VibeBuilders.ai Logo
VibeBuilders.ai

Introduction To Tensorflow For Ai Ml And Dl

Explore resources related to introduction to tensorflow for ai ml and dl to help implement AI solutions for your business.

teach-AI-in-business
github
LLM Vibe Score0.443
Human Vibe Score0.018525334165293606
aenyneJan 9, 2025

teach-AI-in-business

Teaching AI in Business ![HitCount] I am collecting material for teaching AI-related issues to non-tech people. The links should provide for a general understanding of AI without going too deep into technical issues. Please contribute! Make this Issue your First Issue I am collecting material for teaching AI-related issues to non-tech people. The links should have provide for a general understanding of AI without going too deep into technical issues. Please contribute! Kindly use only those Resources with NO CODE NEW Check out also the AI Wiki NEW Online Videos & Courses | Link to Issue | Description | |---|---| | Top Trending Technologies | Youtube Channel to master top trending technologyies including artificial intelligence | | AI4All | AI 4 All is a resource for AI facilitators to bring AI to scholars and students | | Elements of AI | Elements of AI is a free open online course to teach AI principles | | Visual Introduction to Machine Learning | Visual introduction to Machine Learning is a beautiful website that gives a comprehensive introduction and easily understood first encounter with machine learning | | CS50's Introduction to Artificial Intelligence with Python | Learn to use machine learning in Python in this introductory course on artificial intelligence.| | Crash course for AI | This is a fun video series that introduces students and educators to Artificial Intelligence and also offers additional more advanced videos. Learn about the basics, neural networks, algorithms, and more. | Youtuber Channel Machine Learning Tutorial | Youtube Channel Turorial Teachable Machine for beginner | | Artificial Intelligence (AI) |Learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems | | AI For Everyone by Andrew Ng | AI For Everyone is a course especially for people from a non-technical background to understand AI strategies | | How far is too far? The age of AI| This is a Youtube Orignals series by Robert Downey| | Fundamentals of Artificial Intelligence|This course is for absolute beginners with no technical knowledge.| | Bandit Algorithm (Online Machine Learning)|No requirement of technical knowledge, but a basic understending of Probability Ttheory would help| | An Executive's Guide to AI|This is an interactive guide to teaching business professionals how they might employ artificial intelligence in their business| | AI Business School|Series of videos that teach how AI may be incorporated in various business industries| | Artificial Intelligence Tutorial for Beginners | This video will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples. | | Indonesian Machine Learning Tutorial | Turorial Teachable Machine to train a computer for beginner | | Indonesian Youtube Playlist AI Tutorial | Youtube Playlist AI Tutorial For Beginner | | Artificial Intelligence Search Methods For Problem Solving By Prof. Deepak Khemani|These video lectures are for absolute beginners with no technical knowledge| | AI Basics Tutorial | This video starts from the very basics of AI and ML, and finally has a hands-on demo of the standard MNIST Dataset Number Detection model using Keras and Tensorflow.| | Simple brain.js Tutorial | This video explains a very simple javascript AI library called brain.js so you can easily run AI in the browser.| | Google AI| A complete kit for by google official for non-tech guy to start all over from basics, till advanced | | Microsoft AI for Beginners| A self-driven curriculum by Microsoft, which includes 24 lessons on AI. | Train Your Own AI | Link to Issue | Description | |---|---| | Teachable Machine | Use Teachable Machine to train a computer to recognize your own images, sounds, & poses | | eCraft2Learn | Resource and interactive space (Snap, a visual programming environment like Scratch) to learn how to create AI programs | | Google Quick Draw | Train an AI to guess from drawings| | Deepdream Generator| Merge Pictures to Deep Dreams using the Deepdream Generator| | Create ML|Quickly build and train Core ML models on your Mac with no code.| | What-If Tool|Visually probe the behavior of trained machine learning models, with minimal coding.| | Metaranx|Use and build artificial intelligence tools to analyze and make decisions about your data. Drag-and-drop. No code.| | obviously.ai|The total process of building ML algorithms, explaining results, and predicting outcomes in one single click.| Articles | By & Title | Description | |---|---| | Artificial Intelligence | Wikipedia Page of AI | | The Non-Technical AI Guide | One of the good blog post that could help AI more understandable for people without technical background | | LIAI | A detailed introduction to AI and neural networks | | Layman's Intro | A layman's introduction to AI | | AI and Machine Learning: A Nontechnical Overview | AI and Machine Learning: A Nontechnical Overview from OREILLY themselves is a guide to learn anyone everything they need to know about AI, focussed on non-tech people | | What business leaders need to know about artifical intelligence|Short article that summarizes the essential aspects of AI that business leaders need to understand| | How Will No-Code Impact the Future of Conversational AI | A humble explanation to the current state of converstational AI i.e.Chatbots and how it coul evolve with the current trend of no coding. | | Investopedia | Basic explanation of what AI is in a very basic and comprehensive way | | Packtpub | A non programmer’s guide to learning Machine learning | | Builtin | Artificial Intelligence.What is Artificial Intelligence? How Does AI Work? | | Future Of Life | Benefits & Risks of Artificial Intelligence | | NSDM India -Arpit | 100+ AI Tools For Non-Coders That Will Make Your Marketing Better. | | AI in Marketing for Startups & Non-technical Marketers | A practical guide for non-technical people | | Blog - Machine Learning MAstery | Blogs and Articles by Jason Browniee on ML | | AI Chatbots without programming| Chatbots are increasingly in demand among global businesses. This course will teach you how to build, analyze, deploy and monetize chatbots - with the help of IBM Watson and the power of AI.| Book Resources for Further Reading | Author | Book | Description & Notes | |---|---|---| | Ethem Alpaydin|Machine Learning: The New AI | Graph Theory with Applications to Engineering & Computer Science. A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. | | Charu C. Aggarwal| Neural Networks and Deep Learning | This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. | | Hal Daumé III | A Course in Machine Learning | The purpose of this book is to provide a gentle and pedagogically organized introduction to the field. A second goal of this book is to provide a view of machine learning that focuses on ideas and models, not on math. | | Ian Goodfellow and Yoshua Bengio and Aaron Courville| Deep Learning | The book starts with a discussion on machine learning basics, including the applied mathematics and algorithms needed to effectively study deep learning from an academic perspective. There is no code covered in the book, making it perfect for a non-technical AI enthusiast. | | Peter Harrington|Machine Learning in Action| (Source: https://github.com/kerasking/book-1/blob/master/ML%20Machine%20Learning%20in%20Action.pdf) This book acts as a guide to walk newcomers through the techniques needed for machine learning as well as the concepts behind the practices.| | Jeff Heaton| Artificial Intelligence for Humans |This book helps its readers get an overview and understanding of AI algorithms. It is meant to teach AI for those who don’t have an extensive mathematical background. The readers need to have only a basic knowledge of computer programming and college algebra.| | John D. Kelleher, Brian Mac Namee and Aoife D'Arcy|Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press)|This book covers all the fundamentals of machine learning, diving into the theory of the subject and using practical applications, working examples, and case studies to drive the knowledge home.| | Deepak Khemani| [A First Course in Artificial Intelligence] | It is an introductory course on Artificial Intelligence, a knowledge-based approach using agents all across and detailed, well-structured algorithms with proofs. This book mainly follows a bottom-up approach exploring the basic strategies needed problem-solving on the intelligence part. | | Maxim Lapan | Deep Reinforcement Learning Hands-On - Second Edition | Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | | Tom M Mitchell | Machine Learning | This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. | | John Paul Mueller and Luca Massaron|Machine Learning For Dummies|This book aims to get readers familiar with the basic concepts and theories of machine learning and how it applies to the real world. And "Dummies" here refers to absolute beginners with no technical background.The book introduces a little coding in Python and R used to teach machines to find patterns and analyze results. From those small tasks and patterns, we can extrapolate how machine learning is useful in daily lives through web searches, internet ads, email filters, fraud detection, and so on. With this book, you can take a small step into the realm of machine learning and we can learn some basic coding in Pyton and R (if interested)| | Michael Nielsen| Neural Networks and Deep Learning |Introduction to the core principles of Neural Networks and Deep Learning in AI| | Simon Rogers and Mark Girolami| A Course in Machine Learning |A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC.| |Peter Norvig| Paradigm of Artificial Intelligence Programming |Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts.| | Stuart Russel & Peter Norvig | Artificial Intelligence: A Modern Approach, 3rd Edition | This is the prescribed text book for my Introduction to AI university course. It starts off explaining all the basics and definitions of what AI is, before launching into agents, algorithms, and how to apply them. Russel is from the University of California at Berkeley. Norvig is from Google.| | Richard S. Sutton and Andrew G. Barto| Reinforcement Learning: An Introduction |Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.| | Alex Smola and S.V.N. Vishwanathan | Introduction to Machine Learning | Provides the reader with an overview of the vast applications of ML, including some basic tools of statistics and probability theory. Also includes discussions on sophisticated ideas and concepts. | | Shai Shalev-Shwartz and Shai Ben-David | Understanding Machine Learning From Theory to Algorithms |The primary goal of this book is to provide a rigorous, yet easy to follow, introduction to the main concepts underlying machine learning. | | Chandra S.S.V | Artificial Intelligence and Machine Learning | This book is primarily intended for undergraduate and postgraduate students of computer science and engineering. This textbook covers the gap between the difficult contexts of Artificial Intelligence and Machine Learning. It provides the most number of case studies and worked-out examples. In addition to Artificial Intelligence and Machine Learning, it also covers various types of learning like reinforced, supervised, unsupervised and statistical learning. It features well-explained algorithms and pseudo-codes for each topic which makes this book very useful for students. | | Oliver Theobald|Machine Learning For Absolute Beginners: A Plain English Introduction|This is an absolute beginners ML guide.No mathematical background is needed, nor coding experience — this is the most basic introduction to the topic for anyone interested in machine learning.“Plain” language is highly valued here to prevent beginners from being overwhelmed by technical jargon. Clear, accessible explanations and visual examples accompany the various algorithms to make sure things are easy to follow.| | Tom Taulli | Artificial Intelligence Basics: A Non-Technical Introduction | This book equips you with a fundamental grasp of Artificial Intelligence and its impact. It provides a non-technical introduction to important concepts such as Machine Learning, Deep Learning, Natural Language Processing, Robotics and more. Further the author expands on the questions surrounding the future impact of AI on aspects that include societal trends, ethics, governments, company structures and daily life. | |Cornelius Weber, Mark Elshaw, N. Michael Mayer| Reinforcement Learning |Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning.| |John D. Kelleher, Brian Mac Namee, Aoife D'arcy| Algorithms, Worked Examples, and Case Studies | A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. |

ai-learning-roadmap
github
LLM Vibe Score0.442
Human Vibe Score0.035708035270567436
gopala-krNov 30, 2024

ai-learning-roadmap

Lists of all AI related learning materials and practical tools to get started with AI apps Design Thinking – An Introduction Stanford's virtual Crash Course in Design Thinking Amazon Web Services Learning Material AWS AI Session– The session provides an overview of all Amazon AI technology offerings (Lex, Polly, Rekognition, ML, and Deep Learning AMI) Self-Paced Labs AWS self-paced labs provide hands-on practice in a live AWS environment with AWS services and real-world cloud scenarios. Follow step-by-step instructions to learn a service, practice a use case, or prepare for AWS Certification. Introductory Lab Introduction to AWS Lambda Lex Introduction to Amazon Lex Amazon Lex Webinar Amazon Lex: AWS conversational interface (chat bot) Documentation Polly Introduction to Amazon Polly Amazon Polly Webinar - Amazon Polly – AWS Text To Speech (TTS) service Documentation What is Amazon Polly? Developer Resources Rekognition Introduction to Amazon Rekognition Amazon Rekognition - Deep Learning-Based Image Analysis Webinar Amazon Rekognition – AWS image recognition service Documentation – What is Amazon Rekognition? Machine Learning Machine Learning Session 1 – Empowering Developers to Build Smart Applications Session 2 - Predicting Customer Churn with Amazon Machine Learning AWS Machine Learning – End to end, managed service for creating and testing ML models and then deploying those models into production Documentation What is Amazon Machine Learning? Developer Resources AWS Deep Learning AMI – Amazon Machine Image (AMI) optimized for deep learning efforts Recommended Additional Resources Take your skills to the next level with fundamental, advanced, and expert level labs. Creating Amazon EC2 Instances with Microsoft Windows Building Your First Amazon Virtual Private Cloud (VPC) Working with AWS CodeCommit on Windows Working with Amazon DynamoDB Google Cloud - Learning Material Below is the learning material that will help you learn about Google Cloud. Network Networking 101 – 43 mins The codelab provides common cloud developer experience as follows: Set up your lab environment and learn how to work with your GCP environment. Use of common open source tools to explore your network around the world. Deploy a common use case: use of HTTP Load Balancing and Managed Instance Groups to host a scalable, multi-region web server. Testing and monitoring your network and instances. Cleanup. Developing Solutions for Google Cloud Platform – 8 hours Infrastructure Build a Slack Bot with Node.js on Kubernotes – 43 mins Creating a Virtual Machine – 10 mins Getting Started with App Engine (Python) – 13 mins Data Introduction to Google Cloud Data Prep – 7 mins Create a Managed MySQL database with Cloud SQL – 19 mins Upload Objects to Cloud Storage – 11 mins AI, Big Data & Machine Learning Introduction to Google Cloud Machine Learning – 1 hour Machine Learning APIs by Example – 30 min Google Cloud Platform Big Data and Machine Learning Fundamentals Additional AI Materials Auto-awesome: Advanced Data Science on Google Cloud Platform – 45 min Run a Big Data Text Processing Pipeline in Cloud Dataflow – 21 min Image Classification Using Cloud ML Engine & Datalab – 58 min Structured Data Regression Using Cloud ML Engine & Datalab – 58 min (Optional) Deep Learning & Tensorflow Tensorflow and Deep Learning Tutorial – 2:35 hours Deep Learning Course – advanced users only Additional Reference Material Big Data & Machine Learning @ Google Cloud Next '17 - A collection of 49 videos IBM Watson Learning Material (Contributions are welcome in this space) [IBM Watson Overview]() [IBM Watson Cognitive APIs]() [IBM Watson Knowledge Studio]() Visual Studio UCI datasets Microsoft Chat Bots Learning Material Skills Prerequisite Git and Github NodeJS VS Code IDE Training Paths If you have the above Prerequisite skills, then take Advanced Training Path else take Novice Training Path. Prerequisite Tutorials Git and Github Node.js Node.js Tutorials for Beginners Node.js Tutorial in VS Code Introduction To Visual Studio Code Novice Training Path Environment Set Up Download and Install Git Set up GitHub Account_ Download and Install NodeJS Download and Install IDE - Visual Studio Code Download and Install the Bot Framework Emulator Git clone the Bot Education project - git clone Set Up Azure Free Trial Account Cognitive Services (Defining Intelligence) Read Cognitive Services ADS Education Deck – git clone Review the guide for Understanding Natural language with LUIS Complete the NLP (LUIS) Training Lab from the installed Bot Education project – \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md Bot Framework (Building Chat Bots) Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) - Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello Advanced Training Path Environment Set Up Download and Install Git Set up GitHub Account_ Download and Install NodeJS Download and Install IDE - Visual Studio Code Download and Install the Bot Framework Emulator Git clone the Bot Education project - git clone Set Up Azure Free Trial Account Git clone the Bot Builder Samples – git clone Cognitive Services (Defining Intelligence) Read Cognitive Services ADS Education Deck – git clone Review the guide for Understanding Natural language with LUIS Bot Framework (Building Chat Bots) Read Bot Framework ADS Education Deck from downloaded - (Your Path)\bot-extras Review Bot Framework documentation (Core Concepts, Bot Builder for NodeJS, and Bot Intelligence) - Setup local environment and run emulator from the installed Bot Education project – \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Cognitive Services (Defining Intelligence) - Labs Complete the NLP (LUIS) Training Lab from the installed BOT Education project \bot-education\Student-Resources\Labs\CognitiveServices\Lab_SetupLanguageModel.md Review, Deploy and run the LUIS BOT sample Bot Framework (Building Chat Bots) – Labs Setup local environment and run emulator from the installed Bot Education project \bot-education\Student-Resources\Labs\Node\Lab1_SetupCheckModel.md Review and test in the emulator the “bot-hello” from \bot-education\Student-Resources\BOTs\Node\bot-hello Review and test in the emulator the “bot-recognizers” from \bot-education\Student-Resources\BOTs\Node\bot-recognizers Lecture Videos Source Berkeley Lecture TitleLecturerSemester Lecture 1 Introduction Dan Klein Fall 2012 Lecture 2 Uninformed Search Dan Klein Fall 2012 Lecture 3 Informed Search Dan Klein Fall 2012 Lecture 4 Constraint Satisfaction Problems I Dan Klein Fall 2012 Lecture 5 Constraint Satisfaction Problems II Dan Klein Fall 2012 Lecture 6 Adversarial Search Dan Klein Fall 2012 Lecture 7 Expectimax and Utilities Dan Klein Fall 2012 Lecture 8 Markov Decision Processes I Dan Klein Fall 2012 Lecture 9 Markov Decision Processes II Dan Klein Fall 2012 Lecture 10 Reinforcement Learning I Dan Klein Fall 2012 Lecture 11 Reinforcement Learning II Dan Klein Fall 2012 Lecture 12 Probability Pieter Abbeel Spring 2014 Lecture 13 Markov Models Pieter Abbeel Spring 2014 Lecture 14 Hidden Markov Models Dan Klein Fall 2013 Lecture 15 Applications of HMMs / Speech Pieter Abbeel Spring 2014 Lecture 16 Bayes' Nets: Representation Pieter Abbeel Spring 2014 Lecture 17 Bayes' Nets: Independence Pieter Abbeel Spring 2014 Lecture 18 Bayes' Nets: Inference Pieter Abbeel Spring 2014 Lecture 19 Bayes' Nets: Sampling Pieter Abbeel Fall 2013 Lecture 20 Decision Diagrams / Value of Perfect Information Pieter Abbeel Spring 2014 Lecture 21 Machine Learning: Naive Bayes Nicholas Hay Spring 2014 Lecture 22 Machine Learning: Perceptrons Pieter Abbeel Spring 2014 Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Spring 2014 Lecture 24 Advanced Applications: NLP, Games, and Robotic Cars Pieter Abbeel Spring 2014 Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Spring 2014 Additionally, there are additional Step-By-Step videos which supplement the lecture's materials. These videos are listed below: Lecture TitleLecturerNotes SBS-1 DFS and BFS Pieter Abbeel Lec: Uninformed Search SBS-2 A* Search Pieter Abbeel Lec: Informed Search SBS-3 Alpha-Beta Pruning Pieter Abbeel Lec: Adversarial Search SBS-4 D-Separation Pieter Abbeel Lec: Bayes' Nets: Independence SBS-5 Elimination of One Variable Pieter Abbeel Lec: Bayes' Nets: Inference SBS-6 Variable Elimination Pieter Abbeel Lec: Bayes' Nets: Inference SBS-7 Sampling Pieter Abbeel Lec: Bayes' Nets: Sampling SBS-8 Gibbs' Sampling Michael Liang Lec: Bayes' Nets: Sampling --> SBS-8 Maximum Likelihood Pieter Abbeel Lec: Machine Learning: Naive Bayes SBS-9 Laplace Smoothing Pieter Abbeel Lec: Machine Learning: Naive Bayes SBS-10 Perceptrons Pieter Abbeel Lec: Machine Learning: Perceptrons Per-Semester Video Archive(Berkeley) The lecture videos from the most recent offerings are posted below. Spring 2014 Lecture Videos Fall 2013 Lecture Videos Spring 2013 Lecture Videos Fall 2012 Lecture Videos Spring 2014 Lecture TitleLecturerNotes Lecture 1 Introduction Pieter Abbeel Lecture 2 Uninformed Search Pieter Abbeel Lecture 3 Informed Search Pieter Abbeel Lecture 4 Constraint Satisfaction Problems I Pieter Abbeel Recording is a bit flaky, see Fall 2013 Lecture 4 for alternative Lecture 5 Constraint Satisfaction Problems II Pieter Abbeel Lecture 6 Adversarial Search Pieter Abbeel Lecture 7 Expectimax and Utilities Pieter Abbeel Lecture 8 Markov Decision Processes I Pieter Abbeel Lecture 9 Markov Decision Processes II Pieter Abbeel Lecture 10 Reinforcement Learning I Pieter Abbeel Lecture 11 Reinforcement Learning II Pieter Abbeel Lecture 12 Probability Pieter Abbeel Lecture 13 Markov Models Pieter Abbeel Lecture 14 Hidden Markov Models Pieter Abbeel Recording is a bit flaky, see Fall 2013 Lecture 18 for alternative Lecture 15 Applications of HMMs / Speech Pieter Abbeel Lecture 16 Bayes' Nets: Representation Pieter Abbeel Lecture 17 Bayes' Nets: Independence Pieter Abbeel Lecture 18 Bayes' Nets: Inference Pieter Abbeel Lecture 19 Bayes' Nets: Sampling Pieter Abbeel Unrecorded, see Fall 2013 Lecture 16 Lecture 20 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 21 Machine Learning: Naive Bayes Nicholas Hay Lecture 22 Machine Learning: Perceptrons Pieter Abbeel Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 24 Advanced Applications: NLP, Games, and Robotic Cars Pieter Abbeel Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Pieter Abbeel Unrecorded Fall 2013 Lecture TitleLecturerNotes Lecture 1 Introduction Dan Klein Lecture 2 Uninformed Search Dan Klein Lecture 3 Informed Search Dan Klein Lecture 4 Constraint Satisfaction Problems I Dan Klein Lecture 5 Constraint Satisfaction Problems II Dan Klein Lecture 6 Adversarial Search Dan Klein Lecture 7 Expectimax and Utilities Dan Klein Lecture 8 Markov Decision Processes I Dan Klein Lecture 9 Markov Decision Processes II Dan Klein Lecture 10 Reinforcement Learning I Dan Klein Lecture 11 Reinforcement Learning II Dan Klein Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Dan Klein Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Dan Klein Lecture 19 Applications of HMMs / Speech Dan Klein Lecture 20 Machine Learning: Naive Bayes Dan Klein Lecture 21 Machine Learning: Perceptrons Dan Klein Lecture 22 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 23 Machine Learning: Decision Trees and Neural Nets Pieter Abbeel Lecture 24 Advanced Applications: NLP and Robotic Cars Dan Klein Unrecorded, see Spring 2013 Lecture 24 Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Dan Klein,Pieter Abbeel Unrecorded Spring 2013 Lecture TitleLecturerNotes Lecture 1 Introduction Pieter Abbeel Video Down Lecture 2 Uninformed Search Pieter Abbeel Lecture 3 Informed Search Pieter Abbeel Lecture 4 Constraint Satisfaction Problems I Pieter Abbeel Lecture 5 Constraint Satisfaction Problems II Pieter Abbeel Unrecorded, see Fall 2012 Lecture 5 Lecture 6 Adversarial Search Pieter Abbeel Lecture 7 Expectimax and Utilities Pieter Abbeel Lecture 8 Markov Decision Processes I Pieter Abbeel Lecture 9 Markov Decision Processes II Pieter Abbeel Lecture 10 Reinforcement Learning I Pieter Abbeel Lecture 11 Reinforcement Learning II Pieter Abbeel Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Pieter Abbeel Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Pieter Abbeel Lecture 19 Applications of HMMs / Speech Pieter Abbeel Lecture 20 Machine Learning: Naive Bayes Pieter Abbeel Lecture 21 Machine Learning: Perceptrons I Nicholas Hay Lecture 22 Machine Learning: Perceptrons II Pieter Abbeel Lecture 23 Machine Learning: Kernels and Clustering Pieter Abbeel Lecture 24 Advanced Applications: NLP and Robotic Cars Pieter Abbeel Lecture 25 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 26 Conclusion Pieter Abbeel Unrecorded Fall 2012 Lecture TitleLecturerNotes Lecture 1 Introduction Dan Klein Lecture 2 Uninformed Search Dan Klein Lecture 3 Informed Search Dan Klein Lecture 4 Constraint Satisfaction Problems I Dan Klein Lecture 5 Constraint Satisfaction Problems II Dan Klein Lecture 6 Adversarial Search Dan Klein Lecture 7 Expectimax and Utilities Dan Klein Lecture 8 Markov Decision Processes I Dan Klein Lecture 9 Markov Decision Processes II Dan Klein Lecture 10 Reinforcement Learning I Dan Klein Lecture 11 Reinforcement Learning II Dan Klein Lecture 12 Probability Pieter Abbeel Lecture 13 Bayes' Nets: Representation Pieter Abbeel Lecture 14 Bayes' Nets: Independence Pieter Abbeel Lecture 15 Bayes' Nets: Inference Pieter Abbeel Lecture 16 Bayes' Nets: Sampling Pieter Abbeel Lecture 17 Decision Diagrams / Value of Perfect Information Pieter Abbeel Lecture 18 Hidden Markov Models Pieter Abbeel Lecture 19 Applications of HMMs / Speech Dan Klein Lecture 20 Machine Learning: Naive Bayes Dan Klein Lecture 21 Machine Learning: Perceptrons Dan Klein Lecture 22 Machine Learning: Kernels and Clustering Dan Klein Lecture 23 Machine Learning: Decision Trees and Neural Nets Pieter Abbeel Lecture 24 Advanced Applications: Computer Vision and Robotics Pieter Abbeel Lecture 25 Advanced Applications: NLP and Robotic Cars Dan Klein,Pieter Abbeel Unrecorded Lecture 26 Conclusion Dan Klein,Pieter Abbeel Unrecorded Lecture Slides Here is the complete set of lecture slides, including videos, and videos of demos run in lecture: Slides [~3 GB]. The list below contains all the lecture powerpoint slides: Lecture 1: Introduction Lecture 2: Uninformed Search Lecture 3: Informed Search Lecture 4: CSPs I Lecture 5: CSPs II Lecture 6: Adversarial Search Lecture 7: Expectimax Search and Utilities Lecture 8: MDPs I Lecture 9: MDPs II Lecture 10: Reinforcement Learning I Lecture 11: Reinforcement Learning II Lecture 12: Probability Lecture 13: Markov Models Lecture 14: Hidden Markov Models Lecture 15: Particle Filters and Applications of HMMs Lecture 16: Bayes Nets I: Representation Lecture 17: Bayes Nets II: Independence Lecture 18: Bayes Nets III: Inference Lecture 19: Bayes Nets IV: Sampling Lecture 20: Decision Diagrams and VPI Lecture 21: Naive Bayes Lecture 22: Perceptron Lecture 23: Kernels and Clustering Lecture 24: Advanced Applications (NLP, Games, Cars) Lecture 25: Advanced Applications (Computer Vision and Robotics) Lecture 26: Conclusion The source files for all live in-lecture demos are being prepared from Berkeley AI for release Selected Research Papers Latest arxiv paper submissionson AI Peter Norvig-Teach Yourself Programming in Ten Years How to do Research At the MIT AI Lab A Roadmap towards Machine Intelligence Collaborative Filtering with Recurrent Neural Networks (2016) Wide & Deep Learning for Recommender Systems (2016) Deep Collaborative Filtering via Marginalized Denoising Auto-encoder (2015) Nonparametric bayesian multitask collaborative filtering (2013) Tensorflow: Large-scale machine learning on heterogeneous distributed systems https://infoscience.epfl.ch/record/82802/files/rr02-46.pdf Theano: A CPU and GPU math expression compiler. Caffe: Convolutional architecture for fast feature embedding Chainer: A powerful, flexible and intuitive framework of neural networks Large Scale Distributed Deep Networks Large-scale video classification with convolutional neural networks Efficient Estimation of Word Representations in Vector Space Grammar as a Foreign Language Going Deeper with Convolutions ON RECTIFIED LINEAR UNITS FOR SPEECH PROCESSING Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks google turning its lucrative web search over to AI machines Stanford Syllabus CS 20SI: Tensorflow for Deep Learning Research Crowd-Based Personalized Natural Language Explanations for Recommendations Comparative Study of Deep Learning Software Frameworks RedditML- What Are You Reading AI-Powered Social Bots(16 Jun 2017) The Many Tribes of Artificial Intelligence Source:https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53 The Deep Learning Roadmap Source:https://medium.com/intuitionmachine/the-deep-learning-roadmap-f0b4cac7009a Best Practices for Training Deep Learning Networks Source: https://medium.com/intuitionmachine/infographic-best-practices-in-training-deep-learning-networks-b8a3df1db53 ML/DL Cheatsheets Neural Network Architectures Source: http://www.asimovinstitute.org/neural-network-zoo/ Microsoft Azure Algorithm Flowchart Source: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet SAS Algorithm Flowchart Source: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/ Algorithm Summary Source: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ Source: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/ Algorithm Pro/Con Source: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend Python Algorithms Source: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/ Python Basics Source: http://datasciencefree.com/python.pdf Source: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA Numpy Source: https://www.dataquest.io/blog/numpy-cheat-sheet/ Source: http://datasciencefree.com/numpy.pdf Source: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb Pandas Source: http://datasciencefree.com/pandas.pdf Source: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb Matplotlib Source: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet Source: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb Scikit Learn Source: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk Source: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html Source: https://github.com/rcompton/mlcheatsheet/blob/master/supervised_learning.ipynb Tensorflow Source: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1Introduction/basicoperations.ipynb Pytorch Source: https://github.com/bfortuner/pytorch-cheatsheet Math Probability Source: http://www.wzchen.com/s/probability_cheatsheet.pdf Linear Algebra Source: https://minireference.com/static/tutorials/linearalgebrain4pages.pdf Statistics Source: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf Calculus Source: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

awesome-quantum-machine-learning
github
LLM Vibe Score0.64
Human Vibe Score1
krishnakumarsekarMar 27, 2025

awesome-quantum-machine-learning

Awesome Quantum Machine Learning A curated list of awesome quantum machine learning algorithms,study materials,libraries and software (by language). Table of Contents INTRODUCTION Why Quantum Machine Learning? BASICS What is Quantum Mechanics? What is Quantum Computing? What is Topological Quantum Computing? Quantum Computing vs Classical Computing QUANTUM COMPUTING Atom Structure Photon wave Electron Fluctuation or spin States SuperPosition SuperPosition specific for machine learning(Quantum Walks) Classical Bit Quantum Bit or Qubit or Qbit Basic Gates in Quantum Computing Quantum Diode Quantum Transistor Quantum Processor Quantum Registery QRAM Quantum Entanglement QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers Tensors Tensors Network Oracle Hadamard transform Hilbert Space eigenvalues and eigenvectors Schr¨odinger Operators Quantum lambda calculus Quantum Amplitute Phase Qubits Encode and Decode convert classical bit to qubit Quantum Dirac and Kets Quantum Complexity Arbitrary State Generation QUANTUM ALGORITHMS Quantum Fourier Transform Variational-Quantum-Eigensolver Grovers Algorithm Shor's algorithm Hamiltonian Oracle Model Bernstein-Vazirani Algorithm Simon’s Algorithm Deutsch-Jozsa Algorithm Gradient Descent Phase Estimation Haar Tansform Quantum Ridgelet Transform Quantum NP Problem QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour Quantum K-Means Quantum Fuzzy C-Means Quantum Support Vector Machine Quantum Genetic Algorithm Quantum Hidden Morkov Models Quantum state classification with Bayesian methods Quantum Ant Colony Optimization Quantum Cellular Automata Quantum Classification using Principle Component Analysis Quantum Inspired Evolutionary Algorithm Quantum Approximate Optimization Algorithm Quantum Elephant Herding Optimization Quantum-behaved Particle Swarm Optimization Quantum Annealing Expectation-Maximization QAUNTUM NEURAL NETWORK Quantum perceptrons Qurons Quantum Auto Encoder Quantum Annealing Photonic Implementation of Quantum Neural Network Quantum Feed Forward Neural Network Quantum Boltzman Neural Network Quantum Neural Net Weight Storage Quantum Upside Down Neural Net Quantum Hamiltonian Neural Net QANN QPN SAL Quantum Hamiltonian Learning Compressed Quantum Hamiltonian Learning QAUNTUM STATISTICAL DATA ANALYSIS Quantum Probability Theory Kolmogorovian Theory Quantum Measurement Problem Intuitionistic Logic Heyting Algebra Quantum Filtering Paradoxes Quantum Stochastic Process Double Negation Quantum Stochastic Calculus Hamiltonian Calculus Quantum Ito's Formula Quantum Stochastic Differential Equations(QSDE) Quantum Stochastic Integration Itō Integral Quasiprobability Distributions Quantum Wiener Processes Quantum Statistical Ensemble Quantum Density Operator or Density Matrix Gibbs Canonical Ensemble Quantum Mean Quantum Variance Envariance Polynomial Optimization Quadratic Unconstrained Binary Optimization Quantum Gradient Descent Quantum Based Newton's Method for Constrained Optimization Quantum Based Newton's Method for UnConstrained Optimization Quantum Ensemble Quantum Topology Quantum Topological Data Analysis Quantum Bayesian Hypothesis Quantum Statistical Decision Theory Quantum Minimax Theorem Quantum Hunt-Stein Theorem Quantum Locally Asymptotic Normality Quantum Ising Model Quantum Metropolis Sampling Quantum Monte Carlo Approximation Quantum Bootstrapping Quantum Bootstrap Aggregation Quantum Decision Tree Classifier Quantum Outlier Detection Cholesky-Decomposition for Quantum Chemistry Quantum Statistical Inference Asymptotic Quantum Statistical Inference Quantum Gaussian Mixture Modal Quantum t-design Quantum Central Limit Theorem Quantum Hypothesis Testing Quantum Chi-squared and Goodness of Fit Testing Quantum Estimation Theory Quantum Way of Linear Regression Asymptotic Properties of Quantum Outlier Detection in Quantum Concepts QAUNTUM ARTIFICIAL INTELLIGENCE Heuristic Quantum Mechanics Consistent Quantum Reasoning Quantum Reinforcement Learning QAUNTUM COMPUTER VISION QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES ALL QUANTUM ALGORITHMS SOURCE CODES , GITHUBS QUANTUM HOT TOPICS Quantum Cognition Quantum Camera Quantum Mathematics Quantum Information Processing Quantum Image Processing Quantum Cryptography Quantum Elastic Search Quantum DNA Computing Adiabetic Quantum Computing Topological Big Data Anlytics using Quantum Hamiltonian Time Based Quantum Computing Deep Quantum Learning Quantum Tunneling Quantum Entanglment Quantum Eigen Spectrum Quantum Dots Quantum elctro dynamics Quantum teleportation Quantum Supremacy Quantum Zeno Effect Quantum Cohomology Quantum Chromodynamics Quantum Darwinism Quantum Coherence Quantum Decoherence Topological Quantum Computing Topological Quantum Field Theory Quantum Knots Topological Entanglment Boson Sampling Quantum Convolutional Code Stabilizer Code Quantum Chaos Quantum Game Theory Quantum Channel Tensor Space Theory Quantum Leap Quantum Mechanics for Time Travel Quantum Secured Block Chain Quantum Internet Quantum Optical Network Quantum Interference Quantum Optical Network Quantum Operating System Electron Fractionalization Flip-Flop Quantum Computer Quantum Information with Gaussian States Quantum Anomaly Detection Distributed Secure Quantum Machine Learning Decentralized Quantum Machine Learning Artificial Agents for Quantum Designs Light Based Quantum Chips for AI Training QUANTUM STATE PREPARATION ALGORITHM FOR MACHINE LEARNING Pure Quantum State Product State Matrix Product State Greenberger–Horne–Zeilinger State W state AKLT model Majumdar–Ghosh Model Multistate Landau–Zener Models Projected entangled-pair States Infinite Projected entangled-pair States Corner Transfer Matrix Method Tensor-entanglement Renormalization Tree Tensor Network for Supervised Learning QUANTUM MACHINE LEARNING VS DEEP LEARNING QUANTUM MEETUPS QUANTUM GOOGLE GROUPS QUANTUM BASED COMPANIES QUANTUM LINKEDLIN QUANTUM BASED DEGREES CONSOLIDATED QUANTUM ML BOOKS CONSOLIDATED QUANTUM ML VIDEOS CONSOLIDATED QUANTUM ML Reserach Papers CONSOLIDATED QUANTUM ML Reserach Scientist RECENT QUANTUM UPDATES FORUM ,PAGES AND NEWSLETTER INTRODUCTION Why Quantum Machine Learning? Machine Learning(ML) is just a term in recent days but the work effort start from 18th century. What is Machine Learning ? , In Simple word the answer is making the computer or application to learn themselves . So its totally related with computing fields like computer science and IT ? ,The answer is not true . ML is a common platform which is mingled in all the aspects of the life from agriculture to mechanics . Computing is a key component to use ML easily and effectively . To be more clear ,Who is the mother of ML ?, As no option Mathematics is the mother of ML . The world tremendous invention complex numbers given birth to this field . Applying mathematics to the real life problem always gives a solution . From Neural Network to the complex DNA is running under some specific mathematical formulas and theorems. As computing technology growing faster and faster mathematics entered into this field and makes the solution via computing to the real world . In the computing technology timeline once a certain achievements reached peoples interested to use advanced mathematical ideas such as complex numbers ,eigen etc and its the kick start for the ML field such as Artificial Neural Network ,DNA Computing etc. Now the main question, why this field is getting boomed now a days ? , From the business perspective , 8-10 Years before during the kick start time for ML ,the big barrier is to merge mathematics into computing field . people knows well in computing has no idea on mathematics and research mathematician has no idea on what is computing . The education as well as the Job Opportunities is like that in that time . Even if a person tried to study both then the business value for making a product be not good. Then the top product companies like Google ,IBM ,Microsoft decided to form a team with mathematician ,a physician and a computer science person to come up with various ideas in this field . Success of this team made some wonderful products and they started by providing cloud services using this product . Now we are in this stage. So what's next ? , As mathematics reached the level of time travel concepts but the computing is still running under classical mechanics . the companies understood, the computing field must have a change from classical to quantum, and they started working on the big Quantum computing field, and the market named this field as Quantum Information Science .The kick start is from Google and IBM with the Quantum Computing processor (D-Wave) for making Quantum Neural Network .The field of Quantum Computer Science and Quantum Information Science will do a big change in AI in the next 10 years. Waiting to see that........... .(google, ibm). References D-Wave - Owner of a quantum processor Google - Quantum AI Lab IBM - Quantum Computer Lab Quora - Question Regarding future of quantum AI NASA - NASA Quantum Works Youtube - Google Video of a Quantum Processor external-link - MIT Review microsoft new product - Newly Launched Microsoft Quantum Language and Development Kit microsoft - Microsoft Quantum Related Works Google2 - Google Quantum Machine Learning Blog BBC - About Google Quantum Supremacy,IBM Quantum Computer and Microsoft Q Google Quantum Supremacy - Latest 2019 Google Quantum Supremacy Achievement IBM Quantum Supremacy - IBM Talk on Quantum Supremacy as a Primer VICE on the fight - IBM Message on Google Quantum Supremacy IBM Zurich Quantum Safe Cryptography - An interesting startup to replace all our Certificate Authority Via Cloud and IBM Q BASICS What is Quantum Mechanics? In a single line study of an electron moved out of the atom then its classical mechanic ,vibrates inside the atom its quantum mechanics WIKIPEDIA - Basic History and outline LIVESCIENCE. - A survey YOUTUBE - Simple Animation Video Explanining Great. What is Quantum Computing? A way of parallel execution of multiple processess in a same time using qubit ,It reduces the computation time and size of the processor probably in neuro size WIKIPEDIA - Basic History and outline WEBOPEDIA. - A survey YOUTUBE - Simple Animation Video Explanining Great. Quantum Computing vs Classical Computing LINK - Basic outline Quantum Computing Atom Structure one line : Electron Orbiting around the nucleous in an eliptical format YOUTUBE - A nice animation video about the basic atom structure Photon Wave one line : Light nornmally called as wave transmitted as photons as similar as atoms in solid particles YOUTUBE - A nice animation video about the basic photon 1 YOUTUBE - A nice animation video about the basic photon 2 Electron Fluctuation or spin one line : When a laser light collide with solid particles the electrons of the atom will get spin between the orbitary layers of the atom ) YOUTUBE - A nice animation video about the basic Electron Spin 1 YOUTUBE - A nice animation video about the basic Electron Spin 2 YOUTUBE - A nice animation video about the basic Electron Spin 3 States one line : Put a point on the spinning electron ,if the point is in the top then state 1 and its in bottom state 0 YOUTUBE - A nice animation video about the Quantum States SuperPosition two line : During the spin of the electron the point may be in the middle of upper and lower position, So an effective decision needs to take on the point location either 0 or 1 . Better option to analyse it along with other electrons using probability and is called superposition YOUTUBE - A nice animation video about the Quantum Superposition SuperPosition specific for machine learning(Quantum Walks) one line : As due to computational complexity ,quantum computing only consider superposition between limited electrons ,In case to merge more than one set quantum walk be the idea YOUTUBE - A nice video about the Quantum Walks Classical Bits one line : If electron moved from one one atom to other ,from ground state to excited state a bit value 1 is used else bit value 0 used Qubit one line : The superposition value of states of a set of electrons is Qubit YOUTUBE - A nice video about the Quantum Bits 1 YOUTUBE - A nice video about the Bits and Qubits 2 Basic Gates in Quantum Computing one line : As like NOT, OR and AND , Basic Gates like NOT, Hadamard gate , SWAP, Phase shift etc can be made with quantum gates YOUTUBE - A nice video about the Quantum Gates Quantum Diode one line : Quantum Diodes using a different idea from normal diode, A bunch of laser photons trigger the electron to spin and the quantum magnetic flux will capture the information YOUTUBE - A nice video about the Quantum Diode Quantum Transistors one line : A transistor default have Source ,drain and gate ,Here source is photon wave ,drain is flux and gate is classical to quantum bits QUORA -Discussion about the Quantum Transistor YOUTUBE - Well Explained Quantum Processor one line : A nano integration circuit performing the quantum gates operation sorrounded by cooling units to reduce the tremendous amount of heat YOUTUBE - Well Explained Quantum Registery QRAM one line : Comapring the normal ram ,its ultrafast and very small in size ,the address location can be access using qubits superposition value ,for a very large memory set coherent superposition(address of address) be used PDF - very Well Explained QUANTUM COMPUTING MACHINE LEARNING BRIDGE Complex Numbers one line : Normally Waves Interference is in n dimensional structure , to find a polynomial equation n order curves ,better option is complex number YOUTUBE - Wonderful Series very super Explained Tensors one line : Vectors have a direction in 2D vector space ,If on a n dimensional vector space ,vectors direction can be specify with the tensor ,The best solution to find the superposition of a n vector electrons spin space is representing vectors as tensors and doing tensor calculus YOUTUBE - Wonderful super Explained tensors basics YOUTUBE - Quantum tensors basics Tensors Network one line : As like connecting multiple vectors ,multple tensors form a network ,solving such a network reduce the complexity of processing qubits YOUTUBE - Tensors Network Some ideas specifically for quantum algorithms QUANTUM MACHINE LEARNING ALGORITHMS Quantum K-Nearest Neighbour info : Here the centroid(euclidean distance) can be detected using the swap gates test between two states of the qubit , As KNN is regerssive loss can be tally using the average PDF1 from Microsoft - Theory Explanation PDF2 - A Good Material to understand the basics Matlab - Yet to come soon Python - Yet to come soon Quantum K-Means info : Two Approaches possible ,1. FFT and iFFT to make an oracle and calculate the means of superposition 2. Adiobtic Hamiltonian generation and solve the hamiltonian to determine the cluster PDF1 - Applying Quantum Kmeans on Images in a nice way PDF2 - Theory PDF3 - Explaining well the K-means clustering using hamiltonian Matlab - Yet to come soon Python - Yet to come soon Quantum Fuzzy C-Means info : As similar to kmeans fcm also using the oracle dialect ,but instead of means,here oracle optimization followed by a rotation gate is giving a good result PDF1 - Theory Matlab - Yet to come soon Python - Yet to come soon Quantum Support Vector Machine info : A little different from above as here kernel preparation is via classical and the whole training be in oracles and oracle will do the classification, As SVM is linear ,An optimal Error(Optimum of the Least Squares Dual Formulation) Based regression is needed to improve the performance PDF1 - Nice Explanation but little hard to understand :) PDF2 - Nice Application of QSVM Matlab - Yet to come soon Python - Yet to come soon Quantum Genetic Algorithm info : One of the best algorithm suited for Quantum Field ,Here the chromosomes act as qubit vectors ,the crossover part carrying by an evaluation and the mutation part carrying by the rotation of gates ![Flow Chart]() PDF1 - Very Beautiful Article , well explained and superp PDF2 - A big theory :) PDF3 - Super Comparison Matlab - Simulation Python1 - Simulation Python2 - Yet to come Quantum Hidden Morkov Models info : As HMM is already state based ,Here the quantum states acts as normal for the markov chain and the shift between states is using quantum operation based on probability distribution ![Flow Chart]() PDF1 - Nice idea and explanation PDF2 - Nice but a different concept little Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum state classification with Bayesian methods info : Quantum Bayesian Network having the same states concept using quantum states,But here the states classification to make the training data as reusable is based on the density of the states(Interference) ![Bayesian Network Sample1]() ![Bayesian Network Sample2]() ![Bayesian Network Sample3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Ant Colony Optimization info : A good algorithm to process multi dimensional equations, ACO is best suited for Sales man issue , QACO is best suited for Sales man in three or more dimension, Here the quantum rotation circuit is doing the peromene update and qubits based colony communicating all around the colony in complex space ![Ant Colony Optimization 1]() PDF1 - Good Concept PDF2 - Good Application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come Quantum Cellular Automata info : One of the very complex algorithm with various types specifically used for polynomial equations and to design the optimistic gates for a problem, Here the lattice is formed using the quatum states and time calculation is based on the change of the state between two qubits ,Best suited for nano electronics ![Quantum Cellular Automata]() Wikipedia - Basic PDF1 - Just to get the keywords PDF2 - Nice Explanation and an easily understandable application Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM NEURAL NETWORK one line : Its really one of the hardest topic , To understand easily ,Normal Neural Network is doing parallel procss ,QNN is doing parallel of parallel processess ,In theory combination of various activation functions is possible in QNN ,In Normal NN more than one activation function reduce the performance and increase the complexity Quantum perceptrons info : Perceptron(layer) is the basic unit in Neural Network ,The quantum version of perceptron must satisfy both linear and non linear problems , Quantum Concepts is combination of linear(calculus of superposition) and nonlinear(State approximation using probability) ,To make a perceptron in quantum world ,Transformation(activation function) of non linearity to certain limit is needed ,which is carrying by phase estimation algorithm ![Quantum Perceptron 3]() PDF1 - Good Theory PDF2 - Good Explanation Matlab - Yet to come Python1 - Yet to come Python2 - Yet to come QAUNTUM STATISTICAL DATA ANALYSIS one line : An under research concept ,It can be seen in multiple ways, one best way if you want to apply n derivative for a problem in current classical theory its difficult to compute as its serialization problem instead if you do parallelization of differentiation you must estimate via probability the value in all flows ,Quantum Probability Helps to achieve this ,as the loss calculation is very less . the other way comparatively booming is Quantum Bayesianism, its a solution to solve most of the uncertainity problem in statistics to combine time and space in highly advanced physical research QUANTUM PROGRAMMING LANGUAGES , TOOLs and SOFTWARES All info : All Programming languages ,softwares and tools in alphabetical order Software - Nice content of all Python library - A python library Matlab based python library - Matlab Python Library Quantum Tensor Network Github - Tensor Network Bayesforge - A Beautiful Amazon Web Service Enabled Framework for Quantum Alogorithms and Data Analytics Rigetti - A best tools repository to use quantum computer in real time Rigetti Forest - An API to connect Quantum Computer quil/pyQuil - A quantum instruction language to use forest framework Grove - Grove is a repository to showcase quantum Fourier transform, phase estimation, the quantum approximate optimization algorithm, and others developed using Forest QISKit - A IBM Kit to access quantum computer and mainly for quantum circuits IBM Bluemix Simulator - A Bluemix Simulator for Quantum Circuits Microsoft Quantum Development Kit - Microsoft Visual Studio Enbaled Kit for Quantum Circuit Creation Microsoft "Q#" - Microsoft Q Sharp a new Programming Language for Quantum Circuit Creation qiskit api python - An API to connect IBM Quantum Computer ,With the generated token its easy to connect ,but very limited utils ,Lot of new utils will come soon Cyclops Tensor Framework - A framework to do tensor network simulations Python ToolKit for chemistry and physics Quantum Algorithm simulations - A New Started Project for simulating molecule and solids Bayesian Based Quatum Projects Repository - A nice repository and the kickstarter of bayesforge Google Fermion Products - A newly launched product specifivally for chemistry simulation Tree Tensor Networks - Interesting Tensor Network in Incubator Deep Tensor Neural Network - Some useful information about Tensor Neural Network in Incubator Generative Tensorial Networks - A startup to apply machine learning via tensor network for drug discovery Google Bristlecone - A new Quantum Processor from Google , Aimed for Future Hardwares with full fledged AI support XANADU - A Light based Quantum Hardware(chips supports) and Software Company Started in Preparation Stage. Soon will be in market fathom computing - A new concept to train the ai in a processor using light and quantum based concepts. soon products will be launch Alibaba Quantum Computing Cloud Service - Cloud Service to access 11 Bit Quantum Computing Processor Atomistic Machine Learning Project - Seems something Interesting with Deep Tensor Network for Quantum Chemistry Applications circQ and Google Works - Google Top Efforts on Tools IBM Safe Cryptography on Cloud - IBM Started and Developing a Quantm Safe Cryptography to replace all our Certificate Authority via Cloud Google Tensor Network Open Source - Google Started the Most Scientist Preferred Way To Use a Quantum Computer Circuit. Tensor Flow Which Makes Easy to Design the Network and Will Leave the Work Effect Of Gates, Processor Preparation and also going to tell the beauty of Maths Google Tensor Network Github - Github Project of Google Tensor Network Quantum Tensorflow - Yet to come soon Quantum Spark - Yet to come soon Quatum Map Reduce - Yet to come soon Quantum Database - Yet to come soon Quantum Server - Yet to come soon Quantum Data Analytics - Yet to come soon QUANTUM HOT TOPICS Deep Quantum Learning why and what is deep learning? In one line , If you know deep learning you can get a good job :) ,Even a different platform undergraduated and graduated person done a master specialization in deep learning can work in this big sector :), Practically speaking machine learning (vector mathematics) , deep learning (vector space(Graphics) mathematics) and big data are the terms created by big companies to make a trend in the market ,but in science and research there is no word such that , Now a days if you ask a junior person working in this big companies ,what is deep learning ,you will get some reply as "doing linear regression with stochastic gradient for a unsupervised data using Convolutional Neural Network :)" ,They knows the words clearly and knows how to do programming using that on a bunch of "relative data" , If you ask them about the FCM , SVM and HMM etc algorithms ,they will simply say these are olden days algorithms , deep learning replaced all :), But actually they dont know from the birth to the till level and the effectiveness of algorithms and mathematics ,How many mathematical theorems in vector, spaces , tensors etc solved to find this "hiding the complexity technology", They did not played with real non relative data like medical images, astro images , geology images etc , finding a relation and features is really complex and looping over n number of images to do pattern matching is a giant work , Now a days the items mentioned as deep learning (= multiple hidden artifical neural network) is not suitable for that why quantum deep learning or deep quantum learning? In the mid of Artificial Neural Network Research people realised at the maximum extreme only certain mathematical operations possible to do with ANN and the aim of this ANN is to achieve parallel execution of many mathematical operations , In artificial Intelligence ,the world intelligence stands for mathematics ,how effective if a probem can be solvable is based on the mathematics logic applying on the problem , more the logic will give more performance(more intelligent), This goal open the gate for quantum artificial neural network, On applying the ideas behind the deep learning to quantum mechanics environment, its possible to apply complex mathematical equations to n number of non relational data to find more features and can improve the performance Quantum Machine Learning vs Deep Learning Its fun to discuss about this , In recent days most of the employees from Product Based Companies Like google,microsoft etc using the word deep learning ,What actually Deep Learning ? and is it a new inventions ? how to learn this ? Is it replacing machine learning ? these question come to the mind of junior research scholars and mid level employees The one answer to all questions is deep learning = parallel "for" loops ,No more than that ,Its an effective way of executing multiple tasks repeatly and to reduce the computation cost, But it introduce a big cap between mathematics and computerscience , How ? All classical algorithms based on serial processing ,Its depends on the feedback of the first loop ,On applying a serial classical algorithm in multiple clusters wont give a good result ,but some light weight parallel classical algorithms(Deep learning) doing the job in multiple clusters and its not suitable for complex problems, What is the solution for then? As in the title Quantum Machine Learning ,The advantage behind is deep learning is doing the batch processing simply on the data ,but quantum machine learning designed to do batch processing as per the algorithm The product companies realised this one and they started migrating to quantum machine learning and executing the classical algorithms on quantum concept gives better result than deep learning algorithms on classical computer and the target to merge both to give very wonderful result References Quora - Good Discussion Quora - The Bridge Discussion Pdf - Nice Discussion Google - Google Research Discussion Microsoft - Microsoft plan to merge both IBM - IBM plan to merge both IBM Project - IBM Project idea MIT and Google - Solutions for all questions QUANTUM MEETUPS Meetup 1 - Quantum Physics Meetup 2 - Quantum Computing London Meetup 3 - Quantum Computing New York Meetup 4 - Quantum Computing Canada Meetup 5 - Quantum Artificial Intelligence Texas Meetup 6 - Genarl Quantum Mechanics , Mathematics New York Meetup 7 - Quantum Computing Mountain View California Meetup 8 - Statistical Analysis New York Meetup 9 - Quantum Mechanics London UK Meetup 10 - Quantum Physics Sydney Australia Meetup 11 - Quantum Physics Berkeley CA Meetup 12 - Quantum Computing London UK Meetup 13 - Quantum Mechanics Carmichael CA Meetup 14 - Maths and Science Group Portland Meetup 15 - Quantum Physics Santa Monica, CA Meetup 16 - Quantum Mechanics London Meetup 17 - Quantum Computing London Meetup 18 - Quantum Meta Physics ,Kansas City , Missouri ,US Meetup 19 - Quantum Mechanics and Physics ,Boston ,Massachusetts ,US Meetup 20 - Quantum Physics and Mechanics ,San Francisco ,California Meetup 21 - Quantum Mechanics ,Langhorne, Pennsylvania Meetup 22 - Quantum Mechanics ,Portland QUANTUM BASED DEGREES Plenty of courses around the world and many Universities Launching it day by day ,Instead of covering only Quantum ML , Covering all Quantum Related topics gives more idea in the order below Available Courses Quantum Mechanics for Science and Engineers Online Standford university - Nice Preparatory Course edx - Quantum Mechanics for Everyone NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum mechanics NPTEL 2 NPTEL 3 NPTEL 4 NPTEL 5 Class Based Course UK Bristol Australia Australian National University Europe Maxs Planks University Quantum Physics Online MIT - Super Explanation and well basics NPTEL - Nice Series of Courses to understand basics and backbone of quantum Physics Class Based Course Europe University of Copenhagen Quantum Chemistry Online NPTEL 1 - Nice Series of Courses to understand basics and backbone of quantum Chemistry NPTEL 2 - Class Based Course Europe UGent Belgium Quantum Computing Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum Computing Class Based Course Canada uwaterloo Singapore National University Singapore USA Berkley China Baidu Quantum Technology Class Based Course Canada uwaterloo Singapore National University Singapore Europe Munich Russia Skoltech Quantum Information Science External Links quantwiki Online MIT - Super Explanation and well basics edx - Nice Explanation NPTEL - Nice Series of Courses to understand basics and backbone of quantum information and computing Class Based Course USA MIT Standford University Joint Center for Quantum Information and Computer Science - University of Maryland Canada Perimeter Institute Singapore National University Singapore Europe ULB Belgium IQOQI Quantum Electronics Online MIT - Wonderful Course NPTEL - Nice Series of Courses to understand basics and backbone of quantum Electronics Class Based Course USA Texas Europe Zurich ICFO Asia Tata Institute Quantum Field Theory Online Standford university - Nice Preparatory Course edx - Some QFT Concepts available Class Based Course UK Imperial Europe Vrije Quantum Computer Science Class Based Course USA Oxford Joint Center for Quantum Information and Computer Science - University of Maryland Quantum Artificial Intelligence and Machine Learning External Links Quora 1 Quora 1 Artificial Agents Research for Quantum Designs Quantum Mathematics Class Based Course USA University of Notre CONSOLIDATED Quantum Research Papers scirate - Plenty of Quantum Research Papers Available Peter Wittek - Famous Researcher for the Quantum Machine Leanrning , Published a book in this topic [Murphy Yuezhen Niu] (https://scholar.google.com/citations?user=0wJPxfkAAAAJ&hl=en) - A good researcher published some nice articles Recent Quantum Updates forum ,pages and newsletter Quantum-Tech - A Beautiful Newsletter Page Publishing Amazing Links facebook Quantum Machine Learning - Running By me . Not that much good :). You can get some ideas Linkedlin Quantum Machine Learning - A nice page running by experts. Can get plenty of ideas FOSDEM 2019 Quantum Talks - A one day talk in fosdem 2019 with more than 10 research topics,tools and ideas FOSDEM 2020 Quantum Talks - Live talk in fosdem 2020 with plenty new research topics,tools and ideas License Dedicated Opensources ![Dedicated Opensources]() Source code of plenty of Algortihms in Image Processing , Data Mining ,etc in Matlab, Python ,Java and VC++ Scripts Good Explanations of Plenty of algorithms with flow chart etc Comparison Matrix of plenty of algorithms Is Quantum Machine Learning Will Reveal the Secret Maths behind Astrology? Awesome Machine Learning and Deep Learning Mathematics is online Published Basic Presentation of the series Quantum Machine Learning Contribution If you think this page might helpful. Please help for World Education Charity or kids who wants to learn