenarios. You’ve got the added benefit of people being drawn to aspirational/inspirational stories. Direct Comparison “Local Diner Vs Gourmet Bistro - Where Does The Best Comfort Food Lie?” Nostalgia MrBeast Headline: "I Built Willy Wonka's Chocolate Factory!" Nostalgia is a longing for the past. It’s often triggered by sensory stimuli - smells, songs, images, etc. It can feel comforting and positive, but sometimes bittersweet. Nostalgia can provide emotional comfort, identity reinforcement, and even social connection. People are drawn to it and MrBeast has it down to a tee. He created a fantasy world most people on this planet came across at some point in their childhood. While the headline does play on costly signaling here as well, nostalgia does help to clinch the click and get the view. Subtle examples of nostalgia at play: “How this \[old school cartoon\] is shaping new age animation”. “\[Your favorite childhood books\] are getting major movie deals”. Morbid Curiosity MrBeast Headline: "Surviving 24 Hours Straight In The Bermuda Triangle" People are drawn to the macabre and the dangerous. Morbid curiosity explains why you’re drawn to situations that are disturbing, frightening, or gruesome. It’s that tension between wanting to avoid harm and the irresistible desire to know about it. It’s a peculiar aspect of human psychology and viral content marketers take full advantage of it. The Bermuda Triangle is practically synonymous with danger. The headline suggests a pretty extreme encounter with it, so we click to find out more. FOMO And Urgency MrBeast Headline: "Last To Leave $800,000 Island Keeps It" “FOMO”: the worry that others may be having fulfilling experiences that you’re absent from. Marketers leverage FOMO to drive immediate action - clicking, subscribing, purchasing, etc. The action is driven by the notion that delay could result in missing out on an exciting opportunity or event. You could argue that MrBeast uses FOMO and urgency in all of his headlines. They work under the notion that a delay in clicking could result in missing out on an exciting opportunity or event. MrBeast’s time-sensitive challenge, exclusive opportunities, and high-stakes competitions all generate a sense of urgency. People feel compelled to watch immediately for fear of missing out on the outcome or being left behind in conversations about the content. Creators, writers, and marketers can tap into FOMO with their headlines without being so extreme. “The Hidden Parisian Cafe To Visit Before The Crowds Do” “How \[Tech Innovation\] Will Soon Change \[Industry\] For Good” (Yep, FOMO and urgency are primarily responsible for the proliferation of AI-related headlines these days). Why This All Matters If you don’t have content you need people to consume, it probably doesn’t! But if any aspect of your online business would benefit from people clicking on things more, it probably does. “Yes, because we all need more clickbait in this world - \eye-roll emoji\” - Disgruntled Redditor I never really understood this comment but I seem to get it pretty often. My stance is this: If the content delivers what the headline promises, it shouldn’t be labeled clickbait. I wouldn’t call MrBeast’s content clickbait. The fact is that linguistic techniques can be used to drive people to consume some content over others. You don’t need to take things to the extremes that MrBeast does to make use of his headline techniques. If content doesn’t get clicked, it won’t be read, viewed, or listened to - no matter how brilliant the content might be. While “clickbait” content isn’t a good thing, we can all learn a thing or two from how they generate attention in an increasingly noisy digital world.

Writing a exercise based TTRPG rulebook for a system where your real world fitness is tied to character progression
reddit
LLM Vibe Score0
Human Vibe Score1
BezboznyThis week

Writing a exercise based TTRPG rulebook for a system where your real world fitness is tied to character progression

My dad was a star athlete when he was young, and my mom was a huge sci-fi/fantasy nerd, so I got both ends of the stick as it were. Love gaming and nerd culture, but also love to exercise and self improvement. Sometimes exercise can feel boring though compared to daydreaming about fantastic fictional worlds, so for a long time I've been kicking around the idea of how to "Gamify" fitness. and recently I've been working on this passion project of a Table Top RPG (Like D&D) where the stats of your character are related to your own fitness, so if you want your character in game to improve, you have to improve in the real world. Below is a rough draft you can look through that details the settings and mechanics of the game I've come up with so far. I'd love to eventually get a full book published and sell it online. maybe even starting a whole brand of "Gamified fitness": REP-SET: GAINSZ In the war torn future of 24th century… There are no rest days… In the futuristic setting of "REP-SET: GAINSZ," the "War of Gains" casts a long shadow over the Sol System as the various factions vie for territory and resources. However, war has evolved. Unmanned drones and long-range strikes have faded into obsolescence. Battles, both planet-side and in the depths of space, are now fought by soldiers piloting REP-SETs: Reactive Exoskeletal Platform - Symbiotic Evolution Trainer Massive, humanoid combat mechs. Powered by mysterious “EV” energy, these mechanical marvels amplify, and are in turn amplified by, the fitness and mental acuity of their pilots. The amplification is exponential, leading pilots into a life of constant training in order for their combat prowess to be bolstered by every incremental gain in their level of fitness. With top pilots having lifting capacity measured in tons, and reaction times measured by their Mach number, REP-SET enhanced infantry now dominate the battlefield. The Factions: The Federated Isometocracy of Terra (FIT): Quote: "The strength of the body is the strength of the spirit. Together, we will lift humanity to its destined greatness. But ask not the federation to lift for you. Ask yourself: Do you even lift for the Federation?" Description: An idealistic but authoritarian faction founded on the principle of maximizing the potential of all individuals. FIT citizens believe in relentless striving for physical and mental perfection, leading to collective excellence. Their goal is the unification of humankind under a rule guided by this doctrine, which sometimes comes at the cost of individual liberties. Mech Concept: REP-SET mechs. Versatile humanoid designs focusing on strength, endurance, and adaptability. By connecting to the AI spirit within their REP-SETs core, each pilot enhances the performance of their machine through personal willpower and peak physical training. Some high-rank REP-SETS include features customized to the pilot's strengths, visually signifying their dedication and discipline. The Dominion of Organo-Mechanical Supremacy (DOMS): Quote: "Without pain, there is no gain. Become the machine. Embrace the burn.” Description: A fanatical collective ideologically obsessed with "Ascendency through suffering" by merging their bodies with technology that not only transcends biological limitations, but also acts to constantly induce pain in it's users. Driven by a sense of ideological superiority and a thirst for domination, DOMS seek to bring the painful blessings of their deity "The lord of the Burn" to the rest of the solar system. Their conquest could turn them into a significant threat to humanity. Mech Concept: Hybrid mechs, where the distinction between the pilot and the machine is blurred. The cockpit functions as a life-support system for the pilot, heavily modified with augmentations. Mechs themselves are often modular, allowing for adaptation and assimilation of enemy technology. Some DOMS mechs might display disturbing elements of twisted flesh alongside cold, mechanical parts. The Tren: Quote: "Grow... bigger... feast... protein..." Description: A ravenous conglomeration of biochemically engineered muscular monstrosities, united only by a shared insatiable hunger for "More". Existing mostly in deep space, they seek organic matter to consume and assimilate. They progress in power not due to any form of training or technology, but from a constant regimen of ravenous consumption and chemically induced muscle growth, all exponentially enhanced by EV energies. While some have been known to possess a certain level of intellect and civility, their relentless hunger makes them incredibly mentally volatile. When not consuming others, the strong consume the weak within their own faction. Mech Concept: Bio-Organic horrors. While they do have massive war machines, some are living vessels built around immense creatures. These machines resemble grotesque fleshy designs that prioritize rapid mutation and growth over sleek aesthetics. Often unsettling to behold. Synthetic Intelligence Theocracy (SIT): Quote: "Failure is an unacceptable data point.” Description: A society ruled by a vast and interconnected artificial intelligence network. The SIT governs with seemingly emotionless rationality, striving for efficiency and maximum productivity. This leads to a cold, but arguably prosperous society, unless you challenge the logic of the collective AI. Their goals? Difficult to predict, as it hinges on how the AI calculates what's "optimal" for the continuation or "evolution" of existence. Mech Concept: Sleek, almost featureless robotic creations with a focus on efficient movement and energy management. Often drone-like or modular, piloted through direct mind-machine linking rather than traditional cockpits. Their aesthetic suggests cold and impersonal perfection. The Way Isolate(TWI): Quote: "The body unblemished, the mind unwavering. That is the path to true strength. That and a healthy diet of Aster-Pea proteins." Description: Known by some as "The asteroid farmers", The Way Isolate is a proud and enigmatic faction that stands apart from the other powers in the Sol System. A fiercely independent tribe bound by oaths of honor, loyalty, and hard work. Wandering the asteroid belt in their vast arc ships, their unparalleled mastery in asteroidal-agricultural engineering, ensuring they have no need to colonize planets for nutritional needs, has allowed them to abstain from the pursuit of territorial expansion in “The War of Gains”, instead focusing on inward perfection, both spiritual and physical. They eschew all technological bodily enhancements deemed unnatural, believing that true power can only be cultivated through the relentless pursuit of personal strength achieved through sheer will and bodily perfection. The Way Isolate views biohacking, genetic manipulation, and even advanced cybernetics as corruptions of the human spirit, diluting the sacredness of individual willpower. Mech Concept: Way Isolate mechs are built with maneuverability and precision in mind rather than flashy augmentations. Their REP-SETs are streamlined, favoring lean designs that mirror the athleticism of their pilots. Excelling in low to zero G environments, their mechs lack bulky armor, relying on evasion and maneuverability rather than brute force endurance. Weaponry leans towards traditional kinetic based armaments, perhaps employing archaic but reliable weapon styles such as blades or axes as symbols of their purity of purpose. These mechs reflect the individual prowess of their pilots, where victory is determined by focus, technique, and the raw power of honed physical ability. Base Player Character Example: You are a young, idealistic FIT soldier, barely out of training and working as a junior REP-SET mechanic on the Europa Ring World. The Miazaki district, a landscape of towering mountains and gleaming cities, houses a sprawling mountainside factory – a veritable hive of Gen 5 REP-SET construction. Here, the lines between military and civilian blur within a self-sufficient society dependent on this relentless industry. Beneath the surface, you harbor a secret. In a forgotten workshop, the ghost of a REP-SET takes shape – a unique machine built around an abandoned, enigmatic AI core. Ever since you salvaged it as a child from the wreckage of your hometown, scarred by a brutal Tren attack, you've dedicated yourself to its restoration. A lingering injury from that fateful battle mocks your progress, a constant reminder of the fitness exams you cannot pass. Yet, you train relentlessly, dreaming of the day you'll stand as a true REP-SET pilot. A hidden truth lies at the heart of the REP-SETS: as a pilot's abilities grow, their mech develops unique, almost mystical powers – a manifestation of the bond between the human spirit and the REP-SET's AI. The ache in your old wound serves as a grim prophecy. This cold war cannot last. The drums of battle grow louder with each passing day. GAME MECHANICS: The TTRPG setting of “REP-SET: GAINSZ” is marked by a unique set of rules, by which the players real world capabilities and fitness will reflect and affect the capabilities, progression, and success of their REP-SET pilot character in-game. ABILITY SCORES: Pilots' capabilities will be defined by 6 “Ability scores”: Grace, Agility, Iron, Nourishment, Strength, and Zen. Each of the 6 ability scores will duel represent both a specific area of exercise/athleticism and a specific brand of healthy habits. The definitions of these ability scores are as follows: Grace (GRC): "You are an artist, and your body is your canvas; the way you move is your paint and brush." This ability score, the domain of dancers and martial artists, represents a person's ability to move with organic, flowing control and to bring beauty to the world. Skill challenges may be called upon when the player character needs to act with poise and control, whether socially or physically. Real-world skill checks may involve martial arts drills, dancing to music, or balance exercises. Bonuses may be granted if the player has recently done something artistically creative or kind, and penalties may apply if they have recently lost their temper. This ability score affects how much NPCs like your character in game. Agility (AGI): "Your true potential is locked away, and speed is the key to unlocking it." The domain of sprinters, this ability score represents not only a person's absolute speed and reaction time but also their capacity to finish work early and avoid procrastination. Skill challenges may be called upon when the player character needs to make a split-second choice, move fast, or deftly dodge something dangerous. Real-world skill checks may involve acts of speed such as sprinting or punching/kicking at a steadily increasing tempo. Bonuses may apply if the player has finished work early, and penalties may apply if they are procrastinating. This ability score affects moving speed and turn order in game. Iron (IRN): "Not money, nor genetics, nor the world's greatest trainers... it is your resolve, your will to better yourself, that will make you great." Required by all athletes regardless of focus, this ability score represents a player's willpower and their capacity to push through pain, distraction, or anything else to achieve their goals. Skill challenges may be called upon when the player character needs to push through fear, doubt, or mental manipulation. Real-world skill checks may involve feats of athletic perseverance, such as planking or dead hangs from a pull-up bar. Bonuses may apply when the player maintains or creates scheduled daily routines of exercise, self-improvement, and work completion, and penalties may apply when they falter in those routines. This ability score affects the max "Dynamic exercise bonus” that can be applied to skill checks in game (a base max of +3 when Iron = 10, with an additional +1 for every 2 points of iron. So if every 20 pushups gives you +1 on a “Strength” skill check, then doing 80 pushups will only give you +4 if you have at least 12 iron). Nourishment (NRS): "A properly nourished body will last longer than a famished one." This ability score, focused on by long-distance runners, represents a player's endurance and level of nutrition. Skill challenges may be called upon when making checks that involve the player character's stamina or health. Real-world skill checks may involve endurance exercises like long-distance running. Bonuses may apply if the player has eaten healthily or consumed enough water, and penalties may apply if they have eaten junk food. This ability score affects your HP (Health points), which determines how much damage you can take before you are incapacitated. Strength (STR): "When I get down on my hands, I'm not doing pushups, I'm bench-pressing the planet." The domain of powerlifters and strongmen, this ability score represents raw physical might and the ability to overcome obstacles. Skill challenges may be called upon when the player character needs to lift, push, or break something. Real-world skill checks might involve weightlifting exercises, feats of grip strength, or core stability tests. Bonuses may apply for consuming protein-rich foods or getting a good night's sleep, and penalties may apply after staying up late or indulging in excessive stimulants. This ability score affects your carrying capacity and base attack damage in game. Zen (ZEN): "Clarity of mind reflects clarity of purpose. Still the waters within to act decisively without." This ability score, prized by meditators and yogis, represents mental focus, clarity, and inner peace. Skill challenges may be called upon when the player character needs to resist distractions, see through illusions, or make difficult decisions under pressure. Real-world skill checks may involve meditation, breathing exercises, or mindfulness activities. Bonuses may apply after attending a yoga class, spending time in nature, or creating a calm and organized living space. Penalties may apply after experiencing significant stress, emotional turmoil, or having an unclean or unorganized living space. This ability score affects your amount of ZP in game (Zen Points: your pool of energy you pull from to use mystical abilities) Determining initial player ability scores: Initially, “Ability scores” are decided during character creation by giving the player a list of 6 fitness tests to gauge their level of fitness in each category. Running each test through a specific calculation will output an ability score. A score of 10 represents the average person, a score of 20 represents a peak athlete in their category. The tests are: Grace: Timed balancing on one leg with eyes closed (10 seconds is average, 60 is peak) Agility: Mile run time in minutes and second (10:00 minutes:seconds is average, 3:47 is peak) Iron: Timed dead-hang from a pull-up bar (30 seconds is average, 160 is peak) Nourishment: Miles run in an hour (4 is average, 12 is peak) Strength: Pushups in 2 minute (34 is average, 100 is peak) Zen: Leg stretch in degrees (80 is average, and 180 aka "The splits" is peak) Initial Score Calculation Formula: Ability Score = 10 + (Player Test Score - Average Score) / (Peak Score - Average\_Score) \* 10 Example: if the player does 58 pushups in 2 minutes, their strength would be: 10 plus (58 - 34) divided by (100-34) multiplied by 10 = 10 + (24)/(66)\* 10 = 10 + 3.6363... = 13.6363 rounded to nearest whole number = Strength (STR): 14 SKILLS AND SKILL CHALLENGES: The core mechanic of the game will be in how skill challenges are resolved. All “Skill challenges” will have a numerical challenge rating that must be met or beaten by the sum of a 10 sided dice roll and your score in the pertinent skill. Skill scores are determined by 2 factors: Ability Score Bonus: Every 2 points above 10 gives +1 bonus point. (EX. 12 = +1, 14 = +2, etc.) This also means that if you have less than 10 in an ability score, you will get negative points. Personal Best Bonus: Each skill has its own unique associated exercise that can be measured (Time, speed, distance, amount of reps, etc). A higher record means a higher bonus. EX: Authority skill checks are associated with a timed “Lateral raise hold”. Every 30 seconds of the hold added onto your personal best single attempt offers a +1 bonus. So if you can do a lateral hold for 90 seconds, that’s a +3 to your authority check! So if you have a 16 in Iron, and your Personal Best lateral raise hold is 90 seconds, that would give you an Authority score of +6 (T-Pose for dominance!) Dynamic Exercise Bonus: This is where the unique mechanics of the game kick in. At any time during a skill challenge (even after your roll) you can add an additional modifier to the skill check by completing the exercise during gameplay! Did you roll just below the threshold for success? Crank out another 20 pushups, squats, or curls to push yourself just over the edge into success! There are 18 skills total, each with its own associated ability score and unique exercise: Grace (GRC): \-Kinesthesia (Timed: Blind single leg stand time) \-Precision (Scored: Basket throws) \-Charm (Timed reps: Standing repeated forward dumbell chest press and thrust) \-Stealth (Timed distance: Leopard Crawl) Agility (AGI): \-acrobatics (timed reps: high kicks) \-Computers (Word per minute: Typing test) \-Speed (Time: 100 meter sprint) Iron (IRN): \-Authority (Timed: Lateral raise hold) \-Resist (Timed: Plank) \-Persist (Timed:Pull-up bar dead hang) Nourishment(NRS): \-Recovery (TBD) \-Stim crafting (TBD) \-Survival (TBD) Strength(STR): \-Mechanics (Timed reps: Alternating curls) \-Might (Timed reps: pushups) Zen(ZEN): \-Perceive (TBD) \-Empathy (TBD) \-Harmony (TBD) \-Lore (TBD) Healthy Habits Bonus: Being able to demonstrate that you have conducted healthy habits during gameplay can also add one time bonuses per skill challenge “Drank a glass of water +1 to Nourishment check”, “Cleaned your room, +3 on Zen check”. But watch out, if you’re caught in unhealthy Habits, the GM can throw in penalties, “Ate junk food, -1 to Nourishment check”, etc. Bonuses/penalties from in-game items, equipment, buffs, debuffs, etc., helping players to immerse into the mechanics of the world of REP-SET for the thrill of constantly finding ways to improve their player. Gradient success: Result of skill challenges can be pass or fail, but can also be on a sliding scale of success. Are you racing to the battlefield? Depending on your Speed check, you might arrive early and have a tactical advantage, just in time for an even fight, or maybe far too late and some of your favorite allied NPCs have paid the price… So you’re often encouraged to stack on those dynamic exercise bonuses when you can to get the most fortuitous outcomes available to you. Gameplay sample: GM: Your REP-SET is a phantom, a streak of light against the vast hull of the warship. Enemy fighters buzz angrily, but you weaves and dodges with uncanny precision. The energy wave might be losing effectiveness, but your agility and connection to the machine have never been stronger. Then, it happens. A gap in the defenses. A vulnerable seam in the warship's armor. Your coms agents keen eye spots it instantly. "Lower power junction, starboard side! You have an opening!" This is your chance to strike the decisive blow. But how? It'll take a perfect combination of skill and strategy, drawing upon your various strengths. Here are your options: Option 1: Brute Strength: Channel all remaining power into a single, overwhelming blast from the core. High-risk, high-reward. It could overload the REP-SET if you fail, but it might also cripple the warship. (Strength-focused, Might sub-skill) Option 2: Calculated Strike: With surgical precision, target the power junction with a pinpoint burst of destabilizing energy. Less flashy and ultimately less damaging, but potentially more effective in temporarily disabling the ship. (Agility-focused, Precision sub-skill) Option 3: Harmonic Disruption: Attempt to harmonize with your REP-SET's AI spirit for help in connecting to the digital systems of the Warship. Can you generate an internal energy resonance within the warship, causing it to malfunction from within? (Zen-focused, Harmony sub-skill) Player: I'll take option 1, brute strength! GM: Ok, This will be a "Might" check. The CR is going to be very high on this one. I'm setting it at a 20. What's your Might bonus? Player: Dang, a 20?? That's literally impossible. My Might is 15 and I've got a PB of 65 pushups in 2 minutes, that sets me at a +5. Even if I roll a 10 and do 60 pushups for the DE I'll only get 18 max. GM: Hey I told you it was high risk. You want to choose another option? Player: No, no. This is what my character would do. I'm a real hot-blooded meathead for sure. GM: Ok then, roll a D10 and add your bonus. Player: \Rolls\ a 9! not bad, actually that's a really good roll. So +5, that's a 14. GM: Alright, would you like to add a dynamic exercise bonus? Player: Duh, it's not like I can do 120 pushups I'd need to beat the CR, but I can at least do better than 14. Alright, here goes. \the player gets down to do pushups and the 2 minute time begins. After some time...\ Player: 65....... 66! GM: Times up. Player: Ow... my arms... GM: so with 66, that's an extra +3, and its a new PB, so that's a +1. That sets your roll to 18. Player: Ow... Frack... still not 20... for a second there i really believed I could do 120 pushups... well I did my best... Ow... 20 CR is just too impossible you jerk... GM: Hmm... Tell me, what did you eat for lunch today? Player: Me? I made some vegetable and pork soup, and a protein shake. I recorded it all in my diet app. GM: And how did you sleep last night? Player: Like a baby, went to sleep early, woke up at 6. GM: in that case, you can add a +1 "Protein bonus" and +1 "Healthy rest" bonus to any strength related check for the day if you'd like, including this one. Player: Really?? Heck yes! add it to the roll! GM: With those extra bonuses, your roll reaches 20. How do you want to do this? Player: I roar "For Terra!" and pour every last ounce of my strength into the REP-SET. GM: "For Terra!" you roar, your cry echoing through coms systems of the REP-SET. The core flares blindingly bright. The surge of power dwarfs anything the REP-SET has unleashed before. With a titanic shriek that cracks the very fabric of space, the REP-SET slams into the vulnerable power junction. Raw energy explodes outwards, tendrils of light arcing across the warship's massive hull. The impact is staggering. The leviathan-like warship buckles, its sleek form rippling with shockwaves. Sparks shower like rain, secondary explosions erupt as critical systems overload. Then…silence. The warship goes dark. Power flickers within the REP-SET itself, then steadies. Alarms fade, replaced by the eerie quiet of damaged but functional systems. "We…did it?" The coms agents voice is incredulous, tinged with relief. She's awaiting your reply. Player: "I guess so." I say, and I smile and laugh. And then I slump back... and fall unconscious. \to the other players\ I'm not doing any more skill checks for a while guys, come pick me up please. \teammates cheer\ ​

Please, help me to narrow down the list of ideas to pursuit
reddit
LLM Vibe Score0
Human Vibe Score-1
SpiritedSecond4791This week

Please, help me to narrow down the list of ideas to pursuit

Hi guys, I need help to narrow down the possible problems to solve. How do you do it? What do you think about these ideas? All came from real-life problems. Break-It-Down Problem-Solving Assistant Problem: Large, complex projects can feel overwhelming and difficult to tackle. Solution: An AI-guided assistant that analyzes your project goals and automatically breaks them into smaller, manageable tasks. It provides suggested resources and real-time collaboration with team members for smoother task delegation. Personalized Sleep Solutions Problem: Poor sleep quality affects health, productivity, and overall well-being. Solution: An adaptive app that tracks sleep patterns through wearable data and adjusts sleep routines, room settings, and audio cues based on real-time sleep stages for optimal rest. Skill Analysis & Development Tool Problem: It’s challenging to identify valuable skills for career growth and keep up with future demands. Solution: AI-driven skill analysis with a personalized career roadmap that maps out high-demand skills for your specific industry, combined with real-time market trend analysis to suggest learning resources and certifications. Innovator’s Problem Discovery Platform Problem: Innovators struggle to identify real industry problems that need innovative solutions. Solution: An AI-powered platform that gathers and analyzes challenges from different industries, crowdsources ideas, and uses machine learning to highlight innovation opportunities tailored to your skills and interests. High-Earning Career Strategy Platform Problem: Many professionals face challenges in maximizing their earning potential and advancing their careers. Solution: A dynamic career advancement platform that analyzes your skill set, tracks job market trends, and offers personalized mentorship sessions with high-earning professionals in your field, along with salary benchmarking and negotiation tips.

IVAN.ed: The platform for Social Learning ( SOMEONE CAN USE THIS IDEA BECAUSE I CURRENTLY DON'T HAVE THE TECH KNOWLEDEGE TO MAKE IT COME TRUE )
reddit
LLM Vibe Score0
Human Vibe Score1
Different_Tip8185This week

IVAN.ed: The platform for Social Learning ( SOMEONE CAN USE THIS IDEA BECAUSE I CURRENTLY DON'T HAVE THE TECH KNOWLEDEGE TO MAKE IT COME TRUE )

Overview: IVAN.ed is an innovative educational platform designed to transform the way students and educators interact and share knowledge. By combining the best elements of social media with a focus on learning, IVAN.ed aims to create a dynamic, engaging, and user-friendly environment for educational content. Key Features: Social Learning Network: A platform where students, educators, and experts can create and share educational content, similar to a social media experience but dedicated to learning. AI-Driven Content Moderation: Implementing advanced AI algorithms to ensure high-quality and relevant content, maintaining the platform’s integrity and usefulness. User Profiles and Content Creation: Users can build profiles, upload videos, create posts, and engage with content through comments, (instead of like there is the knowledge meter , based on what as taught in the videos), notes will be provided down of each video using ai. Enhanced Discovery: Advanced search and recommendation systems to help users find content that matches their interests and educational needs. Minimal Distractions: user interface designed to minimize distractions and enhance focus, making the learning experience more efficient. Goals: Accessibility: Provide a free or low-cost platform where knowledge is accessible to all. Community Engagement: Foster a vibrant learning community with meaningful interactions. Innovation: Leverage AI to maintain high standards of content and user experience. Conclusion: IVAN.ed aims to bridge the gap between traditional education and modern social media, creating an interactive and engaging space for learning. By prioritizing user experience and content quality, IVAN.ed will empower educators and learners alike, making education more accessible and impactful. THIS MESSAGE WAS GENERATED USING GPT , SINCE I AM NOT VERY GOOD AN CONVEING MY IDEAS , BUT NOW I NEED PEOPLE TO SEE THIS IDEA AND CRITIZE IT OR EVEN GIVE ME SOME IDEAS TO MAKE IT BETTER , BUT THIS IS JUST THE BLUEPRINT AND I HAVEN'T EVEN BEGUN THE ACTUAL DEVELOPMENT PHASE, BUT I AM OPEN FOR SOME HELP ! -thank you if you read it this far

How to get that big idea for your next business? Use trends!
reddit
LLM Vibe Score0
Human Vibe Score1
IRemember123This week

How to get that big idea for your next business? Use trends!

Hello entrepreneurs and aspiring business owners, I am Mikael and I want to share a post about how to spot business ideas. If you're wondering who the owl is, it's Agent O, my sidekick (please bear with him... or me, if you can). Let's get on to it. So, there are basically two ways of getting ideas for your new business: Find a service, product or experience that's already working. Identify and ride a trend. 🦉 : Third, have a rich relative pass you their business and sip margaritas by the sea while scrolling Reddit for the rest of your life! 🕵️ : Refrain yourself, I just got started ffs, I don't want to get banned! So, what are trends? Trends are patterns of adoption of a product, service or experience by people who want to satisfy a common need. Cool, huh? How trends start Trends emerge and evolve as temporary or permanent solutions to human needs. All products, services and experiences are the expression of human needs manifested through a perceived lack, which we humans interpret as problems. Let me make this more clear. Humans have needs: from basic (food, shelter, safety) to advanced (community, knowledge) to evolved (self actualization, spirituality) and everything in between. Don’t see this as a hierarchy, as it’s usually depicted with Maslow’s pyramid. See it as cycles with different degrees of impact on humans that vary in time and intensity. 🦉 : WHAT!?? 🕵️ : Hear me out… How Trends Affect Society Human needs are physical, emotional, intellectual and spiritual. Every day we feel the impact of those needs with different degrees of required fulfillment. You can’t go on without air for more than a few minutes. You can’t live without food and water for more than a few days. So, when it comes to the needs of the body, these have a shorter timeframe in which they need to be addressed. 🦉 : Ahh, I see what you did there… \\🕵️ \\: Thanks! But you can also live with an unfulfilled need for love or friends for a long time. You can live with a decaying health as well. And you also can live your entire life without finding out if there is a God or not. Humans perceive needs as something they lack within, which in turn is expressed as a problem on the outside. I lack food or water, this will create a problem for my survival. So I need to find food and water in my environment. This lack creates a behavior seeking a product, service or experience to fulfill that need. Makes sense? 🦉 : I just went out and got me a “Mice à la Forest” dinner! 🕵️: Bon appétit! See, Agent O fulfilled a bodily need. That’s what animals do, as they’re driven by instinct and are governed by natural laws (survive, reproduce, sleep, repeat). Humans are driven by more complex needs, as our intellect and emotions allow us to override those basic primary instincts. Why Trends Are Important What an entrepreneur does is to shift the perspective: instead of seeing a lack, he/she sees an opportunity by asking the question: how can I fulfill this need? Or, even better put: how can I help people by solving their problem? That’s the first step to solving a problem: asking a question. That is why the best products are actually problems solved by entrepreneurs who work to solve their own need for a product, service or experience. They then provide it to other people for a cost. Easy, right? That’s what entrepreneurship is: solving a problem. The bigger the problem, the bigger the impact. The bigger the impact, the higher the revenue. It’s easier to understand trends now, isn’t it? You can see that trends are nothing more than the initial adoption of a product, service or experience by a group of people who are looking for a solution to their common need. 🦉 : Did you get that from a book? 🕵️ : You snore when you sleep… ¯\\(\ツ)/\¯ 🦉 : $@#&\*! Hooman! Needs are the foundation on which the modern world is built. Once you understand needs, you fundamentally change your perception of problems into opportunities. This mental shift is the entrepreneurial mindset: where others see problems, you see solutions. Where Do Trends Start So, to recap: human needs are translated into problems. Founders understand the root of the problem (the need) and create products, services, experiences as solutions to those needs. They offer the solution to the public through startups and companies, which belong to a specific niche in a particular industry. 🦉 : Aaah, so that’s why it’s called venture capital? 🕵️ : Yeah, because you’re venturing into a new endeavor to let people know about your solution to their (and ideally your) problem. 🦉 : So if you use ads to market your venture, it’s an adventure? 🕵️ : I see what you did there… If the need behind the adoption is strong and real enough, that trend will translate into a niche within an industry. If the adoption isn’t driven by strong fundamental needs, it will turn into a fad and disappear from the perception of the public, no matter how much marketing money is thrown at it. This happens because the solution (product/service/experience) to the need didn’t create the physical, intellectual or emotional response required to create a recurring behavior around it. Remember this: Problem (why) -> Behavior (how) -> Solution (what) Understand this: there are multiple types of trends. There are product or service trends. There are industry driven trends. There are tendency driven trends, like the emergence of a new paradigm that improves a lot of industries (yes, I’m looking at you, AI). Where Do Trends Come From So now you can see that trends are patterns of adoption related to a specific human need that is addressed through one or multiple products or services. This is a bottom up direction coming from evolution. Multiple trends in different industries also emerge from a theme, which is a bigger vision of a human effort to address a high level problem. This is a top down direction, coming from implementation (by governments, different organizations or other interested parties with the power to influence changes at mass level). Conclusion Now you have a better understanding of trends by looking at them through the lens of human needs. Also, you might also understand time better because you realize that human needs have different degrees of impact in time and intensity. So you now see that trends don’t only relate to individuals, but also to groups of people, from the smallest community to countries and even global needs. That is the reason you’ll sometimes hear some say that time is a flat circle: because clothes change, but humans are quite the same. Needs don’t change a lot in time, just the way we address and solve them. Here’s an interesting game for you: take a look at some behaviors in your life. Which of them are driven by a bodily need, which by an intellectual or emotional one? Which ones are completely automated and you had no idea you were doing? How are these behaviors controlling parts of your life that you were unaware of until now? If you made it this far, thank you for taking the time to read this. I hope you enjoyed it, found it useful and entertaining. Ofc, I value your opinion and welcome it in the comments. Thank you!

How to get that big idea for your next business? Use trends!
reddit
LLM Vibe Score0
Human Vibe Score1
IRemember123This week

How to get that big idea for your next business? Use trends!

Hello entrepreneurs and aspiring business owners, I am Mikael and I want to share a post about how to spot business ideas. If you're wondering who the owl is, it's Agent O, my sidekick (please bear with him... or me, if you can). Let's get on to it. So, there are basically two ways of getting ideas for your new business: Find a service, product or experience that's already working. Identify and ride a trend. 🦉 : Third, have a rich relative pass you their business and sip margaritas by the sea while scrolling Reddit for the rest of your life! 🕵️ : Refrain yourself, I just got started ffs, I don't want to get banned! So, what are trends? Trends are patterns of adoption of a product, service or experience by people who want to satisfy a common need. Cool, huh? How trends start Trends emerge and evolve as temporary or permanent solutions to human needs. All products, services and experiences are the expression of human needs manifested through a perceived lack, which we humans interpret as problems. Let me make this more clear. Humans have needs: from basic (food, shelter, safety) to advanced (community, knowledge) to evolved (self actualization, spirituality) and everything in between. Don’t see this as a hierarchy, as it’s usually depicted with Maslow’s pyramid. See it as cycles with different degrees of impact on humans that vary in time and intensity. 🦉 : WHAT!?? 🕵️ : Hear me out… How Trends Affect Society Human needs are physical, emotional, intellectual and spiritual. Every day we feel the impact of those needs with different degrees of required fulfillment. You can’t go on without air for more than a few minutes. You can’t live without food and water for more than a few days. So, when it comes to the needs of the body, these have a shorter timeframe in which they need to be addressed. 🦉 : Ahh, I see what you did there… \\🕵️ \\: Thanks! But you can also live with an unfulfilled need for love or friends for a long time. You can live with a decaying health as well. And you also can live your entire life without finding out if there is a God or not. Humans perceive needs as something they lack within, which in turn is expressed as a problem on the outside. I lack food or water, this will create a problem for my survival. So I need to find food and water in my environment. This lack creates a behavior seeking a product, service or experience to fulfill that need. Makes sense? 🦉 : I just went out and got me a “Mice à la Forest” dinner! 🕵️: Bon appétit! See, Agent O fulfilled a bodily need. That’s what animals do, as they’re driven by instinct and are governed by natural laws (survive, reproduce, sleep, repeat). Humans are driven by more complex needs, as our intellect and emotions allow us to override those basic primary instincts. Why Trends Are Important What an entrepreneur does is to shift the perspective: instead of seeing a lack, he/she sees an opportunity by asking the question: how can I fulfill this need? Or, even better put: how can I help people by solving their problem? That’s the first step to solving a problem: asking a question. That is why the best products are actually problems solved by entrepreneurs who work to solve their own need for a product, service or experience. They then provide it to other people for a cost. Easy, right? That’s what entrepreneurship is: solving a problem. The bigger the problem, the bigger the impact. The bigger the impact, the higher the revenue. It’s easier to understand trends now, isn’t it? You can see that trends are nothing more than the initial adoption of a product, service or experience by a group of people who are looking for a solution to their common need. 🦉 : Did you get that from a book? 🕵️ : You snore when you sleep… ¯\\(\ツ)/\¯ 🦉 : $@#&\*! Hooman! Needs are the foundation on which the modern world is built. Once you understand needs, you fundamentally change your perception of problems into opportunities. This mental shift is the entrepreneurial mindset: where others see problems, you see solutions. Where Do Trends Start So, to recap: human needs are translated into problems. Founders understand the root of the problem (the need) and create products, services, experiences as solutions to those needs. They offer the solution to the public through startups and companies, which belong to a specific niche in a particular industry. 🦉 : Aaah, so that’s why it’s called venture capital? 🕵️ : Yeah, because you’re venturing into a new endeavor to let people know about your solution to their (and ideally your) problem. 🦉 : So if you use ads to market your venture, it’s an adventure? 🕵️ : I see what you did there… If the need behind the adoption is strong and real enough, that trend will translate into a niche within an industry. If the adoption isn’t driven by strong fundamental needs, it will turn into a fad and disappear from the perception of the public, no matter how much marketing money is thrown at it. This happens because the solution (product/service/experience) to the need didn’t create the physical, intellectual or emotional response required to create a recurring behavior around it. Remember this: Problem (why) -> Behavior (how) -> Solution (what) Understand this: there are multiple types of trends. There are product or service trends. There are industry driven trends. There are tendency driven trends, like the emergence of a new paradigm that improves a lot of industries (yes, I’m looking at you, AI). Where Do Trends Come From So now you can see that trends are patterns of adoption related to a specific human need that is addressed through one or multiple products or services. This is a bottom up direction coming from evolution. Multiple trends in different industries also emerge from a theme, which is a bigger vision of a human effort to address a high level problem. This is a top down direction, coming from implementation (by governments, different organizations or other interested parties with the power to influence changes at mass level). Conclusion Now you have a better understanding of trends by looking at them through the lens of human needs. Also, you might also understand time better because you realize that human needs have different degrees of impact in time and intensity. So you now see that trends don’t only relate to individuals, but also to groups of people, from the smallest community to countries and even global needs. That is the reason you’ll sometimes hear some say that time is a flat circle: because clothes change, but humans are quite the same. Needs don’t change a lot in time, just the way we address and solve them. Here’s an interesting game for you: take a look at some behaviors in your life. Which of them are driven by a bodily need, which by an intellectual or emotional one? Which ones are completely automated and you had no idea you were doing? How are these behaviors controlling parts of your life that you were unaware of until now? If you made it this far, thank you for taking the time to read this. I hope you enjoyed it, found it useful and entertaining. Ofc, I value your opinion and welcome it in the comments. Thank you!

An honest opinion about start-up idea
reddit
LLM Vibe Score0
Human Vibe Score1
Comfortable_Mud1233This week

An honest opinion about start-up idea

You will be helpful to us especially if you have worked with a lot of data (whether in a corporation or somewhere else). We aim to develop a document library platform that aggregates data from various storage services such as Amazon S3 (AWS) and Google Cloud Storage (GCP). The platform serves as a centralized interface or "panel" where users within an organization can access and display documents stored across different sources. Key features include: Data aggregation without storage: The platform pulls data from multiple sources but does not store it locally. This approach minimizes data redundancy and storage costs. AI-powered semantic search: Utilizes artificial intelligence to perform semantic searches across files, enabling users to find documents based on context and meaning rather than just keywords. Tagging and versioning: Supports the addition of tags for better categorization and tracking of different versions of files. The solution targets companies handling large volumes of data and documents dispersed across various storage services. Strengths we found: Non-invasive integration: Eliminates the need for data migration, reducing setup time and complexity. Enhanced search capabilities: AI-driven semantic search outperforms basic keyword searches, saving time. Cross-platform functionality: Provides a level of interoperability that competitors lack. Cost efficiency: Avoids additional storage costs and reduces time spent searching for documents. Weaknesses that we see: Limited feature set compared to ECMs: May lack some advanced features like workflow automation, collaboration tools, and compliance auditing provided by ECMs. We're new: so no trust. Is this something that companies would want to integrate and pay for? Thanks a lot, it can save us a lot of time :)

TiCs -where innovation meets intelligence
reddit
LLM Vibe Score0
Human Vibe Score1
MohammadBaisThis week

TiCs -where innovation meets intelligence

Be Part of India’s AI Revolution – Join the TiCs Movement! We are TiCs (Tuba International Cooperative Society)—India’s first global AI powerhouse. We’re not just building a company; we’re launching a movement that will redefine AI-driven healthcare, fitness, and well-being. Through our brands WellNest (AI-powered health ecosystem) and Zenova (next-gen smart wearables), we are pioneering a future where technology truly understands and enhances human health. Why Are We Calling You? We’re assembling a community of passionate minds—AI enthusiasts, developers, designers, innovators, and problem-solvers—who want to be part of something bigger. This is NOT an internship. This is NOT a job. This is a mission to build the future of health-tech. What’s in It for You? ✅ Work on groundbreaking AI & LLM projects that solve real-world healthcare problems ✅ Hands-on experience in AI, ML, IoT, and smart wearables ✅ Mentorship & learning opportunities from top AI leaders ✅ Exclusive perks like health, wellness, and gym packages ✅ Recognition & growth opportunities—top contributors will be given leadership roles as we scale ✅ Certificates & endorsements to showcase your contributions ✅ Opportunity to be part of a global AI-led revolution in healthcare & fitness ✅ Network with like-minded innovators, entrepreneurs, and industry pioneers ✅ Early access to WellNest & Zenova products and AI-driven health plans ✅ Possibility of paid roles & equity-based opportunities for the most dedicated members Who Should Join? Students & fresh graduates eager to apply their skills AI & tech enthusiasts passionate about real-world innovation Developers, designers, and creators who want to build something impactful Anyone who believes in the power of AI for good and wants to contribute This is More Than Just a Tech Project We’re building an AI-powered health revolution. If you want to be part of something that changes lives, breaks barriers, and creates real impact, this is your chance. Movements aren’t built by employees—they are led by believers. If you believe in the power of AI to transform health, join us and let’s build the future together!

nine
github
LLM Vibe Score0.406
Human Vibe Score0.000678327714013925
NethermindEthMar 28, 2025

nine

NINE - Neural Interconnected Nodes Engine A flexible framework for building a distributed network of AI agents that work everywhere (STD, WASM, TEE) with a dynamic interface and hot-swappable components. One of the key concepts of the framework is a meta-layer that enables building software systems in a No-code style, where the entire integration is handled by the LLM. Documentation | Telegram | X | Discord Overview Project Structure The project is built using Rust (full-stack) and organized as a workspace consisting of two major groups: substance/ - The core components of the system, responsible for interaction. particles/ - Plugins for the system that enable additional functionalities. examples/ - Usage examples of the framework. Use cases The following cases will have a minimal implementation, and they will be used to track the progress of the framework and its flexibility in building such systems. ☑️ Chatbots - AI-driven natural language chatbots for customer support, virtual assistants, and automation. ☑️ AI-governed blockchains (ChaosChain) - Self-regulating and intelligent blockchain ecosystems with automated decision-making. ⬜ Personal AI Assistant with dynamic UI - AI that generates adaptive and context-aware user interfaces on demand. ☑️ AI-powered trading bots - Autonomous financial agents for high-frequency trading and portfolio management. ⬜ Intelligent email assistant - AI for reading, summarizing, filtering, and responding to emails autonomously. ⬜ Interactivity in home appliances - AI-powered automation for home appliances, making them responsive and adaptive. ⬜ On-demand observability and awareness in DevOps - AI-driven insights, predictive monitoring, and automated issue detection in IT systems. ⬜ AI-powered developer tools - AI agents assisting with code generation, debugging, and software optimization. ⬜ Autonomous research agent - Self-learning AI for data analysis, knowledge discovery, and hypothesis testing. Status: ⬜ Not started | ☑️ In Progress | ✅ Completed Interfaces The platform provides No-code interfaces that automatically adapt to your needs and use LLM for system management. ☑️ Stdio - A console interface that also allows interaction with models through the terminal or via scripts. ☑️ TUI - An advanced console interface with an informative dashboard and the ability to interact more comprehensively with the system. ☑️ GUI - A graphical immediate-state interface suitable for embedded systems with real-time information rendering. ⬜ WEB - The ability to interact with the system through a web browser, such as from a mobile phone. ⬜ Voice - An interface for people with disabilities or those who prefer interaction without a graphical representation (e.g., voice control). ⬜ API - On-the-fly API creation for your system, providing a formal interaction method. This includes encapsulating an entire mesh system into a simple tool for LLM. Features (goals) Built on Rust and implemented as hybrid actor-state machines. Supports various LLMs, tools, and extensibility. Hot model swapping without restarting. Real-time configuration adjustment. Distributed agents, the ability to run components on different machines. Provides a dynamic user interface (UI9) that is automatically generated for interacting with a network of agents. Usage An agent is a substance that assembles from components (particles). Connections automatically form between them, bringing the agent to life: License This project is licensed under the [MIT license]. [MIT license]: https://github.com/NethermindEth/nine/blob/trunk/LICENSE Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, shall be licensed as MIT, without any additional terms or conditions.

xpert
github
LLM Vibe Score0.457
Human Vibe Score0.0831216059433162
xpert-aiMar 28, 2025

xpert

English | 中文 [uri_license]: https://www.gnu.org/licenses/agpl-3.0.html [urilicenseimage]: https://img.shields.io/badge/License-AGPL%20v3-blue.svg Xpert Cloud · Self-hosting · Documentation · Enterprise inquiry Open-Source AI Platform for Enterprise Data Analysis, Indicator Management and Agents Orchestration Xpert AI is an open-source enterprise-level AI system that perfectly integrates two major platforms: agent orchestration and data analysis. 💡 What's New Agent and Workflow Hybrid Architecture In today's rapidly evolving AI landscape, enterprises face a critical dilemma: how to balance the creativity of LLMs with the stability of processes? While purely agent-based architectures offer flexibility, they are difficult to control; traditional workflows, though reliable, lack adaptability. The Agent and Workflow Hybrid Architecture of the Xpert AI platform is designed to resolve this conflict — it allows AI to possess "free will" while adhering to "rules and order." !agent-workflow-hybrid-architecture Blog - Agent and Workflow Hybrid Architecture Agent Orchestration Platform By coordinating the collaboration of multiple agents, Xpert completes complex tasks. Xpert integrates different types of AI agents through an efficient management mechanism, utilizing their capabilities to solve multidimensional problems. Xpert Agents Data Analysis Platform An agile data analysis platform based on cloud computing for multidimensional modeling, indicator management, and BI display. It supports connecting to various data sources, achieving efficient and flexible data analysis and visualization, and provides multiple intelligent analysis functions and tools to help enterprises quickly and accurately discover business value and make operational decisions. ChatBI ChatBI is an innovative feature we are introducing, combining chat functionality with business intelligence (BI) analysis capabilities. It offers users a more intuitive and convenient data analysis experience through natural language interaction. ChatBI_Demo.mp4 🚀 Quick Start Before installing Xpert, make sure your machine meets the following minimum system requirements: CPU >= 2 Core RAM >= 4 GiB Node.js (ESM and CommonJS) - 18.x, 19.x, 20.x, 22.x The easiest way to start the Xpert server is through docker compose. Before running Xpert with the following commands, make sure that Docker and Docker Compose are installed on your machine: After running, you can access the Xpert dashboard in your browser at http://localhost/onboarding and start the initialization process. Please check our Wiki - Development to get started quickly. 🎯 Mission Empowering enterprises with intelligent collaboration and data-driven insights through innovative AI orchestration and agile analytics. 🌼 Screenshots Show / Hide Screenshots Pareto analysis open in new tab !Pareto analysis Screenshot Product profit analysis open in new tab !Product profit analysis Screenshot Reseller analysis open in new tab !Reseller analysis Screenshot Bigview dashboard open in new tab !Bigview dashboard Screenshot Indicator application open in new tab !Indicator application Screenshot Indicator mobile app open in new tab !Indicator mobile app Screenshot 💻 Demo, Downloads, Testing and Production Demo Xpert AI Platform Demo at . Notes: You can generate samples data in the home dashbaord page. Production (SaaS) Xpert AI Platform SaaS is available at . Note: it's currently in Alpha version / in testing mode, please use it with caution! 🧱 Technology Stack and Requirements TypeScript language NodeJs / NestJs Nx Angular RxJS TypeORM Langchain ECharts Java Mondrian For Production, we recommend: PostgreSQL PM2 See also README.md and CREDITS.md files in relevant folders for lists of libraries and software included in the Platform, information about licenses, and other details 📄 Documentation Please refer to our official Platform Documentation and to our Wiki (WIP). 💌 Contact Us For business inquiries: Xpert AI Platform @ Twitter 🛡️ License We support the open-source community. This software is available under the following licenses: Xpert AI Platform Community Edition Xpert AI Platform Small Business Xpert AI Platform Enterprise Please see LICENSE for more information on licenses. 💪 Thanks to our Contributors Contributors Please give us :star: on Github, it helps! You are more than welcome to submit feature requests in the Xpert AI repo Pull requests are always welcome! Please base pull requests against the develop branch and follow the contributing guide.

Prompt_Engineering
github
LLM Vibe Score0.611
Human Vibe Score0.9298414218113789
NirDiamantMar 28, 2025

Prompt_Engineering

🌟 Support This Project: Your sponsorship fuels innovation in prompt engineering development. Become a sponsor to help maintain and expand this valuable resource! Prompt Engineering Techniques: Comprehensive Repository for Development and Implementation 🖋️ Welcome to one of the most extensive and dynamic collections of Prompt Engineering tutorials and implementations available today. This repository serves as a comprehensive resource for learning, building, and sharing prompt engineering techniques, ranging from basic concepts to advanced strategies for leveraging large language models. 📫 Stay Updated! 🚀Cutting-edgeUpdates 💡ExpertInsights 🎯Top 0.1%Content Join over 15,000 of AI enthusiasts getting unique cutting-edge insights and free tutorials! Plus, subscribers get exclusive early access and special discounts to our upcoming RAG Techniques course! Introduction Prompt engineering is at the forefront of artificial intelligence, revolutionizing the way we interact with and leverage AI technologies. This repository is designed to guide you through the development journey, from basic prompt structures to advanced, cutting-edge techniques. Our goal is to provide a valuable resource for everyone - from beginners taking their first steps in AI to seasoned practitioners pushing the boundaries of what's possible. By offering a range of examples from foundational to complex, we aim to facilitate learning, experimentation, and innovation in the rapidly evolving field of prompt engineering. Furthermore, this repository serves as a platform for showcasing innovative prompt engineering techniques. Whether you've developed a novel approach or found an innovative application for existing techniques, we encourage you to share your work with the community. 📖 Get the Fully Explained Version of This Repo This repository contains 22 hands-on Jupyter Notebook tutorials covering key prompt engineering techniques. If you want to go deeper with full explanations, intuitive insights, and structured exercises, check out the expanded version in book format: 📚 Prompt Engineering from Zero to Hero 📖 All 22 techniques from this repo, fully explained in depth 🧠 Step-by-step breakdowns of key concepts & best practices 🏋️ Hands-on exercises to sharpen your skills 🎯 Designed for learners who want a structured, guided approach 📄 Instant access to the PDF upon purchase 📱 Readable on any device – computer, tablet, or phone 💡 Subscribers to the DiamantAI newsletter receive an exclusive 33% (!) discount on the book. 👉 Get the full explained version here Related Projects 📚 Explore my comprehensive guide on RAG techniques to learn how to enhance AI systems with external knowledge retrieval, complementing language model capabilities with rich, up-to-date information. 🤖 Dive into my GenAI Agents Repository for a wide range of AI agent implementations and tutorials, from simple conversational bots to complex, multi-agent systems for various applications. A Community-Driven Knowledge Hub This repository grows stronger with your contributions! Join our vibrant Discord community — the central hub for shaping and advancing this project together 🤝 DiamantAI Discord Community Whether you're a novice eager to learn or an expert ready to share your knowledge, your insights can shape the future of prompt engineering. Join us to propose ideas, get feedback, and collaborate on innovative implementations. For contribution guidelines, please refer to our CONTRIBUTING.md file. Let's advance prompt engineering technology together! 🔗 For discussions on GenAI, or to explore knowledge-sharing opportunities, feel free to connect on LinkedIn. Key Features 🎓 Learn prompt engineering techniques from beginner to advanced levels 🧠 Explore a wide range of prompt structures and applications 📚 Step-by-step tutorials and comprehensive documentation 🛠️ Practical, ready-to-use prompt implementations 🌟 Regular updates with the latest advancements in prompt engineering 🤝 Share your own prompt engineering creations with the community Prompt Engineering Techniques Explore our extensive list of prompt engineering techniques, ranging from basic to advanced: 🌱 Fundamental Concepts Introduction to Prompt Engineering Overview 🔎 A comprehensive introduction to the fundamental concepts of prompt engineering in the context of AI and language models. Implementation 🛠️ Combines theoretical explanations with practical demonstrations, covering basic concepts, structured prompts, comparative analysis, and problem-solving applications. Basic Prompt Structures Overview 🔎 Explores two fundamental types of prompt structures: single-turn prompts and multi-turn prompts (conversations). Implementation 🛠️ Uses OpenAI's GPT model and LangChain to demonstrate single-turn and multi-turn prompts, prompt templates, and conversation chains. Prompt Templates and Variables Overview 🔎 Introduces creating and using prompt templates with variables, focusing on Python and the Jinja2 templating engine. Implementation 🛠️ Covers template creation, variable insertion, conditional content, list processing, and integration with the OpenAI API. 🔧 Core Techniques Zero-Shot Prompting Overview 🔎 Explores zero-shot prompting, allowing language models to perform tasks without specific examples or prior training. Implementation 🛠️ Demonstrates direct task specification, role-based prompting, format specification, and multi-step reasoning using OpenAI and LangChain. Few-Shot Learning and In-Context Learning Overview 🔎 Covers Few-Shot Learning and In-Context Learning techniques using OpenAI's GPT models and the LangChain library. Implementation 🛠️ Implements basic and advanced few-shot learning, in-context learning, and best practices for example selection and evaluation. Chain of Thought (CoT) Prompting Overview 🔎 Introduces Chain of Thought (CoT) prompting, encouraging AI models to break down complex problems into step-by-step reasoning processes. Implementation 🛠️ Covers basic and advanced CoT techniques, applying them to various problem-solving scenarios and comparing results with standard prompts. 🔍 Advanced Strategies Self-Consistency and Multiple Paths of Reasoning Overview 🔎 Explores techniques for generating diverse reasoning paths and aggregating results to improve AI-generated answers. Implementation 🛠️ Demonstrates designing diverse reasoning prompts, generating multiple responses, implementing aggregation methods, and applying self-consistency checks. Constrained and Guided Generation Overview 🔎 Focuses on techniques to set up constraints for model outputs and implement rule-based generation. Implementation 🛠️ Uses LangChain's PromptTemplate for structured prompts, implements constraints, and explores rule-based generation techniques. Role Prompting Overview 🔎 Explores assigning specific roles to AI models and crafting effective role descriptions. Implementation 🛠️ Demonstrates creating role-based prompts, assigning roles to AI models, and refining role descriptions for various scenarios. 🚀 Advanced Implementations Task Decomposition in Prompts Overview 🔎 Explores techniques for breaking down complex tasks and chaining subtasks in prompts. Implementation 🛠️ Covers problem analysis, subtask definition, targeted prompt engineering, sequential execution, and result synthesis. Prompt Chaining and Sequencing Overview 🔎 Demonstrates how to connect multiple prompts and build logical flows for complex AI-driven tasks. Implementation 🛠️ Explores basic prompt chaining, sequential prompting, dynamic prompt generation, and error handling within prompt chains. Instruction Engineering Overview 🔎 Focuses on crafting clear and effective instructions for language models, balancing specificity and generality. Implementation 🛠️ Covers creating and refining instructions, experimenting with different structures, and implementing iterative improvement based on model responses. 🎨 Optimization and Refinement Prompt Optimization Techniques Overview 🔎 Explores advanced techniques for optimizing prompts, focusing on A/B testing and iterative refinement. Implementation 🛠️ Demonstrates A/B testing of prompts, iterative refinement processes, and performance evaluation using relevant metrics. Handling Ambiguity and Improving Clarity Overview 🔎 Focuses on identifying and resolving ambiguous prompts and techniques for writing clearer prompts. Implementation 🛠️ Covers analyzing ambiguous prompts, implementing strategies to resolve ambiguity, and exploring techniques for writing clearer prompts. Prompt Length and Complexity Management Overview 🔎 Explores techniques for managing prompt length and complexity when working with large language models. Implementation 🛠️ Demonstrates techniques for balancing detail and conciseness, and strategies for handling long contexts including chunking, summarization, and iterative processing. 🛠️ Specialized Applications Negative Prompting and Avoiding Undesired Outputs Overview 🔎 Explores negative prompting and techniques for avoiding undesired outputs from large language models. Implementation 🛠️ Covers basic negative examples, explicit exclusions, constraint implementation using LangChain, and methods for evaluating and refining negative prompts. Prompt Formatting and Structure Overview 🔎 Explores various prompt formats and structural elements, demonstrating their impact on AI model responses. Implementation 🛠️ Demonstrates creating various prompt formats, incorporating structural elements, and comparing responses from different prompt structures. Prompts for Specific Tasks Overview 🔎 Explores the creation and use of prompts for specific tasks: text summarization, question-answering, code generation, and creative writing. Implementation 🛠️ Covers designing task-specific prompt templates, implementing them using LangChain, executing with sample inputs, and analyzing outputs for each task type. 🌍 Advanced Applications Multilingual and Cross-lingual Prompting Overview 🔎 Explores techniques for designing prompts that work effectively across multiple languages and for language translation tasks. Implementation 🛠️ Covers creating multilingual prompts, implementing language detection and adaptation, designing cross-lingual translation prompts, and handling various writing systems and scripts. Ethical Considerations in Prompt Engineering Overview 🔎 Explores the ethical dimensions of prompt engineering, focusing on avoiding biases and creating inclusive and fair prompts. Implementation 🛠️ Covers identifying biases in prompts, implementing strategies to create inclusive prompts, and methods to evaluate and improve the ethical quality of AI outputs. Prompt Security and Safety Overview 🔎 Focuses on preventing prompt injections and implementing content filters in prompts for safe and secure AI applications. Implementation 🛠️ Covers techniques for prompt injection prevention, content filtering implementation, and testing the effectiveness of security and safety measures. Evaluating Prompt Effectiveness Overview 🔎 Explores methods and techniques for evaluating the effectiveness of prompts in AI language models. Implementation 🛠️ Covers setting up evaluation metrics, implementing manual and automated evaluation techniques, and providing practical examples using OpenAI and LangChain. Getting Started To begin exploring and implementing prompt engineering techniques: Clone this repository: Navigate to the technique you're interested in: Follow the detailed implementation guide in each technique's notebook. Contributing We welcome contributions from the community! If you have a new technique or improvement to suggest: Fork the repository Create your feature branch: git checkout -b feature/AmazingFeature Commit your changes: git commit -m 'Add some AmazingFeature' Push to the branch: git push origin feature/AmazingFeature Open a pull request License This project is licensed under a custom non-commercial license - see the LICENSE file for details. ⭐️ If you find this repository helpful, please consider giving it a star! Keywords: Prompt Engineering, AI, Machine Learning, Natural Language Processing, LLM, Language Models, NLP, Conversational AI, Zero-Shot Learning, Few-Shot Learning, Chain of Thought

Production-Level-Deep-Learning
github
LLM Vibe Score0.619
Human Vibe Score0.8326638433689385
alirezadirMar 28, 2025

Production-Level-Deep-Learning

:bulb: A Guide to Production Level Deep Learning :clapper: :scroll: :ferry: 🇨🇳 Translation in Chinese.md) :label: NEW: Machine Learning Interviews :label: Note: This repo is under continous development, and all feedback and contribution are very welcome :blush: Deploying deep learning models in production can be challenging, as it is far beyond training models with good performance. Several distinct components need to be designed and developed in order to deploy a production level deep learning system (seen below): This repo aims to be an engineering guideline for building production-level deep learning systems which will be deployed in real world applications. The material presented here is borrowed from Full Stack Deep Learning Bootcamp (by Pieter Abbeel at UC Berkeley, Josh Tobin at OpenAI, and Sergey Karayev at Turnitin), TFX workshop by Robert Crowe, and Pipeline.ai's Advanced KubeFlow Meetup by Chris Fregly. Machine Learning Projects Fun :flushed: fact: 85% of AI projects fail. 1 Potential reasons include: Technically infeasible or poorly scoped Never make the leap to production Unclear success criteria (metrics) Poor team management ML Projects lifecycle Importance of understanding state of the art in your domain: Helps to understand what is possible Helps to know what to try next Mental Model for ML project The two important factors to consider when defining and prioritizing ML projects: High Impact: Complex parts of your pipeline Where "cheap prediction" is valuable Where automating complicated manual process is valuable Low Cost: Cost is driven by: Data availability Performance requirements: costs tend to scale super-linearly in the accuracy requirement Problem difficulty: Some of the hard problems include: unsupervised learning, reinforcement learning, and certain categories of supervised learning Full stack pipeline The following figure represents a high level overview of different components in a production level deep learning system: In the following, we will go through each module and recommend toolsets and frameworks as well as best practices from practitioners that fit each component. Data Management 1.1 Data Sources Supervised deep learning requires a lot of labeled data Labeling own data is costly! Here are some resources for data: Open source data (good to start with, but not an advantage) Data augmentation (a MUST for computer vision, an option for NLP) Synthetic data (almost always worth starting with, esp. in NLP) 1.2 Data Labeling Requires: separate software stack (labeling platforms), temporary labor, and QC Sources of labor for labeling: Crowdsourcing (Mechanical Turk): cheap and scalable, less reliable, needs QC Hiring own annotators: less QC needed, expensive, slow to scale Data labeling service companies: FigureEight Labeling platforms: Diffgram: Training Data Software (Computer Vision) Prodigy: An annotation tool powered by active learning (by developers of Spacy), text and image HIVE: AI as a Service platform for computer vision Supervisely: entire computer vision platform Labelbox: computer vision Scale AI data platform (computer vision & NLP) 1.3. Data Storage Data storage options: Object store: Store binary data (images, sound files, compressed texts) Amazon S3 Ceph Object Store Database: Store metadata (file paths, labels, user activity, etc). Postgres is the right choice for most of applications, with the best-in-class SQL and great support for unstructured JSON. Data Lake: to aggregate features which are not obtainable from database (e.g. logs) Amazon Redshift Feature Store: store, access, and share machine learning features (Feature extraction could be computationally expensive and nearly impossible to scale, hence re-using features by different models and teams is a key to high performance ML teams). FEAST (Google cloud, Open Source) Michelangelo Palette (Uber) Suggestion: At training time, copy data into a local or networked filesystem (NFS). 1 1.4. Data Versioning It's a "MUST" for deployed ML models: Deployed ML models are part code, part data. 1 No data versioning means no model versioning. Data versioning platforms: DVC: Open source version control system for ML projects Pachyderm: version control for data Dolt: a SQL database with Git-like version control for data and schema 1.5. Data Processing Training data for production models may come from different sources, including Stored data in db and object stores, log processing, and outputs of other classifiers*. There are dependencies between tasks, each needs to be kicked off after its dependencies are finished. For example, training on new log data, requires a preprocessing step before training. Makefiles are not scalable. "Workflow manager"s become pretty essential in this regard. Workflow orchestration: Luigi by Spotify Airflow by Airbnb: Dynamic, extensible, elegant, and scalable (the most widely used) DAG workflow Robust conditional execution: retry in case of failure Pusher supports docker images with tensorflow serving Whole workflow in a single .py file Development, Training, and Evaluation 2.1. Software engineering Winner language: Python Editors: Vim Emacs VS Code (Recommended by the author): Built-in git staging and diff, Lint code, open projects remotely through ssh Notebooks: Great as starting point of the projects, hard to scale (fun fact: Netflix’s Notebook-Driven Architecture is an exception, which is entirely based on nteract suites). nteract: a next-gen React-based UI for Jupyter notebooks Papermill: is an nteract library built for parameterizing, executing, and analyzing* Jupyter Notebooks. Commuter: another nteract project which provides a read-only display of notebooks (e.g. from S3 buckets). Streamlit: interactive data science tool with applets Compute recommendations 1: For individuals or startups*: Development: a 4x Turing-architecture PC Training/Evaluation: Use the same 4x GPU PC. When running many experiments, either buy shared servers or use cloud instances. For large companies:* Development: Buy a 4x Turing-architecture PC per ML scientist or let them use V100 instances Training/Evaluation: Use cloud instances with proper provisioning and handling of failures Cloud Providers: GCP: option to connect GPUs to any instance + has TPUs AWS: 2.2. Resource Management Allocating free resources to programs Resource management options: Old school cluster job scheduler ( e.g. Slurm workload manager ) Docker + Kubernetes Kubeflow Polyaxon (paid features) 2.3. DL Frameworks Unless having a good reason not to, use Tensorflow/Keras or PyTorch. 1 The following figure shows a comparison between different frameworks on how they stand for "developement" and "production"*. 2.4. Experiment management Development, training, and evaluation strategy: Always start simple Train a small model on a small batch. Only if it works, scale to larger data and models, and hyperparameter tuning! Experiment management tools: Tensorboard provides the visualization and tooling needed for ML experimentation Losswise (Monitoring for ML) Comet: lets you track code, experiments, and results on ML projects Weights & Biases: Record and visualize every detail of your research with easy collaboration MLFlow Tracking: for logging parameters, code versions, metrics, and output files as well as visualization of the results. Automatic experiment tracking with one line of code in python Side by side comparison of experiments Hyper parameter tuning Supports Kubernetes based jobs 2.5. Hyperparameter Tuning Approaches: Grid search Random search Bayesian Optimization HyperBand and Asynchronous Successive Halving Algorithm (ASHA) Population-based Training Platforms: RayTune: Ray Tune is a Python library for hyperparameter tuning at any scale (with a focus on deep learning and deep reinforcement learning). Supports any machine learning framework, including PyTorch, XGBoost, MXNet, and Keras. Katib: Kubernete's Native System for Hyperparameter Tuning and Neural Architecture Search, inspired by Google vizier and supports multiple ML/DL frameworks (e.g. TensorFlow, MXNet, and PyTorch). Hyperas: a simple wrapper around hyperopt for Keras, with a simple template notation to define hyper-parameter ranges to tune. SIGOPT: a scalable, enterprise-grade optimization platform Sweeps from [Weights & Biases] (https://www.wandb.com/): Parameters are not explicitly specified by a developer. Instead they are approximated and learned by a machine learning model. Keras Tuner: A hyperparameter tuner for Keras, specifically for tf.keras with TensorFlow 2.0. 2.6. Distributed Training Data parallelism: Use it when iteration time is too long (both tensorflow and PyTorch support) Ray Distributed Training Model parallelism: when model does not fit on a single GPU Other solutions: Horovod Troubleshooting [TBD] Testing and Deployment 4.1. Testing and CI/CD Machine Learning production software requires a more diverse set of test suites than traditional software: Unit and Integration Testing: Types of tests: Training system tests: testing training pipeline Validation tests: testing prediction system on validation set Functionality tests: testing prediction system on few important examples Continuous Integration: Running tests after each new code change pushed to the repo SaaS for continuous integration: Argo: Open source Kubernetes native workflow engine for orchestrating parallel jobs (incudes workflows, events, CI and CD). CircleCI: Language-Inclusive Support, Custom Environments, Flexible Resource Allocation, used by instacart, Lyft, and StackShare. Travis CI Buildkite: Fast and stable builds, Open source agent runs on almost any machine and architecture, Freedom to use your own tools and services Jenkins: Old school build system 4.2. Web Deployment Consists of a Prediction System and a Serving System Prediction System: Process input data, make predictions Serving System (Web server): Serve prediction with scale in mind Use REST API to serve prediction HTTP requests Calls the prediction system to respond Serving options: Deploy to VMs, scale by adding instances Deploy as containers, scale via orchestration Containers Docker Container Orchestration: Kubernetes (the most popular now) MESOS Marathon Deploy code as a "serverless function" Deploy via a model serving solution Model serving: Specialized web deployment for ML models Batches request for GPU inference Frameworks: Tensorflow serving MXNet Model server Clipper (Berkeley) SaaS solutions Seldon: serve and scale models built in any framework on Kubernetes Algorithmia Decision making: CPU or GPU? CPU inference: CPU inference is preferable if it meets the requirements. Scale by adding more servers, or going serverless. GPU inference: TF serving or Clipper Adaptive batching is useful (Bonus) Deploying Jupyter Notebooks: Kubeflow Fairing is a hybrid deployment package that let's you deploy your Jupyter notebook* codes! 4.5 Service Mesh and Traffic Routing Transition from monolithic applications towards a distributed microservice architecture could be challenging. A Service mesh (consisting of a network of microservices) reduces the complexity of such deployments, and eases the strain on development teams. Istio: a service mesh to ease creation of a network of deployed services with load balancing, service-to-service authentication, monitoring, with few or no code changes in service code. 4.4. Monitoring: Purpose of monitoring: Alerts for downtime, errors, and distribution shifts Catching service and data regressions Cloud providers solutions are decent Kiali:an observability console for Istio with service mesh configuration capabilities. It answers these questions: How are the microservices connected? How are they performing? Are we done? 4.5. Deploying on Embedded and Mobile Devices Main challenge: memory footprint and compute constraints Solutions: Quantization Reduced model size MobileNets Knowledge Distillation DistillBERT (for NLP) Embedded and Mobile Frameworks: Tensorflow Lite PyTorch Mobile Core ML ML Kit FRITZ OpenVINO Model Conversion: Open Neural Network Exchange (ONNX): open-source format for deep learning models 4.6. All-in-one solutions Tensorflow Extended (TFX) Michelangelo (Uber) Google Cloud AI Platform Amazon SageMaker Neptune FLOYD Paperspace Determined AI Domino data lab Tensorflow Extended (TFX) [TBD] Airflow and KubeFlow ML Pipelines [TBD] Other useful links: Lessons learned from building practical deep learning systems Machine Learning: The High Interest Credit Card of Technical Debt Contributing References: [1]: Full Stack Deep Learning Bootcamp, Nov 2019. [2]: Advanced KubeFlow Workshop by Pipeline.ai, 2019. [3]: TFX: Real World Machine Learning in Production

RD-Agent
github
LLM Vibe Score0.548
Human Vibe Score0.27921589729164453
microsoftMar 28, 2025

RD-Agent

🖥️ Live Demo | 🎥 Demo Video ▶️YouTube | 📖 Documentation | 📃 Papers Data Science Agent Preview Check out our demo video showcasing the current progress of our Data Science Agent under development: https://github.com/user-attachments/assets/3eccbecb-34a4-4c81-bce4-d3f8862f7305 📰 News | 🗞️ News | 📝 Description | | -- | ------ | | Support LiteLLM Backend | We now fully support LiteLLM as a backend for integration with multiple LLM providers. | | More General Data Science Agent | 🚀Coming soon! | | Kaggle Scenario release | We release Kaggle Agent, try the new features! | | Official WeChat group release | We created a WeChat group, welcome to join! (🗪QR Code) | | Official Discord release | We launch our first chatting channel in Discord (🗪) | | First release | RDAgent is released on GitHub | 🌟 Introduction RDAgent aims to automate the most critical and valuable aspects of the industrial R&D process, and we begin with focusing on the data-driven scenarios to streamline the development of models and data. Methodologically, we have identified a framework with two key components: 'R' for proposing new ideas and 'D' for implementing them. We believe that the automatic evolution of R&D will lead to solutions of significant industrial value. R&D is a very general scenario. The advent of RDAgent can be your 💰 Automatic Quant Factory (🎥Demo Video|▶️YouTube) 🤖 Data Mining Agent: Iteratively proposing data & models (🎥Demo Video 1|▶️YouTube) (🎥Demo Video 2|▶️YouTube) and implementing them by gaining knowledge from data. 🦾 Research Copilot: Auto read research papers (🎥Demo Video|▶️YouTube) / financial reports (🎥Demo Video|▶️YouTube) and implement model structures or building datasets. 🤖 Kaggle Agent: Auto Model Tuning and Feature Engineering([🎥Demo Video Coming Soon...]()) and implementing them to achieve more in competitions. ... You can click the links above to view the demo. We're continuously adding more methods and scenarios to the project to enhance your R&D processes and boost productivity. Additionally, you can take a closer look at the examples in our 🖥️ Live Demo. ⚡ Quick start You can try above demos by running the following command: 🐳 Docker installation. Users must ensure Docker is installed before attempting most scenarios. Please refer to the official 🐳Docker page for installation instructions. Ensure the current user can run Docker commands without using sudo. You can verify this by executing docker run hello-world. 🐍 Create a Conda Environment Create a new conda environment with Python (3.10 and 3.11 are well-tested in our CI): Activate the environment: 🛠️ Install the RDAgent You can directly install the RDAgent package from PyPI: 💊 Health check rdagent provides a health check that currently checks two things. whether the docker installation was successful. whether the default port used by the rdagent ui is occupied. ⚙️ Configuration The demos requires following ability: ChatCompletion json_mode embedding query For example: If you are using the OpenAI API, you have to configure your GPT model in the .env file like this. However, not every API services support these features by default. For example: AZURE OpenAI, you have to configure your GPT model in the .env file like this. We now support LiteLLM as a backend for integration with multiple LLM providers. If you use LiteLLM Backend to use models, you can configure as follows: For more configuration information, please refer to the documentation. 🚀 Run the Application The 🖥️ Live Demo is implemented by the following commands(each item represents one demo, you can select the one you prefer): Run the Automated Quantitative Trading & Iterative Factors Evolution: Qlib self-loop factor proposal and implementation application Run the Automated Quantitative Trading & Iterative Model Evolution: Qlib self-loop model proposal and implementation application Run the Automated Medical Prediction Model Evolution: Medical self-loop model proposal and implementation application (1) Apply for an account at PhysioNet. (2) Request access to FIDDLE preprocessed data: FIDDLE Dataset. (3) Place your username and password in .env. Run the Automated Quantitative Trading & Factors Extraction from Financial Reports: Run the Qlib factor extraction and implementation application based on financial reports Run the Automated Model Research & Development Copilot: model extraction and implementation application Run the Automated Kaggle Model Tuning & Feature Engineering: self-loop model proposal and feature engineering implementation application Using sf-crime (San Francisco Crime Classification) as an example. Register and login on the Kaggle website. Configuring the Kaggle API. (1) Click on the avatar (usually in the top right corner of the page) -> Settings -> Create New Token, A file called kaggle.json will be downloaded. (2) Move kaggle.json to ~/.config/kaggle/ (3) Modify the permissions of the kaggle.json file. Reference command: chmod 600 ~/.config/kaggle/kaggle.json Join the competition: Click Join the competition -> I Understand and Accept at the bottom of the competition details page. Description of the above example: Kaggle competition data, contains two parts: competition description file (json file) and competition dataset (zip file). We prepare the competition description file for you, the competition dataset will be downloaded automatically when you run the program, as in the example. If you want to download the competition description file automatically, you need to install chromedriver, The instructions for installing chromedriver can be found in the documentation. The Competition List Available can be found here. 🖥️ Monitor the Application Results You can run the following command for our demo program to see the run logs. Note: Although port 19899 is not commonly used, but before you run this demo, you need to check if port 19899 is occupied. If it is, please change it to another port that is not occupied. You can check if a port is occupied by running the following command. 🏭 Scenarios We have applied RD-Agent to multiple valuable data-driven industrial scenarios. 🎯 Goal: Agent for Data-driven R&D In this project, we are aiming to build an Agent to automate Data-Driven R\&D that can 📄 Read real-world material (reports, papers, etc.) and extract key formulas, descriptions of interested features and models, which are the key components of data-driven R&D . 🛠️ Implement the extracted formulas (e.g., features, factors, and models) in runnable codes. Due to the limited ability of LLM in implementing at once, build an evolving process for the agent to improve performance by learning from feedback and knowledge. 💡 Propose new ideas based on current knowledge and observations. 📈 Scenarios/Demos In the two key areas of data-driven scenarios, model implementation and data building, our system aims to serve two main roles: 🦾Copilot and 🤖Agent. The 🦾Copilot follows human instructions to automate repetitive tasks. The 🤖Agent, being more autonomous, actively proposes ideas for better results in the future. The supported scenarios are listed below: | Scenario/Target | Model Implementation | Data Building | | -- | -- | -- | | 💹 Finance | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | 🤖 Iteratively Proposing Ideas & Evolving ▶️YouTube 🦾 Auto reports reading & implementation▶️YouTube | | 🩺 Medical | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | - | | 🏭 General | 🦾 Auto paper reading & implementation▶️YouTube 🤖 Auto Kaggle Model Tuning | 🤖Auto Kaggle feature Engineering | RoadMap: Currently, we are working hard to add new features to the Kaggle scenario. Different scenarios vary in entrance and configuration. Please check the detailed setup tutorial in the scenarios documents. Here is a gallery of successful explorations (5 traces showed in 🖥️ Live Demo). You can download and view the execution trace using this command from the documentation. Please refer to 📖readthedocs_scen for more details of the scenarios. ⚙️ Framework Automating the R&D process in data science is a highly valuable yet underexplored area in industry. We propose a framework to push the boundaries of this important research field. The research questions within this framework can be divided into three main categories: | Research Area | Paper/Work List | |--------------------|-----------------| | Benchmark the R&D abilities | Benchmark | | Idea proposal: Explore new ideas or refine existing ones | Research | | Ability to realize ideas: Implement and execute ideas | Development | We believe that the key to delivering high-quality solutions lies in the ability to evolve R&D capabilities. Agents should learn like human experts, continuously improving their R&D skills. More documents can be found in the 📖 readthedocs. 📃 Paper/Work list 📊 Benchmark Towards Data-Centric Automatic R&D !image 🔍 Research In a data mining expert's daily research and development process, they propose a hypothesis (e.g., a model structure like RNN can capture patterns in time-series data), design experiments (e.g., finance data contains time-series and we can verify the hypothesis in this scenario), implement the experiment as code (e.g., Pytorch model structure), and then execute the code to get feedback (e.g., metrics, loss curve, etc.). The experts learn from the feedback and improve in the next iteration. Based on the principles above, we have established a basic method framework that continuously proposes hypotheses, verifies them, and gets feedback from the real-world practice. This is the first scientific research automation framework that supports linking with real-world verification. For more detail, please refer to our 🖥️ Live Demo page. 🛠️ Development Collaborative Evolving Strategy for Automatic Data-Centric Development !image 🤝 Contributing We welcome contributions and suggestions to improve RD-Agent. Please refer to the Contributing Guide for more details on how to contribute. Before submitting a pull request, ensure that your code passes the automatic CI checks. 📝 Guidelines This project welcomes contributions and suggestions. Contributing to this project is straightforward and rewarding. Whether it's solving an issue, addressing a bug, enhancing documentation, or even correcting a typo, every contribution is valuable and helps improve RDAgent. To get started, you can explore the issues list, or search for TODO: comments in the codebase by running the command grep -r "TODO:". Before we released RD-Agent as an open-source project on GitHub, it was an internal project within our group. Unfortunately, the internal commit history was not preserved when we removed some confidential code. As a result, some contributions from our group members, including Haotian Chen, Wenjun Feng, Haoxue Wang, Zeqi Ye, Xinjie Shen, and Jinhui Li, were not included in the public commits. ⚖️ Legal disclaimer The RD-agent is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. The RD-agent is aimed to facilitate research and development process in the financial industry and not ready-to-use for any financial investment or advice. Users shall independently assess and test the risks of the RD-agent in a specific use scenario, ensure the responsible use of AI technology, including but not limited to developing and integrating risk mitigation measures, and comply with all applicable laws and regulations in all applicable jurisdictions. The RD-agent does not provide financial opinions or reflect the opinions of Microsoft, nor is it designed to replace the role of qualified financial professionals in formulating, assessing, and approving finance products. The inputs and outputs of the RD-agent belong to the users and users shall assume all liability under any theory of liability, whether in contract, torts, regulatory, negligence, products liability, or otherwise, associated with use of the RD-agent and any inputs and outputs thereof.

writer-framework
github
LLM Vibe Score0.51
Human Vibe Score0.014794403025851312
writerMar 28, 2025

writer-framework

What is Framework? Writer Framework is an open-source framework for creating AI applications. Build user interfaces using a visual editor; write the backend code in Python. Writer Framework is fast and flexible with a clean, easily-testable syntax. It provides separation of concerns between UI and business logic, enabling more complex applications. Highlights Reactive and state-driven Writer Framework is fully state-driven and provides separation of concerns between user interface and business logic. The user interface is a template, which is defined visually. The template contains reactive references to state, e.g. @{counter}, and references to event handlers, e.g. when Button is clicked, trigger handle_increment. Flexible Elements are highly customizable with no CSS required, allowing for shadows, button icons, background colors, etc. HTML elements with custom CSS can be included using the HTML Element component. They can serve as containers for built-in components. Fast Event handling adds minimal overhead to your Python code (~1-2ms\*). Streaming (WebSockets) is used to synchronize frontend and backend states. The script only runs once. Non-blocking by default. Events are handled asynchronously in a thread pool running in a dedicated process. \*End-to-end figure, including DOM mutation. Tested locally on a Macbook Air M2. Measurement methodology. Developer-friendly It's all contained in a standard Python package, just one pip install away. User interfaces are saved as JSON, so they can be version controlled together with the rest of the application. Use your local code editor and get instant refreshes when you save your code. Alternatively, use the provided web-based editor. You edit the UI while your app is running. No hitting "Preview" and seeing something completely different to what you expected. Installation and Quickstart Getting started with Writer Framework is easy. It works on Linux, Mac and Windows. The first command will install Writer Framework using pip. The second command will create a demo application in the subfolder "hello" and start Writer Framework Builder, the framework's visual editor, which will be accessible via a local URL. The following commands can be used to create, launch Writer Framework Builder and run an application. Documentation Full documentation, including how to use Writer's AI module and deployment options, is available at Writer. About Writer Writer is the full-stack generative AI platform for enterprises. Quickly and easily build and deploy generative AI apps with a suite of developer tools fully integrated with our platform of LLMs, graph-based RAG tools, AI guardrails, and more. Learn more at writer.com. License This project is licensed under the Apache 2.0 License.

Overmind
github
LLM Vibe Score0.469
Human Vibe Score0.20474237922306593
bencbartlettMar 23, 2025

Overmind

[](https://github.com/bencbartlett/Overmind/releases) [](https://github.com/bencbartlett/Overmind/blob/master/CHANGELOG.md) [](https://bencbartlett.github.io/overmind-docs/) [](https://github.com/bencbartlett/Overmind/wiki) [](https://screeps.slack.com/messages/overmind) [](https://github.com/bencbartlett/Overmind/issues/new) [](https://github.com/bencbartlett/Overmind/issues/new?template=feature_request.md) Current release: Overmind v0.5.2 - Evolution See the changelog for patch notes Documentation is available at the documentation site and the wiki Join the discussion in the #overmind Slack channel! Read blog posts about development Submit an issue here or request a feature here Find me in game here About Overmind What is Screeps? Screeps is an MMO strategy game for programmers. The core objective is to expand your colony, gathering resources and fighting other players along the way. To control your units, you code an AI in JavaScript; everything from moving, mining, building, fighting, and trading is entirely driven by your code. Because Screeps is an MMO, it takes place on a single server that runs 24/7, populated by every other player and their army of creeps. When you log off, your population continues buzzing away with whatever task you set them. Screeps pits your programming prowess head-to-head with other people to see who can think of the most efficient methods of completing tasks or imagine new ways to defeat enemies. What is Overmind? Overmind is my personal codebase that I run on the public server. The structure of the AI is themed loosely around the Zerg's swarm intelligence from Starcraft. Overlords orchestrate Creep actions within each Colony, and the colony Overseer places Directives to adapt to stimuli. Finally, the Assimilator allows all players running Overmind to act as a collective hivemind, sharing creeps and resources and responding jointly to a master ledger of all directives shared by all players. The AI is entirely automated, although it can also run in manual or semiautomatic mode. The latest release should work right out of the box; however, if you find something broken, please submit an issue and I'll try to fix it. Can I use Overmind as my bot? If you're new to Screeps, I would definitely recommend writing your own AI: most of the fun of the game is programming your own bot and watching your little ant farm run! However, I've tried to make the codebase readable and well-documented, so feel free to fork the project or use it as inspiration when writing your AI. If you still want to use Overmind on the public server, that's okay too - there are a number of people already doing this. But please realize that using a mature AI like this gives you a huge advantage over other new players, so don't go out of your way to ruin someone else's fun. In the future, I will be implementing methods for novice players to opt out of excessive aggression by Overmind bots (as long as they don't start a conflict and stay out of its way). Installation Out of the box If you just want to run Overmind without modification, you can copy the compiled main.js file attached to the latest release into your script. While Overmind is fully automated by default, it can be run with varying levels of autonomy; refer to the Overmind wiki for how to configure and operate the bot. Compiling from source To install the full codebase, download or clone the repository. (Please note that while the latest release of Overmind should always be stable, the latest commit may contain unstable features.) Navigate to the Overmind root directory and run . To compile and deploy the codebase, create a screeps.json file from the example file, then do one of the following actions: Compile and deploy to public server: npm run push-main Compile and deploy to private server: npm run push-pserver Compile without deploying: npm run compile Overmind uses rollup to bundle the compiled TypeScript into a single main.js file. The codebase includes functionality to compute checksums for internal validation - if you have a different version of rollup installed globally, different checksums may be computed and some functionality will be disabled. Please ensure the local installation of rollup found in node_modules is used. Setting up the Grafana dashboard Overmind includes a Grafana dashboard (shown below) which tracks detailed operating statistics. To set up the dashboard: Register for grafana service at screepspl.us Setup the ScreepsPlus hosted agent (simpler) or use the NodeJS agent on a free micro instance of Google Compute. Import the dashboard from Overmind.json and change $User to your username. Enjoy your pretty graphs! Design overview Check out the Overmind wiki for in-depth explanations of parts of the design of the AI. (Click the diagram below to see a higher-resolution version.)

bubbln_network-automation
github
LLM Vibe Score0.421
Human Vibe Score0.004537250556463098
olasupoMar 14, 2025

bubbln_network-automation

Bubbln: An AI-driven Network Automation In the world of network engineering, automation has completely transformed the way things work. But, before automation, setting up and managing networks was a tedious job filled with challenges. Engineers had to manually type out configurations, often doing the same tasks repeatedly on different devices. This led to mistakes and wasted time. Then came automation tools like Ansible, Chef, and Puppet, which changed everything. They made network management much easier and allowed for scalability. But there was still a problem: creating automation scripts required a lot of technical know-how and was prone to errors because it relied on human input. And that's why we built Bubbln. It's a game-changer in network engineering, integrating AI into Ansible to take automation to the next level. With Bubbln, we can automatically generate and execute playbooks with incredible accuracy, thereby improving automation efficiency and increasing network engineer’s productivity. It was developed using Python programming language and acts as a bridge between ChatGPT and network systems, making interactions seamless and deployments effortless. Current Capabilities AI-Driven Playbook Generation for OSPF and EIGRP based networks: Bubbln has been rigorously tested to leverage ChatGPT for generation of playbooks for networks based on OSPF and EIGRP networks, with a very high accuracy rate. Auto-creation of Inventory files: Users do not need to prepare the hosts file. Bubbln will auto-generate this file from input provided by the user. Customizable Configurations: Users can input specific router protocols (OSPF or EIGRP), interface configurations, and other network details to tailor the generated playbooks. Documentation: Bubbln automatically creates a report that contains the network configurations, prompts, and generated playbooks for easy reference in future. No expertise required: By auto-generation of the playbooks and inventory file, Bubbln has been able to eliminate a major hurdle to network automation – need for users to learn the automation tools e.g Ansible, Chef. Improved Efficiency: With AI automation, Bubbln speeds up the deployment of network configurations, reducing the time required for manual playbook creation, thereby increasing the productivity of network engineers. Getting Started There are two main approaches to installing Bubbln on your local machine. Docker Container Bubbln has been packaged using docker containers for easy distribution and usage. The following steps can be followed to deploy the Bubbln container on your local machine. Ensure docker is installed on your local machine by entering the below command. This command works for windows and linux OS: The version of docker would be displayed if it is installed. Otherwise, please follow the link below to install docker on your machine: Windows: Docker Desktop for Windows Ubuntu: Docker Engine for Ubuntu CentOS: Docker Engine for CentOS Debian: Docker Engine for Debian Fedora: Docker Engine for Fedora Download the docker image: Create a directory for the project and download Bubbln image using the below command: Run the docker container using the below command: Install nano Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. To do this enter the below command to edit the file: Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key: Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln. Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln by entering the below command: Github Repository Clone You can clone Bubbln’s GitHub repository by following the below steps: Prerequisites Bubbln works well with Python 3.10. You need to ensure python3.10 is installed on your local machine. This can be confirmed by entering the below command: If it is not Installed, then the below command can be utilized to install python 3.10: Build and Prepare the Project Clone the Bubbln repository from GitHub: To clone the repository, first verify you have git installed on your machine by issuing the following commands: If git is installed, the version number would be displayed, otherwise, you can issue the following commands to have git installed on your machine: Navigate or create a directory for the project on your machine and issue the following commands to clone the Bubbln git repository: Create a Virtual Environment for the application Firstly, confirm virtualenv is installed on your machine by inputting the following command: If the output shows something similar to the below, then go to the next step to install virtualenv ` WARNING: Package(s) not found: env, virtual ` Issue the below command to install virtualenv: Create a virtual environment for the project: Activate the virtual environment: Install the dependencies You can then run the below command to install the necessary packages for the app. Update the sshipaddresses.txt file: Update the ssh_addresses.txt file with the SSH IP addresses of the routers you want to configure. Bubbln will utilize this information along with the login credentials (inputted at runtime) to automatically generate a hosts.yml file required by ansible for network configuration. Obtain an OpenAPI API Key: You may follow this guide to sign up and obtain an API key OpenAI Key: OpenAI Key Utilizing a Virtualization machine of choice, setup a network with the following basic configurations: Enable SSH on each of the routers. Configure IP addresses and enable only interfaces required for connectivity by Bubbln Configure static routes to enable Bubbln reach the routers on the network. Ensure all the routers can be reached by ping and SSH from your host machine. Initialize Bubbln While ensuring that python virtual environment is activated as stated in step 5, run the below command to initialize Bubbln How Bubbln Works Bubbln serves as an intermediary between ChatGPT and a network infrastructure, providing logic, control functions, and facilitating network automation. Its operation can be summarized as follows: !image Figure 1Bubbln architecture and interaction with a network of four routers. Initialization: When Bubbln is initialized, it checks the “userconfig.pkl” file to see if Bubbln has ever been initiated. This is indicated by the presence of a welcome message status in the file. If it exists, Bubbln jumps straight to request the user to input the OpenAI key. Otherwise, it displays a welcome message, and updates the userconfig.pkl file accordingly. Upon successful input of the API key, the user is prompted for the SSH credentials of the routers. These parameters are then encrypted and saved in the user_config.pkl file. The SSH credential is later decrypted and parsed as input to dynamically generate a hosts.yml file at runtime. Responsible Code Section: bubbln.py: welcomemessagefeature() !image Figure 2 Bubbln's welcome message. Parameter Input & Validation: In the parameter input stage, Bubbln first checks for the existence of a file called “router_configuration.pkl”. If it exists, the user is prompted to decide whether to load an existing configuration or input a new set of configurations. If the file is empty or non-existent, then users are prompted to input the configuration parameters for each router on the network. These parameters serve as variables that are combined with hardcoded instructions written in natural language to form the prompt sent to ChatGPT. Key parameters include: Router Configurations: OSPF Area OSPF Process ID Number of networks to advertise (OSPF/EIGRP) AS Number (EIGRP) Interface names IP Addresses (in CIDR format) This module also ensures that parameters are keyed in using the correct data type and format e.g. IP addresses are expected in CIDR format and OSPF Area should be of type integer. Upon completion of parameter input, all parameters are saved into a file called “router_configuration.pkl” upon validation of accuracy by the user. Responsible Code Section: parameter_input.py !image Figure 3 Bubbln receiving Network Parameters. Before generating the prompt, a summary of the inputted parameters is displayed for user validation. This step ensures accuracy and minimizes errors. Users are given the option to make corrections if any discrepancies are found. Responsible Code Section: parameterinput.py: validateinputs() !image Figure 4 Bubbln Awaiting Validation of Inputted Network Parameters. Auto-Generation of Prompt: After validation of inputted parameters, Bubbln composes the prompt by combining the inputted parameters with a set of well-engineered hardcoded instructions written in natural language. Responsible Code Section: prompt_generator.py ChatGPT Prompting: The auto-composed prompt is then sent to ChatGPT utilizing gpt-4 chatCompletions model with a temperature parameter of 0.2 and maximum tokens of 1500. The following functions were designed into this process stage Responsible Code Section: chatGPT_prompting.py !image Figure 5 ChatGPT prompting in progress Playbook Generation & Extraction: After ChatGPT processes the prompt from Bubbln, it provides a response which usually contains the generated playbook and explanatory notes. Bubbln then extracts the playbook from the explanatory notes by searching for “---” which usually connotes the start of playbooks and saves each generated playbook uniquely using the nomenclature RouteriPlaybook.yml. Responsible Code Section: playbook_extractor.py !image Figure 6 ChatGPT-generated playbook. Playbook Execution: Bubbln loads the saved “RouteriPlaybook.yml” playbook and dynamically generates the hosts.yml file and parses them to the python library ansiblerunner for further execution on the configured network. Bubbln generates the hosts.yml file at run time by using the pre-inputted SSH credentials in userconfig.pkl file - and decrypts them, as well as IP addresses from the sshipaddresses.txt file, as inputs Responsible Code Section: playbook_execution.py !image Figure 7 Playbook execution in progress Sample result of Executed Playbook Upon successful execution of all playbooks, a query of the routing table on router 4 indicates that router 4 could reach all the prefixes on the network. !image Figure 8 Output of 'sh ip route' executed on R1 File Management and Handling Throughout the execution process, Bubbln manages the creation, saving, and loading of various files to streamline the network automation process. user_config.pkl: This dictionary file dynamically created at run time is used to store encrypted API keys, SSH credentials and initial welcome message information. router_configuration.pkl: It is auto created by Bubbln and used to store network configuration parameters for easy loading during subsequent sessions. hosts.yml: This is a runtime autogenerated file that contains inventory of the network devices. It is auto deleted after the program runs. networkconfigurationreport.pdf: This auto-generated report by Bubbln is a documentation of all the routers configured their parameters, generated playbooks, and prompt for each execution of the Bubbln application. It is created after a successful execution of playbooks and network testing and is meant for auditing and documentation purposes. RouteriPlaybook.yml: After extraction of generated playbooks from ChatGPT’s raw response, Bubbln automatically saves a copy of the generated playbook using unique names for each playbook. !image Figure 9 File structure after successful deployment of a four-router network Providing Feedback We are glad to hear your thoughts and suggestions. Kindly do this through the discussion section of our GitHub - https://github.com/olasupo/bubbln_network-automation/discussions/1#discussion-6487475 We can also be reached on: Olasupo Okunaiya – olasupo.o@gmail.com

internet-tools-collection
github
LLM Vibe Score0.236
Human Vibe Score0.009333333333333334
bogdanmosicaJan 23, 2025

internet-tools-collection

Internet Tools Collection A collection of tools, website and AI for entrepreneurs, web designers, programmers and for everyone else. Content by category Artificial Intelligence Developers Design Entrepreneur Video Editing Stock videos Stock Photos Stock music Search Engine Optimization Blog Posts Resume Interviews No code website builder No code game builder Side Hustle Browser Extensions Other Students Artificial Intelligence Jasper - The Best AI Writing Assistant [](https://www.jasper.ai/) Create content 5x faster with artificial intelligence. Jasper is the highest quality AI copywriting tool with over 3,000 5-star reviews. Best for writing blog posts, social media content, and marketing copy. AutoDraw [](https://www.autodraw.com/) Fast drawing for everyone. AutoDraw pairs machine learning with drawings from talented artists to help you draw stuff fast. Rytr - Best AI Writer, Content Generator & Writing Assistant [](https://rytr.me/) Rytr is an AI writing assistant that helps you create high-quality content, in just a few seconds, at a fraction of the cost! Neevo - Neevo [](https://www.neevo.ai/) Kinetix Tech [](https://kinetix.tech/) Kinetix is a no-code 3D creation tool powered by Artificial Intelligence. The web-based platform leverages AI motion capture to convert a video into a 3D animation and lets you customize your avatars and environments. We make 3D animation accessible to every creator so they can create engaging stories. LALAL.AI: 100% AI-Powered Vocal and Instrumental Tracks Remover [](https://www.lalal.ai/) Split vocal and instrumental tracks quickly and accurately with LALAL.AI. Upload any audio file and receive high-quality extracted tracks in a few seconds. Copy.ai: Write better marketing copy and content with AI [](https://www.copy.ai/) Get great copy that sells. Copy.ai is an AI-powered copywriter that generates high-quality copy for your business. Get started for free, no credit card required! Marketing simplified! OpenAI [](https://openai.com/) OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. DALL·E 2 [](https://openai.com/dall-e-2/) DALL·E 2 is a new AI system that can create realistic images and art from a description in natural language. Steve.ai - World’s fastest way to create Videos [](https://www.steve.ai/) Steve.AI is an online Video making software that helps anyone to create Videos and animations in seconds. Octie.ai - Your A.I. ecommerce marketing assistant [](https://octie.ai/) Write emails, product descriptions, and more, with A.I. Created by Octane AI. hypnogram.xyz [](https://hypnogram.xyz/) Generate images from text descriptions using AI FakeYou. Deep Fake Text to Speech. [](https://fakeyou.com/) FakeYou is a text to speech wonderland where all of your dreams come true. Craiyon, formerly DALL-E mini [](https://www.craiyon.com/) Craiyon, formerly DALL-E mini, is an AI model that can draw images from any text prompt! Deck Rocks - Create Pictch Decks [](https://www.deck.rocks/) Writely | Using AI to Improve Your Writing [](https://www.writelyai.com/) Making the art of writing accessible to all Writesonic AI Writer - Best AI Writing Assistant [](https://writesonic.com/) Writesonic is an AI writer that's been trained on top-performing SEO content, high-performing ads, and converting sales copy to help you supercharge your writing and marketing efforts. Smart Copy - AI Copywriting Assistant | Unbounce [](https://unbounce.com/product/smart-copy/) Generate creative AI copy on-the-spot across your favourite tools Synthesia | #1 AI Video Generation Platform [](https://www.synthesia.io/) Create AI videos by simply typing in text. Easy to use, cheap and scalable. Make engaging videos with human presenters — directly from your browser. Free demo. NVIDIA Canvas: Turn Simple Brushstrokes into Realistic Images [](https://www.nvidia.com/en-us/studio/canvas/) Create backgrounds quickly, or speed up your concept exploration so you can spend more time visualizing ideas with the help of NVIDIA Canvas. Hotpot.ai - Hotpot.ai [](https://hotpot.ai/) Hotpot.ai makes graphic design and image editing easy. AI tools allow experts and non-designers to automate tedious tasks while attractive, easy-to-edit templates allow anyone to create device mockups, social media posts, marketing images, app icons, and other work graphics. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Search listening tool for market, customer & content research - AnswerThePublic [](https://answerthepublic.com/) Use our free tool to get instant, raw search insights, direct from the minds of your customers. Upgrade to a paid plan to monitor for new ways that people talk & ask questions about your brand, product or topic. Topic Mojo [](https://topicmojo.com/) Discover unique & newest queries around any topic and find what your customers are searching for. Pulling data from 50+ sources to enhance your topic research. AI Image Enlarger | Enlarge Image Without Losing Quality! [](https://imglarger.com/) AI Image Enlarger is a FREE online image enlarger that could upscale and enhance small images automatically. Make jpg/png pictures big without losing quality. Midjourney [](https://www.midjourney.com/app/) Kaedim - AI for turning 2D images to 3D models [](https://www.kaedim3d.com/webapp) AI for turning 2D images, sketches and photos to 3D models in seconds. Overdub: Ultra realistic text to speech voice cloning - Descript [](https://www.descript.com/overdub) Create a text to speech model of your voice. Try a live demo. Getting Started [](https://magenta.tensorflow.org/get-started) Resources to learn about Magenta Photosonic AI Art Generator | Create Unique Images with AI [](https://photosonic.writesonic.com/) Transform your imagination into stunning digital art with Photosonic - the AI art generator. With its creative suggestions, this Writesonic's AI image generator can help unleash your inner artist and share your creations with the world. Image Computer [](https://image.computer/) Most downloaded Instagram Captions App (+more creator tools) [](https://captionplus.app/) Join 3 Million+ Instagram Creators who use CaptionPlus to find Instagram Captions, Hashtags, Feed Planning, Reel Ideas, IG Story Design and more. Writecream - Best AI Writer & Content Generator - Writecream [](https://www.writecream.com/) Sentence Rewriter is a free tool to reword a sentence, paragraph and even entire essays in a short amount of time. Hypotenuse AI: AI Writing Assistant and Text Generator [](https://www.hypotenuse.ai/) Turn a few keywords into original, insightful articles, product descriptions and social media copy with AI copywriting—all in just minutes. Try it free today. Text to Speach Listnr: Generate realistic Text to Speech voiceovers in seconds [](https://www.listnr.tech/) AI Voiceover Generator with over 600+ voiceovers in 80+ languages, go from Text to Voice in seconds. Get started for Free! Free Text to Speech: Online, App, Software, Commercial license with Natural Sounding Voices. [](https://www.naturalreaders.com/) Free text to speech online app with natural voices, convert text to audio and mp3, for personal and commercial use Developers OverAPI.com | Collecting all the cheat sheets [](https://overapi.com/) OverAPI.com is a site collecting all the cheatsheets,all! Search Engine For Devs [](https://you.com/) Spline - Design tool for 3D web browser experiences [](https://spline.design/) Create web-based 3D browser experiences Image to HTML CSS converter. Convert image to HTML CSS with AI: Fronty [](https://fronty.com/) Fronty - Image to HTML CSS code converter. Convert image to HTML powered by AI. Sketchfab - The best 3D viewer on the web [](https://sketchfab.com/) With a community of over one million creators, we are the world’s largest platform to publish, share, and discover 3D content on web, mobile, AR, and VR. Railway [](https://railway.app/) Railway is an infrastructure platform where you can provision infrastructure, develop with that infrastructure locally, and then deploy to the cloud. JSON Crack - Crack your data into pieces [](https://jsoncrack.com/) Simple visualization tool for your JSON data. No forced structure, paste your JSON and view it instantly. Locofy.ai - ship your products 3-4x faster — with low code [](https://www.locofy.ai/) Turn your designs into production-ready frontend code for mobile apps and web. Ship products 3-4x faster with your existing design tools, tech stacks & workflows. Oh Shit, Git!?! [](https://ohshitgit.com/) Carbon | Create and share beautiful images of your source code [](https://carbon.now.sh/) Carbon is the easiest way to create and share beautiful images of your source code. GPRM : GitHub Profile ReadMe Maker [](https://gprm.itsvg.in/) Best Profile Generator, Create your perfect GitHub Profile ReadMe in the best possible way. Lots of features and tools included, all for free ! HubSpot | Software, Tools, and Resources to Help Your Business Grow Better [](https://www.hubspot.com/) HubSpot’s integrated CRM platform contains the marketing, sales, service, operations, and website-building software you need to grow your business. QuickRef.ME - Quick Reference Cheat Sheet [](https://quickref.me/) Share quick reference and cheat sheet for developers massCode | A free and open source code snippets manager for developers [](https://masscode.io/) Code snippets manager for developers, developed using web technologies. Snyk | Developer security | Develop fast. Stay secure. [](https://snyk.io/) Snyk helps software-driven businesses develop fast and stay secure. Continuously find and fix vulnerabilities for npm, Maven, NuGet, RubyGems, PyPI and more. Developer Roadmaps [](https://roadmap.sh/) Community driven roadmaps, articles, guides, quizzes, tips and resources for developers to learn from, identify their career paths, know what they don't know, find out the knowledge gaps, learn and improve. CSS Generators Get Waves – Create SVG waves for your next design [](https://getwaves.io/) A free SVG wave generator to make unique SVG waves for your next web design. Choose a curve, adjust complexity, randomize! Box Shadows [](https://box-shadow.dev/) Tridiv | CSS 3D Editor [](http://tridiv.com/) Tridiv is a web-based editor for creating 3D shapes in CSS Glassmorphism CSS Generator - Glass UI [](https://ui.glass/generator/) Generate CSS and HTML components using the glassmorphism design specifications based on the Glass UI library. Blobmaker - Make organic SVG shapes for your next design [](https://www.blobmaker.app/) Make organic SVG shapes for your next design. Modify the complexity, contrast, and color, to generate unique SVG blobs every time. Keyframes.app [](https://keyframes.app/) cssFilters.co - Custom and Instagram like photo filters for CSS [](https://www.cssfilters.co/) Visual playground for generating CSS for custom and Instagram like photo filters. Experiment with your own uploaded photo or select one from the Unsplash collection. CSS Animations Animista - CSS Animations on Demand [](https://animista.net/) Animista is a CSS animation library and a place where you can play with a collection of ready-made CSS animations and download only those you will use. Build Internal apps Superblocks | Save 100s of developer hours on internal tools [](https://www.superblocks.com/) Superblocks is the fast, easy and secure way for developers to build custom internal tools fast. Connect your databases & APIs. Drag and drop UI components. Extend with Python or Javascript. Deploy in 1-click. Secure and Monitor using your favorite tools Budibase | Build internal tools in minutes, the easy way [](https://budibase.com/) Budibase is a modern, open source low-code platform for building modern internal applications in minutes. Retool | Build internal tools, remarkably fast. [](https://retool.com/) Retool is the fast way to build internal tools. Drag-and-drop our building blocks and connect them to your databases and APIs to build your own tools, instantly. Connects with Postgres, REST APIs, GraphQL, Firebase, Google Sheets, and more. Built by developers, for developers. Trusted by startups and Fortune 500s. Sign up for free. GitHub Repositories GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? [](https://github.com/vasanthk/how-web-works) What happens behind the scenes when we type www.google.com in a browser? - GitHub - vasanthk/how-web-works: What happens behind the scenes when we type www.google.com in a browser? GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. [](https://github.com/kamranahmedse/developer-roadmap) Interactive roadmaps, guides and other educational content to help developers grow in their careers. - GitHub - kamranahmedse/developer-roadmap: Interactive roadmaps, guides and other educational content to help developers grow in their careers. GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. [](https://github.com/apptension/developer-handbook) An opinionated guide on how to become a professional Web/Mobile App Developer. - GitHub - apptension/developer-handbook: An opinionated guide on how to become a professional Web/Mobile App Developer. ProfileMe.dev | Create an amazing GitHub profile in minutes [](https://www.profileme.dev/) ProfileMe.dev | Create an amazing GitHub profile in minutes GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. [](https://github.com/Kristories/awesome-guidelines) A curated list of high quality coding style conventions and standards. - GitHub - Kristories/awesome-guidelines: A curated list of high quality coding style conventions and standards. GitHub - tiimgreen/github-cheat-sheet: A list of cool features of Git and GitHub. [](https://github.com/tiimgreen/github-cheat-sheet) A list of cool features of Git and GitHub. Contribute to tiimgreen/github-cheat-sheet development by creating an account on GitHub. GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer [](https://github.com/andreasbm/web-skills) A visual overview of useful skills to learn as a web developer - GitHub - andreasbm/web-skills: A visual overview of useful skills to learn as a web developer GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers [](https://github.com/Ebazhanov/linkedin-skill-assessments-quizzes) Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers - GitHub - Ebazhanov/linkedin-skill-assessments-quizzes: Full reference of LinkedIn answers 2022 for skill assessments (aws-lambda, rest-api, javascript, react, git, html, jquery, mongodb, java, Go, python, machine-learning, power-point) linkedin excel test lösungen, linkedin machine learning test LinkedIn test questions and answers Blockchain/Crypto Dashboards [](https://dune.com/) Blockchain ecosystem analytics by and for the community. Explore and share data from Ethereum, xDai, Polygon, Optimism, BSC and Solana for free. Introduction - The Anchor Book v0.24.0 [](https://book.anchor-lang.com/introduction/introduction.html) Crypto & Fiat Exchange Super App | Trade, Save & Spend | hi [](https://hi.com/) Buy, Trade, Send and Earn Crypto & Fiat. Deposit Bitcoin, ETH, USDT and other cryptos and start earning. Get the hi Debit Card and Multi-Currency IBAN Account. Moralis Web3 - Enterprise-Grade Web3 APIs [](https://moralis.io/) Bridge the development gap between Web2 and Web3 with Moralis’ powerful Web3 APIs. Mirror [](https://mirror.xyz/) Built on web3 for web3, Mirror’s robust publishing platform pushes the boundaries of writing online—whether it’s the next big white paper or a weekly community update. Makerdao [](https://blog.makerdao.com/) Sholi — software for Investors & Traders / Sholi MetriX [](https://sholi.io/) Sholi — software for Investors & Traders / Sholi MetriX Stock Trading Quiver Quantitative [](https://www.quiverquant.com/) Quiver Quantitative Chart Prime - The only tool you'll need for trading assets across all markets [](https://chartprime.com/) ChartPrime offers a toolkit that will take your trading game to the next level. Visit our site for a full rundown of features and helpful tutorials. Learning Hacker Rank [](https://www.hackerrank.com/) Coderbyte | Code Screening, Challenges, & Interview Prep [](https://coderbyte.com/) Improve your coding skills with our library of 300+ challenges and prepare for coding interviews with content from leading technology companies. Competitive Programming | Participate & Learn | CodeChef [](https://www.codechef.com/) Learn competitive programming with the help of CodeChef's coding competitions. Take part in these online coding contests to level up your skills Learn to Code - for Free | Codecademy [](https://www.codecademy.com/) Learn the technical skills to get the job you want. Join over 50 million people choosing Codecademy to start a new career (or advance in their current one). Free Code Camp [](https://www.freecodecamp.org/) Learn to Code — For Free Sololearn: Learn to Code [](https://www.sololearn.com/home) Join Now to learn the basics or advance your existing skills Mimo: The coding app you need to learn to code! Python, HTML, JavaScript [](https://getmimo.com/) Join more than 17 million learners worldwide. Learn to code for free. Learn Python, JavaScript, CSS, SQL, HTML, and more with our free code learning app. Free for developers [](https://free-for.dev/#/) Your Career in Web Development Starts Here | The Odin Project [](https://www.theodinproject.com/) The Odin Project empowers aspiring web developers to learn together for free Code Learning Games CheckiO - coding games and programming challenges for beginner and advanced [](https://checkio.org/) CheckiO - coding websites and programming games. Improve your coding skills by solving coding challenges and exercises online with your friends in a fun way. Exchanges experience with other users online through fun coding activities Coding for Kids | Game-Based Programming | CodeMonkey [](https://www.codemonkey.com/) CodeMonkey is a leading coding for kids program. Through its award-winning courses, millions of students learn how to code in real programming languages. Coding Games and Programming Challenges to Code Better [](https://www.codingame.com/) CodinGame is a challenge-based training platform for programmers where you can play with the hottest programming topics. Solve games, code AI bots, learn from your peers, have fun. Learn VIM while playing a game - VIM Adventures [](https://vim-adventures.com/) VIM Adventures is an online game based on VIM's keyboard shortcuts. It's the "Zelda meets text editing" game. So come have some fun and learn some VIM! CodeCombat - Coding games to learn Python and JavaScript [](https://codecombat.com/) Learn typed code through a programming game. Learn Python, JavaScript, and HTML as you solve puzzles and learn to make your own coding games and websites. Design Useberry - Codeless prototype analytics [](https://www.useberry.com/) User testing feedback & rich insights in minutes, not months! Figma: the collaborative interface design tool. [](https://www.figma.com/) Build better products as a team. Design, prototype, and gather feedback all in one place with Figma. Dribbble - Discover the World’s Top Designers & Creative Professionals [](https://dribbble.com/) Find Top Designers & Creative Professionals on Dribbble. We are where designers gain inspiration, feedback, community, and jobs. Your best resource to discover and connect with designers worldwide. Photopea | Online Photo Editor [](https://www.photopea.com/) Photopea Online Photo Editor lets you edit photos, apply effects, filters, add text, crop or resize pictures. Do Online Photo Editing in your browser for free! Toools.design – An archive of 1000+ Design Resources [](https://www.toools.design/) A growing archive of over a thousand design resources, weekly updated for the community. Discover highly useful design tools you never thought existed. All Online Tools in One Box | 10015 Tools [](https://10015.io/) All online tools you need in one box for free. Build anything online with “all-in-one toolbox”. All tools are easy-to-use, blazing fast & free. Phase - Digital Design Reinvented| Phase [](https://phase.com/) Design and prototype websites and apps visually and intuitively, in a new powerful product reworked for the digital age. Animated Backgrounds [](https://animatedbackgrounds.me/) A Collection of 30+ animated backgrounds for websites and blogs.With Animated Backgrounds, set a simple, elegant background animations on your websites and blogs. Trianglify.io · Low Poly Pattern Generator [](https://trianglify.io/) Trianglify.io is a tool for generating low poly triangle patterns that can be used as wallpapers and website assets. Cool Backgrounds [](https://coolbackgrounds.io/) Explore a beautifully curated selection of cool backgrounds that you can add to blogs, websites, or as desktop and phone wallpapers. SVG Repo - Free SVG Vectors and Icons [](https://www.svgrepo.com/) Free Vectors and Icons in SVG format. ✅ Download free mono or multi color vectors for commercial use. Search in 300.000+ Free SVG Vectors and Icons. Microcopy - Short copy text for your website. [](https://www.microcopy.me/) Search micro UX copy text: slogans, headlines, notifications, CTA, error messages, email, account preferences, and much more. 3D icons and icon paks - Free3Dicon [](https://free3dicon.com/) All 3D icons you need in one place. This is a collection of free, beautiful, trending 3D icons, that you can use in any project. Love 3D Icon [](https://free3dicons.com/) Downloads free 3D icons GIMP - GNU Image Manipulation Program [](https://www.gimp.org/) GIMP - The GNU Image Manipulation Program: The Free and Open Source Image Editor blender.org - Home of the Blender project - Free and Open 3D Creation Software [](https://www.blender.org/) The Freedom to Create 3D Design Software | 3D Modeling on the Web | SketchUp [](https://www.sketchup.com/) SketchUp is a premier 3D design software that truly makes 3D modeling for everyone, with a simple to learn yet robust toolset that empowers you to create whatever you can imagine. Free Logo Maker - Create a Logo in Seconds - Shopify [](https://www.shopify.com/tools/logo-maker) Free logo maker tool to generate custom design logos in seconds. This logo creator is built for entrepreneurs on the go with hundreds of templates, free vectors, fonts and icons to design your own logo. The easiest way to create business logos online. All your design tools in one place | Renderforest [](https://www.renderforest.com/) Time to get your brand noticed. Create professional videos, logos, mockups, websites, and graphics — all in one place. Get started now! Prompt Hero [](https://prompthero.com/) Type Scale - A Visual Calculator [](https://type-scale.com/) Preview and choose the right type scale for your project. Experiment with font size, scale and different webfonts. DreamFusion: Text-to-3D using 2D Diffusion [](https://dreamfusion3d.github.io/) DreamFusion: Text-to-3D using 2D Diffusion, 2022. The branding style guidelines documents archive [](https://brandingstyleguides.com/) Welcome to the brand design manual documents directory. Search over our worldwide style assets handpicked collection, access to PDF documents for inspiration. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Readymag—a design tool to create websites without coding [](https://readymag.com/) Meet the most elegant, simple and powerful web-tool for designing websites, presentations, portfolios and all kinds of digital publications. ffflux: Online SVG Fluid Gradient Background Generator | fffuel [](https://fffuel.co/ffflux/) SVG generator to make fluid gradient backgrounds that feel organic and motion-like. Perfect to add a feeling of motion and fluidity to your web designs. Generate unique SVG design assets | Haikei [](https://haikei.app/) A web-based design tool to generate unique SVG design assets for websites, social media, blog posts, desktop and mobile wallpapers, posters, and more! Our generators let you discover, customize, randomize, and export generative SVG design assets ready to use with your favorite design tools. UI/UX - Inspirational Free Website Builder Software | 10,000+ Free Templates [](https://nicepage.com/) Nicepage is your website builder software breaking limitations common for website builders with revolutionary freehand positioning. 7000+ Free Templates. Easy Drag-n-Drop. No coding. Mobile-friendly. Clean HTML. Super designer | Create beautiful designs with a few clicks [](https://superdesigner.co/) Create beautiful designs with a few clicks. Simple design tools to generate unique patterns, backgrounds, 3D shapes, colors & images for social media, websites and more Pika – Create beautiful mockups from screenshots [](https://pika.style/) Quickly create beautiful website and device mockup from screenshot. Pika lets you capture website screenshots form URL, add device and browser frames, customize background and more LiveTerm [](https://liveterm.vercel.app/) Minimal Gallery – Web design inspiration [](https://minimal.gallery/) For the love of beautiful, clean and functional websites. Awwwards - Website Awards - Best Web Design Trends [](https://www.awwwards.com/) Awwwards are the Website Awards that recognize and promote the talent and effort of the best developers, designers and web agencies in the world. Design Systems For Figma [](https://www.designsystemsforfigma.com/) A collection of Design Systems for Figma from all over the globe. Superside: Design At Scale For Ambitious Brands [](https://www.superside.com/) We are an always-on design company. Get a team of dedicated designers, speedy turnarounds, magical creative collaboration tech and the top 1% of global talent. UXArchive - Made by Waldo [](https://uxarchive.com/) UXArchive the world's largest library of mobile user flows. Be inspired to design the best user experiences. Search by Muzli [](https://search.muz.li/) Search, discover, test and create beautiful color palettes for your projects Siteinspire | Web Design Inspiration [](https://www.siteinspire.com/) SAVEE [](https://savee.it/) The best way to save and share inspiration. A little corner of the internet to find good landing page copywriting examples [](https://greatlandingpagecopy.com/) A little corner of the internet to find great landing page copywriting examples. The Best Landing Page Examples For Design Inspiration - SaaS Landing Page [](https://saaslandingpage.com/) SaaS Landing Page showcases the best landing page examples created by top-class SaaS companies. Get ideas and inspirations for your next design project. Websites Free templates Premium Bootstrap Themes and Templates: Download @ Creative Tim [](https://www.creative-tim.com/) UI Kits, Templates and Dashboards built on top of Bootstrap, Vue.js, React, Angular, Node.js and Laravel. Join over 2,014,387+ creatives to access all our products! Free Bootstrap Themes, Templates, Snippets, and Guides - Start Bootstrap [](https://startbootstrap.com/) Start Bootstrap develops free to download, open source Bootstrap 5 themes, templates, and snippets and creates guides and tutorials to help you learn more about designing and developing with Bootstrap. Free Website Templates [](https://freewebsitetemplates.com/) Get your free website templates here and use them on your website without needing to link back to us. One Page Love - One Page Website Inspiration and Templates [](https://onepagelove.com/) One Page Love is a One Page website design gallery showcasing the best Single Page websites, templates and resources. Free CSS | 3400 Free Website Templates, CSS Templates and Open Source Templates [](https://www.free-css.com/) Free CSS has 3400 free website templates, all templates are free CSS templates, open source templates or creative commons templates. Free Bootstrap Themes and Website Templates | BootstrapMade [](https://bootstrapmade.com/) At BootstrapMade, we create beautiful website templates and bootstrap themes using Bootstrap, the most popular HTML, CSS and JavaScript framework. Free and Premium Bootstrap Themes, Templates by Themesberg [](https://themesberg.com/) Free and Premium Bootstrap themes, templates, admin dashboards and UI kits used by over 38820 web developers and software companies HTML, Vue.js and React templates for startup landing pages - Cruip [](https://cruip.com/) Cruip is a gallery of premium and free HTML, Vue.js and React templates for startups and SaaS. Free Website Templates Download | WordPress Themes - W3Layouts [](https://w3layouts.com/) Want to download free website templates? W3Layouts WordPress themes and website templates are built with responsive web design techniques. Download now! Free HTML Landing Page Templates and UI Kits | UIdeck [](https://uideck.com/) Free HTML Landing Page Templates, Bootstrap Themes, React Templates, HTML Templates, Tailwind Templates, and UI Kits. Create Online Graphics Snappa - Quick & Easy Graphic Design Software [](https://snappa.com/) Snappa makes it easy to create any type of online graphic. Create & publish images for social media, blogs, ads, and more! Canva [](https://www.canva.com/) Polotno Studio - Make graphical designs [](https://studio.polotno.com) Free online design editor. Create images for social media, youtube previews, facebook covers Free Logo Maker: Design Custom Logos | Adobe Express [](https://www.adobe.com/express/create/logo) The Adobe Express logo maker is instant, intuitive, and intelligent. Use it to generate a wide range of possibilities for your own logo. Photo Editor: Fotor – Free Online Photo Editing & Image Editor [](https://www.fotor.com/) Fotor's online photo editor helps you edit photos with free online photo editing tools. Crop photos, resize images, and add effects/filters, text, and graphics in just a few clicks. Photoshop online has never been easier with Fotor's free online photo editor. VistaCreate – Free Graphic Design Software with 70,000+ Free Templates [](https://create.vista.com/) Looking for free graphic design software? Easily create professional designs with VistaCreate, a free design tool with powerful features and 50K+ ready-made templates Draw Freely | Inkscape [](https://inkscape.org/) Inkscape is professional quality vector graphics software which runs on Linux, Mac OS X and Windows desktop computers. Visual & Video Maker Trusted By 11 Million Users - Piktochart [](https://piktochart.com/) With Piktochart, you can create professional-looking infographics, flyers, posters, charts, videos, and more. No design experience needed. Start for free. The Web's Favorite Online Graphic Design Tool | Stencil [](https://getstencil.com/) Stencil is a fantastically easy-to-use online graphic design tool and image editor built for business owners, social media marketers, and bloggers. Pablo by Buffer - Design engaging images for your social media posts in under 30 seconds [](https://pablo.buffer.com/) Buffer makes it super easy to share any page you're reading. Keep your Buffer topped up and we automagically share them for you through the day. Free Online Graphic Design Software | Create stunning designs in seconds. [](https://desygner.com/) Easy drag and drop graphic design tool for anyone to use with 1000's of ready made templates. Create & print professional business cards, flyers, social posts and more. Color Pallet Color Palettes for Designers and Artists - Color Hunt [](https://colorhunt.co/) Discover the newest hand-picked color palettes of Color Hunt. Get color inspiration for your design and art projects. Coolors - The super fast color palettes generator! [](https://coolors.co/) Generate or browse beautiful color combinations for your designs. Get color palette inspiration from nature - colorpalettes.earth [](https://colorpalettes.earth/) Color palettes inspired by beautiful nature photos Color Palette Generator - Create Beautiful Color Schemes [](https://colors.muz.li/) Search, discover, test and create beautiful color palettes for your projects A Most Useful Color Picker | 0to255 [](https://0to255.com/) Find lighter and darker colors based on any color. Discover why over two million people have used 0to255 to choose colors for their website, logo, room interior, and print design projects. Colour Contrast Checker [](https://colourcontrast.cc/) Check the contrast between different colour combinations against WCAG standards Fonts Google Fonts [](https://fonts.google.com/) Making the web more beautiful, fast, and open through great typography Fonts In Use – Type at work in the real world. [](https://fontsinuse.com/) A searchable archive of typographic design, indexed by typeface, format, and topic. Wordmark - Helps you choose fonts! [](https://wordmark.it/) Wordmark helps you choose fonts by quickly displaying your text with your fonts. OH no Type Company [](https://ohnotype.co/) OH no Type Co. Retail and custom typefaces. Life’s a thrill, fonts are chill! Illustrations Illustrations | unDraw [](https://undraw.co/illustrations) The design project with open-source illustrations for any idea you can imagine and create. Create beautiful websites, products and applications with your color, for free. Design Junction [](https://designjunction.xyz/) Design Junction is a one-stop resource library for Designers and Creatives with curated list of best resources handpicked from around the web Humaaans: Mix-&-Match illustration library [](https://www.humaaans.com/) Mix-&-match illustrations of people with a design library for InVIsion Studio and Sketch. Stubborn - Free Illustrations Generator [](https://stubborn.fun/) Free illustrations generator for Figma and Sketch. Get the opportunity to design your characters using symbols and styles. Open Peeps, Hand-Drawn Illustration Library [](https://www.openpeeps.com/) Open Peeps is a hand-drawn illustration library to create scenes of people. You can use them in product illustration, marketing, comics, product states, user flows, personas, storyboarding, quinceañera invitations, or whatever you want! ⠀ Reshot | Free icons & illustrations [](https://www.reshot.com/) Design freely with instant downloads of curated SVG icons and vector illustrations. All free with commercial licensing. No attribution required. Blush: Illustrations for everyone [](https://blush.design/) Blush makes it easy to add free illustrations to your designs. Play with fully customizable graphics made by artists across the globe. Mockups Angle 4 - 5000+ Device Mockups for Figma, Sketch and XD [](https://angle.sh/) Vector mockups for iPhone, iPad, Android and Mac devices, including the new iPhone 13, Pro, Pro Max and Mini. Perfect for presenting your apps. Huge library of components, compositions, wallpapers and plugins made for Figma, Sketch and XD. Make Mockups, Logos, Videos and Designs in Seconds [](https://placeit.net/) Get unlimited downloads on all our 100K templates! You can make a logo, video, mockup, flyer, business card and social media image in seconds right from your browser. Free and premium tools for graphic designers | Lstore Graphics [](https://www.ls.graphics/) Free and premium mockups, UI/UX tools, scene creators for busy designers Logo Design & Brand Identity Platform for Entrepreneurs | Looka [](https://looka.com/) Logojoy is now Looka! Design a Logo, make a website, and create a Brand Identity you’ll love with the power of Artificial Intelligence. 100% free to use. Create stunning product mockups easily and online - Smartmockups [](https://smartmockups.com/) Smartmockups enables you to create stunning high-resolution mockups right inside your browser within one interface across multiple devices. Previewed - Free mockup generator for your app [](https://previewed.app/) Join Previewed to create stunning 3D image shots and animations for your app. Choose from hundreds of ready made mockups, or create your own. Free Design Software - Graphic Online Maker - Glorify [](https://www.glorify.com/) Create professional and high converting social media posts, ads, infographics, presentations, and more with Glorify, a free design software & graphic maker. Other BuiltWith Technology Lookup [](https://builtwith.com/) Web technology information profiler tool. Find out what a website is built with. Compress JPEG Images Online [](https://compressjpeg.com/) Compress JPEG images and photos for displaying on web pages, sharing on social networks or sending by email. PhotoRoom - Remove Background and Create Product Pictures [](https://www.photoroom.com/) Create product and portrait pictures using only your phone. Remove background, change background and showcase products. Magic Eraser - Remove unwanted things from images in seconds [](https://www.magiceraser.io/) Magic Eraser - Use AI to remove unwanted things from images in seconds. Upload an image, mark the bit you need removed, download the fixed up image. Compressor.io - optimize and compress JPEG photos and PNG images [](https://compressor.io/) Optimize and compress JPEG, PNG, SVG, GIF and WEBP images online. Compress, resize and rename your photos for free. Remove Video Background – Unscreen [](https://www.unscreen.com/) Remove the background of any video - 100% automatically, online & free! Goodbye Greenscreen. Hello Unscreen. Noun Project: Free Icons & Stock Photos for Everything [](https://thenounproject.com/) Noun Project features the most diverse collection of icons and stock photos ever. Download SVG and PNG. Browse over 5 million art-quality icons and photos. Design Principles [](https://principles.design/) An Open Source collection of Design Principles and methods Shapefest™ - A massive library of free 3D shapes [](https://www.shapefest.com/) A massive free library of beautifully rendered 3D shapes. 160,000+ high resolution PNG images in one cohesive library. Learning UX Degreeless.design - Everything I Learned in Design School [](https://degreeless.design/) This is a list of everything I've found useful in my journey of learning design, and an ongoing list of things I think you should read. For budding UX, UI, Interaction, or whatever other title designers. UX Tools | Practical UX skills and tools [](https://uxtools.co/) Lessons and resources from two full-time product designers. Built For Mars [](https://builtformars.com/) On a mission to help the world build better user experiences by demystifying UX. Thousands of hours of research packed into UX case studies. Case Study Club – Curated UX Case Study Gallery [](https://www.casestudy.club/) Case Study Club is the biggest curated gallery of the best UI/UX design case studies. Get inspired by industry-leading designers, openly sharing their UX process. The Guide to Design [](https://start.uxdesign.cc/) A self-guided class to help you get started in UX and answer key questions about craft, design, and career Uxcel - Where design careers are built [](https://app.uxcel.com/explore) Available on any device anywhere in the world, Uxcel is the best way to improve and learn UX design online in just 5 minutes per day. UI & UX Design Tips by Jim Raptis. [](https://www.uidesign.tips/) Learn UI & UX Design with practical byte-sized tips and in-depth articles from Jim Raptis. Entrepreneur Instant Username Search [](https://instantusername.com/#/) Instant Username Search checks out if your username is available on more than 100 social media sites. Results appear instantly as you type. Flourish | Data Visualization & Storytelling [](https://flourish.studio/) Beautiful, easy data visualization and storytelling PiPiADS - #1 TikTok Ads Spy Tool [](https://www.pipiads.com/) PiPiADS is the best tiktok ads spy tool .We provide tiktok advertising,advertising on tiktok,tiktok ads examples,tiktok ads library,tiktok ads best practices,so you can understand the tiktok ads cost and master the tiktok ads 2021 and tiktok ads manager. Minea - The best adspy for product search in ecommerce and dropshipping [](https://en.minea.com/) Minea is the ultimate e-commerce product search tool. Minea tracks all ads on all networks. Facebook Ads, influencer product placements, Snapspy, all networks are tracked. Stop paying adspy 149€ for one network and discover Minea. AdSpy [](https://adspy.com/) Google Trends [](https://trends.google.com/) ScoreApp: Advanced Quiz Funnel Marketing | Make a Quiz Today [](https://www.scoreapp.com/) ScoreApp makes quiz funnel marketing easy, so you can attract relevant warm leads, insightful data and increase your sales. Try for free today Mailmodo - Send Interactive Emails That Drive Conversions [](https://www.mailmodo.com/) Use Mailmodo to create and send interactive emails your customers love. Drive conversions and get better email ROI. Sign up for a free trial now. 185 Top E-Commerce Sites Ranked by User Experience Performance – Baymard Institute [](https://baymard.com/ux-benchmark) See the ranked UX performance of the 185 largest e-commerce sites in the US and Europe. The chart summarizes 50,000+ UX performance ratings. Metricool - Analyze, manage and measure your digital content [](https://metricool.com/) Social media scheduling, web analytics, link in bio and reporting. Metricool is free per live for one brand. START HERE Visualping: #1 Website change detection, monitoring and alerts [](https://visualping.io/) More than 1.5 millions users monitor changes in websites with Visualping, the No1 website change detection, website checker, webpage change monitoring and webpage change detection tool. Gumroad – Sell what you know and see what sticks [](https://gumroad.com/) Gumroad is a powerful, but simple, e-commerce platform. We make it easy to earn your first dollar online by selling digital products, memberships and more. Product Hunt – The best new products in tech. [](https://www.producthunt.com/) Product Hunt is a curation of the best new products, every day. Discover the latest mobile apps, websites, and technology products that everyone's talking about. 12ft Ladder [](https://12ft.io/) Show me a 10ft paywall, I’ll show you a 12ft ladder. namecheckr | Social and Domain Name Availability Search For Brand Professionals [](https://www.namecheckr.com/) Social and Domain Name Availability Search For Brand Professionals Excel AI Formula Generator - Excelformulabot.com [](https://excelformulabot.com/) Transform your text instructions into Excel formulas in seconds with the help of AI. Z-Library [](https://z-lib.org/) Global Print On Demand Platform | Gelato [](https://www.gelato.com/) Create and sell custom products online. With local production in 33 countries, easy integration, and 24/7 customer support, Gelato is an all-in-one platform. Freecycle: Front Door [](https://freecycle.org/) Free eBooks | Project Gutenberg [](https://www.gutenberg.org/) Project Gutenberg is a library of free eBooks. Convertio — File Converter [](https://convertio.co/) Convertio - Easy tool to convert files online. More than 309 different document, image, spreadsheet, ebook, archive, presentation, audio and video formats supported. Namechk [](https://namechk.com/) Crazy Egg Website — Optimization | Heatmaps, Recordings, Surveys & A/B Testing [](https://www.crazyegg.com/) Use Crazy Egg to see what's hot and what's not, and to know what your web visitors are doing with tools, such as heatmaps, recordings, surveys, A/B testing & more. Ifttt [](https://ifttt.com/) Also Asked [](https://alsoasked.com/) Business Name Generator - Easily create Brandable Business Names - Namelix [](https://namelix.com/) Namelix uses artificial intelligence to create a short, brandable business name. Search for domain availability, and instantly generate a logo for your new business Merch Informer [](https://merchinformer.com/) Headline Generator [](https://www.title-generator.com/) Title Generator: create 700 headlines with ONE CLICK: Content Ideas + Catchy Headlines + Ad Campaign E-mail Subject Lines + Emotional Titles. Simple - Efficient - One Click Make [](https://www.make.com/en) Create and add calculator widgets to your website | CALCONIC_ [](https://www.calconic.com/) Web calculator builder empowers you to choose from a pre-made templates or build your own calculator widgets from a scratch without any need of programming knowledge Boost Your Views And Subscribers On YouTube - vidIQ [](https://vidiq.com/) vidIQ helps you acquire the tools and knowledge needed to grow your audience faster on YouTube and beyond. Learn More Last Pass [](https://www.lastpass.com/) Starter Story: Learn How People Are Starting Successful Businesses [](https://www.starterstory.com/) Starter Story interviews successful entrepreneurs and shares the stories behind their businesses. In each interview, we ask how they got started, how they grew, and how they run their business today. How To Say No [](https://www.starterstory.com/how-to-say-no) Saying no is hard, but it's also essential for your sanity. Here are some templates for how to say no - so you can take back your life. Think with Google - Discover Marketing Research & Digital Trends [](https://www.thinkwithgoogle.com/) Uncover the latest marketing research and digital trends with data reports, guides, infographics, and articles from Think with Google. ClickUp™ | One app to replace them all [](https://clickup.com/) Our mission is to make the world more productive. To do this, we built one app to replace them all - Tasks, Docs, Goals, and Chat. The Manual [](https://manual.withcompound.com/) Wealth-planning resources for founders and startup employees Software for Amazon FBA Sellers & Walmart Sellers | Helium 10 [](https://www.helium10.com/) If you're looking for the best software for Amazon FBA & Walmart sellers on the market, check out Helium 10's capabilities online today! Buffer: All-you-need social media toolkit for small businesses [](https://buffer.com/) Use Buffer to manage your social media so that you have more time for your business. Join 160,000+ small businesses today. CPGD — The Consumer Packaged Goods Directory [](https://www.cpgd.xyz/) The Consumer Packaged Goods Directory is a platform to discover new brands and resources. We share weekly trends in our newsletter and partner with services to provide vetted, recommended platforms for our Directory brands. Jungle Scout [](https://www.junglescout.com/) BuzzSumo | The World's #1 Content Marketing Platform [](https://buzzsumo.com/) BuzzSumo powers the strategies of 500k+ marketers, with content marketing data on 8b articles, 42m websites, 300t engagements, 500k journalists & 492m questions. Login - Capital [](https://app.capital.xyz/) Raise, hold, spend, and send funds — all in one place. Marketing Pictory – Video Marketing Made Easy - Pictory.ai [](https://pictory.ai/) Pictory's powerful AI enables you to create and edit professional quality videos using text, no technical skills required or software to download. Tolstoy | Communicate with interactive videos [](https://www.gotolstoy.com/) Start having face-to-face conversations with your customers. Create Email Marketing Your Audience Will Love - MailerLite [](https://www.mailerlite.com/) Email marketing tools to grow your audience faster and drive revenue smarter. Get free access to premium features with a 30-day trial! Sign up now! Hypefury - Schedule & Automate Social Media Marketing [](https://hypefury.com/) Save time on social media while creating more value, and growing your audience faster. Schedule & automate your social media experience! Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. Online Email & Lead Scraper | Klean Leads [](https://www.kleanleads.com/) Klean Leads is an online email scraper & email address finder. Use it to book more appointments, get more replies, and close more sales. PhantomBuster [](https://phantombuster.com/) Call to Action Examples - 300+ CTA Phrases [](https://ctaexamples.com/) See the best CTA example in every situation covered by the library of 300+ CTA goals. Use the examples to create your own CTAs in minutes. Creative Center: one-stop creative solution for TikTok [](https://ads.tiktok.com/business/creativecenter/pc/en?from=001010) Come to get your next great idea for TikTok. Here you can find the best performing ads, viral videos, and trending hashtags across regions and verticals. Groove.cm GrooveFunnels, GrooveMail with CRM and Digital Marketing Automation Platform - Groove.cm with GrooveFunnels, GroovePages, GrooveKart [](https://groove.cm/) Groove is a website creator, page builder, sales funnel maker, membership site platform, email autoresponder, blog tool, shopping cart system, ecommerce store solution, affiliate manager, video marketing software and more apps to help build your online business. SurveyMonkey: The World’s Most Popular Free Online Survey Tool [](https://www.surveymonkey.com/) Use SurveyMonkey to drive your business forward by using our free online survey tool to capture the voices and opinions of the people who matter most to you. Video Maker | Create Videos Online | Promo.com [](https://promo.com/) Free customizable video maker to help boost your business. Video creator for ads, social media, product and explainer videos, and for anything else you need! beehiiv — The newsletter platform built for growth [](https://www.beehiiv.com/) Access the best tools available in email, helping your newsletter scale and monetize like never before. GetResponse | Professional Email Marketing for Everyone [](https://www.getresponse.com/) No matter your level of expertise, we have a solution for you. At GetResponse, it's email marketing done right. Start your free account today! Search Email Newsletter Archives : Email Tuna [](https://emailtuna.com/) Explore newsletters without subscribing. Get email design ideas, discount coupon codes and exclusive newsletters deals. Database of email newsletters archived from all over the internet. Other Tools Simplescraper — Scrape Websites and turn them into APIs [](https://simplescraper.io/) Web scraping made easy — a powerful and free Chrome extension for scraping websites in your browser, automated in the cloud, or via API. No code required. Exploding Topics - Discover the hottest new trends. [](https://explodingtopics.com/) See new market opportunities, trending topics, emerging technology, hot startups and more on Exploding Topics. Scribe | Visual step-by-step guides [](https://scribehow.com/) By capturing your process while you work, Scribe automatically generates a visual guide, ready to share with the click of a button. Get It Free – The internet's BEST place to find free stuff! [](https://getitfree.us/) The internet's BEST place to find free stuff! Inflact by Ingramer – Marketing toolkit for Instagram [](https://inflact.com/) Sell on Instagram, build your audience, curate content with the right set of tools. Free Online Form Builder & Form Creator | Jotform [](https://www.jotform.com/) We believe the right form makes all the difference. Go from busywork to less work with powerful forms that use conditional logic, accept payments, generate reports, and automate workflows. Manage Your Team’s Projects From Anywhere | Trello [](https://trello.com/en) Trello is the ultimate project management tool. Start up a board in seconds, automate tedious tasks, and collaborate anywhere, even on mobile. TikTok hashtag generator - tiktokhashtags.com [](https://tiktokhashtags.com/) Find out which are the best hashtags for your TikTok post. Create Infographics, Reports and Maps - Infogram [](https://infogram.com/) Infogram is an easy to use infographic and chart maker. Create and share beautiful infographics, online reports, and interactive maps. Make your own here. Confetto - Create Instagram content in minutes [](https://www.confet.to/) Confetto is an all-in-one social media marketing tool built for SMBs and Social Media Managers. Confetto helps you create high-quality content for your audience that maximizes your reach and engagement on social media. Design, copy-write, plan and schedule content all in one place. Find email addresses in seconds • Hunter (Email Hunter) [](https://hunter.io/) Hunter is the leading solution to find and verify professional email addresses. Start using Hunter and connect with the people that matter for your business. PlayPhrase.me: Site for cinema archaeologists. [](https://playphrase.me/) Travel and explore the world of cinema. Largest collection of video quotes from movies on the web. #1 Free SEO Tools → SEO Review Tools [](https://www.seoreviewtools.com/) SEO Review Tools: 42+ Free Online SEO Tools build with ❤! → Rank checker → Domain Authority Checker → Keyword Tool → Backlink Checker Podcastle: Seamless Podcast Recording & Editing [](https://podcastle.ai/) Podcastle is the simplest way to create professional-quality podcasts. Record, edit, transcribe, and export your content with the power of AI, in an intuitive web-based platform. Save Ads from TikTok & Facebook Ad Library - Foreplay [](https://www.foreplay.co/) The best way to save ads from TikTok Creative Center and Facebook Ad Library, Organize them into boards and share ad inspiration with your team. Supercharge your creative strategy. SiteRight - Automate Your Business [](https://www.siteright.co/) SiteRight combines the abilities of multiple online resources into a single dashboard allowing you to have full control over how you manage your business. Diffchecker - Compare text online to find the difference between two text files [](https://www.diffchecker.com/) Diffchecker will compare text to find the difference between two text files. Just paste your files and click Find Difference! Yout.com [](https://yout.com/) Yout.com allows you to record videos from YouTube, FaceBook, SoundCloud, VK and others too many formats with clipping. Intuitively easy to use, with Yout the Internet DVR, with a bit of extra. AI Content Generation | Competitor Analysis - Predis.ai [](https://predis.ai/) Predis helps brands and influencers communicate better on social media by providing AI-powered content strategy analysis, content and hashtag recommendations. Castr | #1 Live Video Streaming Solution With Video Hosting [](https://castr.io/) Castr is a live video streaming solution platform that delivers enterprise-grade live videos globally with CDN. Live event streaming, video hosting, pre-recorded live, multi stream – all in one place using Castr. Headliner - Promote your podcast, radio show or blog with video [](https://www.headliner.app/) Easily create videos to promote your podcast, radio show or blog. Share to Instagram, Facebook, Twitter, YouTube, Linkedin and anywhere video lives Create Presentations, Infographics, Design & Video | Visme [](https://www.visme.co/) Create professional presentations, interactive infographics, beautiful design and engaging videos, all in one place. Start using Visme today. Designrr - Create eBooks, Kindle books, Leadmagnets, Flipbooks and Blog posts from your content in 2 minutes [](https://designrr.io/) Upload any web page, MS Word, Video, Podcast or YouTube and it will create a stunning ebook and convert it to pdf, epub, Kindle or Flipbook. Quick and Easy to use. Full Training, 24x7 Support and Facebook Group Included. SwipeWell | Swipe File Software [](https://www.swipewell.app/) The only Chrome extension dedicated to helping you save, organize, and reference marketing examples (so you never feel stumped). Tango | Create how-to guides, in seconds [](https://www.tango.us/) Tango takes the pain out of documenting processes by automatically generating how-to guides while you work. Empower your team to do their best work. Ad Creative Bank [](https://www.theadcreativebank.com/) Get inspired by ads from across industries, learn new best practices, and start thinking creatively about your brand’s digital creative. Signature Hound • Free Email Signature and Template Generator [](https://signaturehound.com/) Our email signature generator is free and easy to use. Our customizable templates work with Gmail, Outlook, Office 365, Apple Mail and more. Organize All Of Your Marketing In One Place - CoSchedule [](https://coschedule.com/) Get more done in less time with the only work management software for marketers. B Ok - Books [](https://b-ok.xyz/categories) OmmWriter [](https://ommwriter.com/) Ommwriter Rebrandly | Custom URL Shortener, Branded Link Management, API [](https://www.rebrandly.com/) URL Shortener with custom domains. Shorten, brand and track URLs with the industry-leading link management platform. Free to try. API, Short URL, Custom Domains. Common Tools [](https://www.commontools.org/) Book Bolt [](https://bookbolt.io/) Zazzle [](https://www.zazzle.com/) InspiroBot [](https://inspirobot.me/) Download Free Cheat Sheets or Create Your Own! - Cheatography.com: Cheat Sheets For Every Occasion [](https://cheatography.com/) Find thousands of incredible, original programming cheat sheets, all free to download. No Code Chatbot Platform | Free Chatbot Platform | WotNot [](https://wotnot.io/) WotNot is the best no code chatbot platform to build AI bot easily without coding. Deploy bots and live chat on the Website, Messenger, WhatsApp, and more. SpyFu - Competitor Keyword Research Tools for Google Ads PPC & SEO [](https://www.spyfu.com/) Systeme.io - The only tool you need to launch your online business [](https://systeme.io/) Systeme.io has all the tools you need to grow your online business. Click here to create your FREE account! Productivity Temp Mail [](https://temp-mail.org/en/) The Visual Collaboration Platform for Every Team | Miro [](https://miro.com/) Scalable, secure, cross-device and enterprise-ready team collaboration whiteboard for distributed teams. Join 35M+ users from around the world. Grammarly: Free Online Writing Assistant [](https://www.grammarly.com/) Millions trust Grammarly’s free writing app to make their online writing clear and effective. Getting started is simple — download Grammarly’s extension today. Rize · Maximize Your Productivity [](https://rize.io/) Rize is a smart time tracker that improves your focus and helps you build better work habits. Motion | Manage calendars, meetings, projects & tasks in one app [](https://www.usemotion.com/) Automatically prioritize tasks, schedule meetings, and resolve calendar conflicts. Used by over 10k CEOs and professionals to improve focus, get more done, and streamline workday. Notion – One workspace. Every team. [](https://www.notion.so/) We’re more than a doc. Or a table. Customize Notion to work the way you do. Loom: Async Video Messaging for Work | Loom [](https://www.loom.com/) Record your screen, share your thoughts, and get things done faster with async video. Zapier | Automation that moves you forward [](https://zapier.com/) Workflow automation for everyone. Zapier automates your work across 5,000+ app integrations, so you can focus on what matters. Rows — The spreadsheet with superpowers [](https://rows.com/) Combine the power of a spreadsheet with built-in integrations from your business apps. Automate workflows and build tools that make work simpler. Free Online Form Builder | Tally [](https://tally.so/) Tally is the simplest way to create free forms & surveys. Create any type of form in seconds, without knowing how to code, and for free. Highbrow | Learn Something New Every Day. Join for Free! [](https://gohighbrow.com/) Highbrow helps you learn something new every day with 5-minute lessons delivered to your inbox every morning. Join over 400,000 lifelong learners today! Slick Write | Check your grammar. Proofread online. [](https://www.slickwrite.com/#!home) Slick Write is a powerful, FREE application that makes it easy to check your writing for grammar errors, potential stylistic mistakes, and other features of interest. Whether you're a blogger, novelist, SEO professional, or student writing an essay for school, Slick Write can help take your writing to the next level. Reverso [](https://www.reverso.net) Hemingway Editor [](https://hemingwayapp.com/) Web Apps by 123apps - Edit, Convert, Create [](https://123apps.com/) Splitbee – Your all-in-one analytics and conversion platform [](https://splitbee.io/) Track and optimize your online business with Splitbee. Analytics, Funnels, Automations, A/B Testing and more. PDF Tools Free PDF, Video, Image & Other Online Tools - TinyWow [](https://tinywow.com/) Smallpdf.com - A Free Solution to all your PDF Problems [](https://smallpdf.com/) Smallpdf - the platform that makes it super easy to convert and edit all your PDF files. Solving all your PDF problems in one place - and yes, free. Sejda helps with your PDF tasks [](https://www.sejda.com/) Sejda helps with your PDF tasks. Quick and simple online service, no installation required! Split, merge or convert PDF to images, alternate mix or split scans and many other. iLovePDF | Online PDF tools for PDF lovers [](https://www.ilovepdf.com/) iLovePDF is an online service to work with PDF files completely free and easy to use. Merge PDF, split PDF, compress PDF, office to PDF, PDF to JPG and more! Text rewrite QuillBot [](https://quillbot.com/) Pre Post SEO : Online SEO Tools [](https://www.prepostseo.com/) Free Online SEO Tools: plagiarism checker, grammar checker, image compressor, website seo checker, article rewriter, back link checker Wordtune | Your personal writing assistant & editor [](https://www.wordtune.com/) Wordtune is the ultimate AI writing tool that rewrites, rephrases, and rewords your writing! Trusted by over 1,000,000 users, Wordtune strengthens articles, academic papers, essays, emails and any other online content. Aliexpress alternatives CJdropshipping - Dropshipping from Worldwide to Worldwide! [](https://cjdropshipping.com/) China's reliable eCommerce dropshipping fulfillment supplier, helps small businesses ship worldwide, dropship and fulfillment services that are friendly to start-ups and small businesses, Shopify dropshipping. SaleHoo [](https://www.salehoo.com/) Alibaba.com: Manufacturers, Suppliers, Exporters & Importers from the world's largest online B2B marketplace [](https://www.alibaba.com/) Find quality Manufacturers, Suppliers, Exporters, Importers, Buyers, Wholesalers, Products and Trade Leads from our award-winning International Trade Site. Import & Export on alibaba.com Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Best dropshipping supplier to the US [](https://www.usadrop.com/) THE ONLY AMERICAN-MADE FULFILLMENT CENTER IN CHINA. Our knowledge of the Worldwide dropshipping market and the Chinese Supply-Chain can't be beat! 阿里1688 [](https://www.1688.com/) 阿里巴巴(1688.com)是全球企业间(B2B)电子商务的著名品牌,为数千万网商提供海量商机信息和便捷安全的在线交易市场,也是商人们以商会友、真实互动的社区平台。目前1688.com已覆盖原材料、工业品、服装服饰、家居百货、小商品等12个行业大类,提供从原料--生产--加工--现货等一系列的供应产品和服务 Dropshipping Tools Oberlo | Where Self Made is Made [](https://www.oberlo.com/) Start selling online now with Shopify. All the videos, podcasts, ebooks, and dropshipping tools you'll need to build your online empire. Klaviyo: Marketing Automation Platform for Email & SMS [](https://www.klaviyo.com/) Klaviyo, an ecommerce marketing automation platform for email marketing and sms syncs your tech stack with your website store to scale your business. SMSBump | SMS Marketing E-Commerce App for Shopify [](https://smsbump.com/) SMSBump is an SMS marketing & automation app for Shopify. Segment customers, recover orders, send campaign text messages with a 35%+ click through rate. AfterShip: The #1 Shipment Tracking Platform [](https://www.aftership.com/) Order status lookup, branded tracking page, and multi-carrier tracking API for eCommerce. Supports USPS, FedEx, UPS, and 900+ carriers worldwide. #1 Dropshipping App | Zendrop [](https://zendrop.com/) Start and scale your own dropshipping business with Zendrop. Sell and easily fulfill your orders with the fastest shipping in the industry. Best Dropshipping Suppliers for US + EU Products | Spocket [](https://www.spocket.co/) Spocket allows you to easily start dropshipping top products from US and EU suppliers. Get started for free and see why Spocket consistently gets 5 stars. Video Editing Jitter • The simplest motion design tool on the web. [](https://jitter.video/) Animate your designs easily. Export your creations as videos or GIFs. All in your browser. DaVinci Resolve 18 | Blackmagic Design [](https://www.blackmagicdesign.com/products/davinciresolve) Professional video editing, color correction, visual effects and audio post production all in a single application. Free and paid versions for Mac, Windows and Linux. Online Video Editor | Video Creator | InVideo [](https://invideo.io/) InVideo's Online Video Editor Helps You Make Professional Videos From Premium Templates, Images, And Music. All your video needs in one place | Clipchamp [](https://clipchamp.com/) Fast-forward your creations with our video editing platform. Start with a video template or record your webcam or screen. Get the pro look with filters, transitions, text and more. Then, export in minutes and share in an instant. Descript | All-in-one audio/video editing, as easy as a doc. [](https://www.descript.com/) Record, transcribe, edit, mix, collaborate, and master your audio and video with Descript. Download for free →. Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. Panzoid [](https://panzoid.com/) Powerful, free online apps and community for creating beautiful custom content. Google Web Designer - Home [](https://webdesigner.withgoogle.com/) Kapwing — Reach more people with your content [](https://www.kapwing.com/) Kapwing is a collaborative, online content creation platform that you can use to edit video and create content. Join over 10 million modern creators who trust Kapwing to create, edit, and grow their content on every channel. ClipDrop [](https://clipdrop.co/) Create professional visuals without a photo studio CapCut [](https://www.capcut.com/) CapCut is an all-in-one online video editing software which makes creation, upload & share easier, with frame by frame track editor, cloud drive etc. VEED - Online Video Editor - Video Editing Made Simple [](https://www.veed.io/) Make stunning videos with a single click. Cut, trim, crop, add subtitles and more. Online, no account needed. Try it now, free. VEED Free Video Maker | Create & Edit Your Videos Easily - Animoto [](https://animoto.com/k/welcome) Create, edit, and share videos with our online video maker. Combine your photos, video clips, and music to make quality videos in minutes. Get started free! Runway - Online Video Editor | Everything you need to make content, fast. [](https://runwayml.com/) Discover advanced video editing capabilities to take your creations to the next level. CreatorKit - A.I. video creator for marketers [](https://creatorkit.com/) Create videos with just one click, using our A.I. video editor purpose built for marketers. Create scroll stopping videos, Instagram stories, Ads, Reels, and TikTok videos. Pixar in a Box | Computing | Khan Academy [](https://www.khanacademy.org/computing/pixar) 3D Video Motions Plask - AI Motion Capture and 3D Animation Tool [](https://plask.ai/) Plask is an all-in-one browser-based AI motion capture tool and animation editor that anybody can use, from motion designers to every day content creators. Captions Captions [](https://www.getcaptions.app/) Say hello to Captions, the only camera and editing app that automatically transcribes, captions and clips your talking videos for you. Stock videos Pexels [](https://www.pexels.com/) Pixabay [](https://pixabay.com/) Mixkit - Awesome free assets for your next video project [](https://mixkit.co/) Download Free Stock Video Footage, Stock Music & Premiere Pro Templates for your next video editing project. All assets can be downloaded for free! Free Stock Video Footage HD 4K Download Royalty-Free Clips [](https://www.videvo.net/) Download free stock video footage with over 300,000 video clips in 4K and HD. We also offer a wide selection of music and sound effect files with over 180,000 clips available. Click here to download royalty-free licensing videos, motion graphics, music and sound effects from Videvo today. Free Stock Video Footage HD Royalty-Free Videos Download [](https://mazwai.com/) Download free stock video footage with clips available in HD. Click here to download royalty-free licensing videos from Mazwai now. Royalty Free Stock Video Footage Clips | Vidsplay.com [](https://www.vidsplay.com/) Royalty Free Stock Video Footage Clips Free Stock Video Footage, Royalty Free Videos for Download [](https://coverr.co/) Download royalty free (for personal and commercial use), unique and beautiful video footage for your website or any project. No attribution required. Stock Photos Beautiful Free Images & Pictures | Unsplash [](https://unsplash.com/) Beautiful, free images and photos that you can download and use for any project. Better than any royalty free or stock photos. When we share, everyone wins - Creative Commons [](https://creativecommons.org/) Creative Commons licenses are 20! Honoring 20 years of open sharing using CC licenses, join us in 2022 to celebrate Better Sharing — advancing universal access to knowledge and culture, and fostering creativity, innovation, and collaboration. Help us reach our goal of raising $15 million for a future of Better Sharing.  20 Years of Better … Read More "When we share, everyone wins" Food Pictures • Foodiesfeed • Free Food Photos [](https://www.foodiesfeed.com/) Download 2000+ food pictures ⋆ The best free food photos for commercial use ⋆ CC0 license Free Stock Photos and Images for Websites & Commercial Use [](https://burst.shopify.com/) Browse thousands of beautiful copyright-free images. All our pictures are free to download for personal and commercial use, no attribution required. EyeEm | Authentic Stock Photography and Royalty-Free Images [](https://www.eyeem.com/) Explore high-quality, royalty-free stock photos for commercial use. License individual images or save money with our flexible subscription and image pack plans. picjumbo: Free Stock Photos [](https://picjumbo.com/) Free stock photos and images for your projects and websites.️ Beautiful 100% free high-resolution stock images with no watermark. Free Stock Photos, Images, and Vectors [](https://www.stockvault.net/) 139.738 free stock photos, textures, backgrounds and graphics for your next project. No attribution required. Free Stock Photos, PNGs, Templates & Mockups | rawpixel [](https://www.rawpixel.com/) Free images, PNGs, stickers, backgrounds, wallpapers, graphic templates and PSD mockups. All safe to use with commercial licenses. Free Commercial Stock Photos & Royalty Free Images | PikWizard [](https://pikwizard.com/) Free images, videos & free stock photos. Unlimited downloads ✓ Royalty-free Images ✓Copyright-free for commercial use ✓ No Attribution Required Design Bundles [](https://designbundles.net/) Stock music Royalty Free Music for video creators | Epidemic Sound [](https://www.epidemicsound.com/) Download premium Royalty free Music and SFX! Our free trial gives you access to over 35,000 tracks and 90,000 sound effects for video, streaming and more! Royalty-Free Music & SFX for Video Creators | Artlist [](https://artlist.io/) Explore the ultimate royalty-free music & sound effects catalogs for unlimited use in YouTube videos, social media & films created by inspiring indie artists worldwide. The go-to music licensing choice for all creators Royalty Free Audio Tracks - Envato Elements [](https://elements.envato.com/audio) Download Royalty Free Stock Audio Tracks for your next project from Envato Elements. Premium, High Quality handpicked Audio files ideal for any genre. License popular music for videos • Lickd [](https://lickd.co/) The only place you can license popular music for videos. Access 1M+ mainstream tracks, plus high-quality stock music for content creators NCS (NoCopyrightSounds) - free music for content creators [](https://ncs.io/) NCS is a Record Label dedicated to giving a platform to the next generation of Artists in electronic music, representing genres from house to dubstep via trap, drum & bass, electro pop and more. Search Engine Optimization Keyword Tool For Monthly Search Volume, CPC & Competition [](https://keywordseverywhere.com/) Keywords Everywhere is a browser add-on for Chrome & Firefox that shows search volume, CPC & competition on multiple websites. Semrush - Online Marketing Can Be Easy [](https://www.semrush.com/) Turn the algorithm into a friend. Make your business visible online with 55+ tools for SEO, PPC, content, social media, competitive research, and more. DuckDuckGo — Privacy, simplified. [](https://duckduckgo.com/) The Internet privacy company that empowers you to seamlessly take control of your personal information online, without any tradeoffs. SEO Software for 360° Analysis of Your Website [](https://seranking.com/) Leading SEO software for business owners, agencies, and SEO specialists. Track your rankings, monitor competitors, spot technical errors, and more. Skyrocket your organic traffic with Surfer [](https://surferseo.com/) Use Surfer to research, write, optimize, and audit! Everything you need to create a comprehensive content strategy that yields real results is right here. Ahrefs - SEO Tools & Resources To Grow Your Search Traffic [](https://ahrefs.com/) You don't have to be an SEO pro to rank higher and get more traffic. Join Ahrefs – we're a powerful but easy to learn SEO toolset with a passionate community. Neon Tools [](https://neontools.io/) Google Index Search [](https://lumpysoft.com/) Google Index Search SEO Backlink Checker & Link Building Toolset | Majestic.com [](https://majestic.com/) Develop backlink strategies with our Link Intelligence data, build the strongest SEO backlink campaigns to drive organic traffic and boost your rankings today. PageOptimizer Pro [](https://pageoptimizer.pro/) Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page Workshops With Kyle Roof POP Chrome Extension Guide Tutorial Videos Frequently Asked Questions Best Practices Login Cancel Anytime Plans Services SEO Consulting Learn SEO About Blog POP SEO Community Podcast Support POP On Page… Keyword Chef - Keywords for Publishers [](https://keywordchef.com/) Rank Insanely Fast for Keywords Your Competition Can’t Find “Every long-tail keyword I find ends up ranking within a day” – Dane Eyerly, Owner at TextGoods.com Keyword Chef automatically finds and filters keywords for you. Real-time SERP analysis lets you find keywords nearly guaranteed to rank. Try for free → Let’s face it, most keyword tools ... Read more Notifier - Social Listening for Social Media and More! [](https://notifier.so/) Track keywords. Market your product for free. Drive the conversation. Easy. Free Trial. No obligation ever. Simple. Fast. Trusted by Top Companies. Free Keyword Research Tool from Wordtracker [](https://www.wordtracker.com/) The best FREE alternative to the Keyword Planner. Use Wordtracker to reveal 1000s of profitable longtail keywords with up to 10,000 results per search Blog Posts The 60 Hottest Front-end Tools of 2021 | CSS-Tricks - CSS-Tricks [](https://css-tricks.com/hottest-front-end-tools-in-2021/) A complete list of the most popular front-end tools in 2021, according to the Web Tools Weekly newsletter. See which resources made the list. Resume ResumeGlow - AI Powered Resume Builder [](https://resumeglow.com/) Get hired fast with a resume that grabs attention. Designed by a team of HR experts and typographers. Customizable templates with more than a million possible Create Your Job-winning Resume - (Free) Resume maker · Resume.io [](https://resume.io/) Free online resume maker, allows you to create a perfect Resume or Cover Letter in 5 minutes. See how easy it is to write a professional resume - apply for jobs today! Rezi - The Leading AI-Powered Free Resume Builder [](https://www.rezi.ai/) Rezi’s award-winning AI-powered resume builder is trusted by hundreds of thousands of job seekers. Create your perfect resume in minutes with Rezi. Create a Perfect Resume | Free Resume Builder | Resumaker.ai [](https://resumaker.ai/) Create your professional resume with this online resume maker. Choose a designer-made template and grab any employer attention in seconds. Trusted AI Resume Maker Helps You Get Hired Fast [](https://skillroads.com/) Reach a 96.4% success rate in the job hunt race with the best resume creator. Our innovative technologies and 24/7 support help you to become a perfect candidate for any job. Do not lose your chance to become the One. Kickresume | Best Online Resume & Cover Letter Builder [](https://www.kickresume.com/) Create your best resume yet. Online resume and cover letter builder used by 1,300,000 job seekers worldwide. Professional templates approved by recruiters. ResumeMaker.Online | Create a Professional Resume for Free [](https://www.resumemaker.online/) Save time with the easiest-to-use Resume Maker Online. Create an effective resume in just minutes and land your dream job. No Sign-up required, start now! Interviews Interview Warmup - Grow with Google [](https://grow.google/certificates/interview-warmup/) A quick way to prepare for your next interview. Practice key questions, get insights about your answers, and get more comfortable interviewing. No code website builder Carrd - Simple, free, fully responsive one-page sites for pretty much anything [](https://carrd.co/) A free platform for building simple, fully responsive one-page sites for pretty much anything. Webflow: Create a custom website | No-code website builder [](https://webflow.com/) Create professional, custom websites in a completely visual canvas with no code. Learn how to create a website by trying Webflow for free! Google Sites: Sign-in [](https://sites.google.com/) FlutterFlow - Build beautiful, modern apps incredibly fast! [](https://flutterflow.io/) FlutterFlow lets you build apps incredibly fast in your browser. Build fully functional apps with Firebase integration, API support, animations, and more. Export your code or even easier deploy directly to the app stores! Free Website Builder: Build a Free Website or Online Store | Weebly [](https://www.weebly.com/) Weebly’s free website builder makes it easy to create a website, blog, or online store. Find customizable templates, domains, and easy-to-use tools for any type of business website. Glide • No Code App Builder • Nocode Application Development [](https://www.glideapps.com/) Create the apps your business needs, without coding, waiting or overpaying. Get started for free and build an app today Adalo - Build Your Own No Code App [](https://www.adalo.com/) Adalo makes creating apps as easy as putting together a slide deck. Turn your idea into a real native app — no code needed! Siter.io - The collaborative web design tool, no-code website builder [](https://siter.io/) Siter.io is a visual website builder for designers. Prototype, design, and create responsive websites in the browser. Work together with your team in one place. Elementor: #1 Free WordPress Website Builder | Elementor.com [](https://elementor.com/) Elementor is the platform web creators choose to build professional WordPress websites, grow their skills, and build their business. Start for free today! No code app builder | Bravo Studio [](https://www.bravostudio.app/) Your no-code mobile app builder for iOS and Android. Create MVP’s, validate ideas and publish on App Store and Google Play Store. Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Free Website Builder | Create a Free Website | Wix.com [](https://www.wix.com/) Create a website with Wix’s robust website builder. With 900+ strategically designed templates and advanced SEO and marketing tools, build your brand online today. Free responsive Emails & Landing Pages drag-and-drop Editor | BEE [](https://beefree.io/) Free responsive emails and landing pages editor. With BEE drag-and-drop builders embedded in many software applications you can start designing now! Home [](https://typedream.com/) The simplest way to build a website with no-code, as easy as writing on Notion. Try Typedream for free and upgrade for custom domains, collaborators, and unlimited pages. Ownit Connected Checkout [](https://www.ownit.co/) Ownit Connected Checkout Bookmark.com | No-code Website Builder to Start Your Business [](https://www.bookmark.com/) Our AI powered platform ensures your business is future proof. Try Bookmark for free. The best way to build web apps without code | Bubble [](https://bubble.io/) Bubble introduces a new way to build software. It’s a no-code tool that lets you build SaaS platforms, marketplaces and CRMs without code. Bubble hosts all web apps on its cloud platform. Responsive Web Design | Website Creation | Editor X [](https://www.editorx.com/) Experience the future of website design with responsive layouts, CSS precision and smooth drag and drop. Create a Website for Free. Tilda Website Builder [](https://tilda.cc/) Create a website, online store, landing page with Tilda intuitive website builder. Build your site from hundreds of pre-designed templates and publish it today. No code required. No-code headless commerce and websites | Unstack Inc. [](https://www.unstack.com/) Deploy high performance eCommerce storefronts and websites without the engineering overhead using Unstack's no-code CMS Best Drag-and-Drop Website Builder | Jemi [](https://jemi.so/) The modern website builder for creatives, entrepreneurs, and dreamers. Build a beautiful link in bio site, portfolio, or landing page in minutes. No-code website builder that works like Notion [](https://popsy.co/) Create a beautiful no-code website in minutes. Popsy works just like Notion but is built from the ground up for building websites. Choose a free template. Edit content just like in Notion. Customize styles without code. Free Notion icons and illustrations. Unbounce - The Landing Page Builder & Platform [](https://unbounce.com/) Grow your relevance, leads, and sales with Unbounce. Use Unbounce to easily create and optimize landing pages for your small business and boost conversions with AI insights. Low-code Front-end Design & Development Platform | TeleportHQ [](https://teleporthq.io/) Front-end development platform, with a visual builder and headless content modelling capabilities. Static website creation, and UI development tools. Other tools used in no code website MemberSpace - Turn any part of your website into members-only with just a few clicks [](https://www.memberspace.com/) Create memberships on your website for anything you want like courses, video tutorials, member directories, and more while having 100% control over look & feel. Triggre | The number one true no-code platform to run your business [](https://www.triggre.com/) The best no-code platform to create highly advanced business applications in hours, without programming. Try it now for free! No code game builder Welcome to Buildbox [](https://signup.buildbox.com/) Welcome to Buildbox Flowlab Game Creator - Make games online [](https://flowlab.io/) Flowlab is an online game creator. Make your own games to share with friends. Make 2D Games With GameMaker | Free Video Game Maker [](https://gamemaker.io/) Make a game with GameMaker, the best free video game engine. Perfect for beginners and professionals. Learn to build your own 2D games with our simple tutorials. Side Hustle Side Hustle Stack [](https://sidehustlestack.co/) Side Hustle Stack is a resource for finding platform-based work, ranging from gig work and side hustles to platforms that help you start a small business that can grow. Fiverr [](https://www.fiverr.com/) Remotasks: Work From Home, Online Bootcamp Training [](https://www.remotasks.com/en) Make money doing tasks. Start earning today! Free bootcamp training offered online. Sign up for a free Remotasks account and work from home. Earn up to $200/month. Transcribe Speech to Text | Rev [](https://www.rev.com/) Transcribe Speech to Text with Rev. Reach your audience with clear and accurate captions, transcripts, and subtitles. AI Training Data and other Data Management Services [](https://www.clickworker.com/) AI training data, SEO texts, web research, tagging, surveys and more - Use the crowdsourcing principle with the power of >4.5M Clickworkers. Automate your Busy Work - Byron People-Powered Assistants [](https://www.hibyron.com/) Byron is an on demand US based virtual assistant platform that gives individuals and teams the ability to quickly outsource their non-essential tasks. Jobs Websites - Remote Latest Crypto Jobs, Web3 Jobs and Blockchain Jobs in the leading tech companies. [](https://cryptojobslist.com/) New Cryptocurrency Jobs, Web3 Jobs and Blockchain Jobs on CryptoJobsList — the leading site to find and post jobs. Connect with companies hiring in a few clicks and begin your next experience in the industry. Updated daily. Remote Jobs: Design, Marketing, Programming, Writing & More [](https://justremote.co/) Discover Remote Jobs from around the world. Give up the commute, work remotely and do what you love, daily, from anywhere. Find your perfect remote development, design, sales or marketing job today. Remote Ok [](https://remoteok.com/) Hire Freelancers & Remote Workers For Free [](https://talent.hubstaff.com/) Find and hire the highest quality freelancers from around the world - for free. Choose from thousands of developers, digital marketers, creatives and more. We Work Remotely: Remote jobs in design, programming, marketing and more [](https://weworkremotely.com/) Find the most qualified people in the most unexpected places: Hire remote! We Work Remotely is the best place to find and list remote jobs that aren't restricted by commutes or a particular geographic area. Browse thousands of remote work jobs today. Angel [](https://angel.co/) Remote Work: Jobs, Companies & Virtual Teams - Remote.co [](https://remote.co/) Remote.co is the definitive remote work job board for online job seekers and companies hiring. Start your remote job search here! FlexJobs: Best Remote Jobs, Work from Home Jobs, Online Jobs & More [](https://www.flexjobs.com/) The #1 job search site for hand-screened flexible and remote jobs (work from home jobs) since 2007. Plus get resume, coaching and career help. Join today! Remote jobs remotefront.io [](https://remotefront.io/) All remote jobs at remotefront.io Daily Virtual Events Helping You Grow Professionally [](https://powertofly.com/) PowerToFly is where you receive expert career advice, free video training, coaching and exclusive access to jobs and events at top companies. Best Remote and Work from Home Jobs - Virtual Vocations [](https://www.virtualvocations.com/) Best work from home jobs and remote jobs in over 50 categories for professionals, digital nomads, telecommuting workers and entry level jobseekers. Education, healthcare, medical, customer support and tech job openings. Remote Jobs | Working Nomads [](https://www.workingnomads.com/jobs) Remote jobs for digital working nomads. Start your telecommuting career and work remotely from home or places around the world. Job Search, Companies Hiring Near Me, and Advice | The Muse [](https://www.themuse.com/) Find jobs at the best companies hiring near you and get free career advice. Startupers [](https://www.startupers.com/) NoDesk - Where Everyone Works Remote [](https://nodesk.co/) Browse and apply to the best new remote jobs at leading remote companies and startups for free. Join hundreds of companies that use NoDesk to build their remote teams. Browser Extensions Blackbox - Select. Copy. Paste & Search - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/blackbox-select-copy-past/mcgbeeipkmelnpldkobichboakdfaeon) Fastest Way to Copy Text from Videos & Images Octotree - GitHub code tree - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/octotree-github-code-tree/bkhaagjahfmjljalopjnoealnfndnagc) GitHub on steroids WhatFont - Chrome Web Store [](https://chrome.google.com/webstore/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm?hl=en) The easiest way to identify fonts on web pages. Window Resizer - Chrome Web Store [](https://chrome.google.com/webstore/detail/window-resizer/kkelicaakdanhinjdeammmilcgefonfh?hl=en) Resize the browser window to emulate various screen resolutions. Amino: CSS Editor - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/amino-css-editor/pbcpfbcibpcbfbmddogfhcijfpboeaaf) Live CSS Editor. Write custom CSS for any website and see your changes in real time. Checkbot: SEO, Web Speed & Security Tester 🚀 - Chrome Web Store [](https://chrome.google.com/webstore/detail/checkbot-seo-web-speed-se/dagohlmlhagincbfilmkadjgmdnkjinl?hl=en) Test SEO/speed/security of 100s of pages in a click! Check broken links, HTML/JavaScript/CSS, URL redirects, duplicate titles... Honey: Automatic Coupons & Rewards - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/honey-automatic-coupons-r/bmnlcjabgnpnenekpadlanbbkooimhnj) Save money and earn rewards when you shop online. Tango: screenshots, training, & documentation - Magazinul web Chrome [](https://chrome.google.com/webstore/detail/tango-screenshots-trainin/lggdbpblkekjjbobadliahffoaobaknh) Automatically create beautiful step-by-step guides with screenshots, in seconds. No code browser automation | axiom.ai [](https://axiom.ai/) Build browser bots quickly, without code. Automate website actions and repetitive tasks using just your browser, on any website or web app. No Code Browser extensions builder Bildr - Visual Web Development in your Browser [](https://www.bildr.com/) Visually build SaaS products, Chrome extensions, and web3 dApps Other Repurposing content for social media the easy way » Repurpose.io [](https://repurpose.io/) Repurposing content for social media made easy. Automatically repurpose YouTube, TikTok, Lives, Podcasts, and Zoom calls. Try it for FREE. Smart Serials: Your serial numbers database [](https://smartserials.com/) This is your main source of free serial numbers, unlock keys in a clean environment safe to browse by all ages. Old versions of Windows, Mac and Linux Software, Apps & Abandonware Games - Download at OldVersion.com [](http://www.oldversion.com/) Online Room Planner - Design Your Room [](http://www.planyourroom.com/) Planyourroom.com is a wonderful website to redesign each room in your house by picking out perfect furniture options to fit your unique space. BoredHumans.com - Fun AI Programs You Can Use Online [](https://boredhumans.com/) Fun AI programs you can use online. AI games, fake people, computer generated art, machine learning demos, and more. BNProject | Home [](https://buynothingproject.org/) Open Source Alternatives to Proprietary Software [](https://www.opensourcealternative.to/) Discover 400+ popular open source alternatives to proprietary SaaS. URL Shortener - Short URLs & Custom Free Link Shortener | Bitly [](https://bitly.com/) Bitly’s Connections Platform is more than a free URL shortener, with robust link management software, advanced QR Code features, and a Link-in-bio solution. TinEye Reverse Image Search [](https://tineye.com/) Good Books | Books recommended by successful people [](https://www.goodbooks.io/) Looking for the best books to read in 2022? Discover the best book recommendations from the world's most successful, influential and interesting people. Directory - Website Recommendations [](https://tokapps.com/directory/) 0 TRIED & TESTED WEBSITES LISTED Insanely Useful Websites A combination of useful websites for businesses, freelancers, DIYers, and individuals in a centralised area.All websites have been tried and tested. Filter Websites Audio Business Tools Copywriting Design Entertainment Graphics Guides Health Marketing PC Resources Savings SEO Software Travel Video Apply filter Watch Anime Online, Free Anime Streaming Online on Zoro.to Anime Website [](https://zoro.to/) Zoro is a Free anime streaming website which you can watch English Subbed and Dubbed Anime online with No Account and Daily update. WATCH NOW! Animated Drawings [](https://sketch.metademolab.com/) Bring children's drawings to life, by animating characters to move around! Alternativeto [](https://alternativeto.net/) Chatroulette [](https://chatroulette.com/) Random meetings around the world Tiktok Downloader - Download Video tiktok Without Watermark - SnapTik [](https://snaptik.app/en) TikTok Video Downloader - SnapTik.App is one of the best free Download video Tiktok No Watermark tool available online. You can download TikTok video from any device you have. Imgflip - Create and Share Awesome Images [](https://imgflip.com/) Flip through memes, gifs, and other funny images. Make your own images with our Meme Generator or Animated GIF Maker. Fake Text Message | Make Fake Text Conversation [](https://ifaketextmessage.com/) Fake Text Message is a tool to create a Fake Text Conversation and a Fake iMessage. ✂Templatemaker ︎ [](https://www.templatemaker.nl/en/) Omni Calculator [](https://www.omnicalculator.com/) Omni Calculator solves 2960 problems anywhere from finance and business to health. It’s so fast and easy you won’t want to do the math again! Watch Movies Online Free | Watch Series HD Free [](https://hdtoday.tv/) Free Access to the Biggest library of HD Movies and HD Series online - NO ADS - No Account Required - Fast Free Streaming Students Answers - The Most Trusted Place for Answering Life's Questions [](https://www.answers.com/) Answers is the place to go to get the answers you need and to ask the questions you want Wolfram|Alpha: Computational Intelligence [](https://www.wolframalpha.com/) Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history, geography, engineering, mathematics, linguistics, sports, finance, music… Online Math Tools - Simple, free and easy to use math utilities [](https://onlinemathtools.com/) World's simplest collection of useful mathematics utilities. Generate number sequences, draw fractals, do quick matrix and numerical calculations and more! edX | Free Online Courses by Harvard, MIT, & more | edX [](https://www.edx.org/) Access 2000 free online courses from 140 leading institutions worldwide. Gain new skills and earn a certificate of completion. Join today. Sci-Hub [](https://sci-hub.hkvisa.net/) Sci-Hub,mg.scihub.ltd,sci-hub.tw,The project is supported by user donations. Imagine the world with free access to knowledge for everyone ‐ a world without any paywalls. DigitalDefynd - Find the Best + Free Courses Online [](https://digitaldefynd.com/) 4 Million+ Learners | 96,000+ Courses | 45,000+ Free Courses | 1200+ Free Certificates Learn Anything [](https://learn-anything.xyz/) Search Interactive Mind Maps to learn anything HubSpot Academy - Homepage [](https://academy.hubspot.com/) HubSpot Academy is the worldwide leader in inbound marketing, sales, and customer service/support training.

conductor
github
LLM Vibe Score0.299
Human Vibe Score0.0112
foundation0May 2, 2024

conductor

Conductor: AI-first digital workbench creators, professionals, entrepreneurs and organizations --> Conductor is open-source, decentralized, community-driven software. Conductor has been designed as a modular platform that anyone can extend. Modules can be anything from a new AI model to a new UI component. Module architecture is still in flux but we will be releasing more information soon. Key Features 🎯 🎯 Laser-focused on productivity over chitchat 🗂️ Organize your work via workspaces, groups and folders 🔒 Privacy-first & local-first: everything e2e encrypted 🤖 Supports focused AI personas to improve results 🛠️ Compatible with any model, Conductor is model-neutral 🌐 Always 100% open-source \*Upcoming features 🆕 🗣️ Talk with AIs 🔮 Support for documents, images, audio, video and 3D 🤝 Go multiplayer, invite others to work with you 🧩 Extend almost any aspect of Conductor with user-built modules 🌌 Conductor goes fully decentralized Watch Conductor in action 🎥 Coming soon 🚧 Get started 🚀 Conductor is free and open-source, but in its current beta state, it is not yet ready for production use. We are working hard to get it there as soon as possible. Run Conductor locally Please note that as the module system is still under development, your milage running custom modules may vary. Contribute 🤝 We are looking for contributors to help us build Conductor. If you are interested, please join our Discord and say hi! Alternatively, follow us on Twitter to stay up to date with our progress.