VibeBuilders.ai Logo
VibeBuilders.ai

Accessibility

Explore resources related to accessibility to help implement AI solutions for your business.

[D] Accessibility of Basic Models to Non-Technicals
reddit
LLM Vibe Score0
Human Vibe Score0
wildekansThis week

[D] Accessibility of Basic Models to Non-Technicals

Hello /r/machinelearning! I'm doing some research on easily generated models by non-technical/statistical people. It would be awesome if some of you could answer a quick questionnaire: If you're a machine learning developer/data scientist etc.: a) Has your manager/product lead etc. ever insist that you build a model on a correlation you felt wasn't there? b) Do you think if that people had a way to verify the lack of correlation through a naive model (random forest, svc, etc.) that it would have changed the situation? (Or, if you were able to show them the results) c) Would you want this technology for yourself, or wish that your company would have access to it? If you're a non-technical person (small business developer, student, non-tech entrepreneur, etc.): a) Have you ever not pursued a potential machine learning/data solution or feature because you weren't willing to invest the resources to see if it was viable? b) Would being able to verify correlations in your data (or lack thereof!) entice you to pursue possible machine learning solutions? c) Even if your previous answers were no, would you be interested in having this technology? Thanks in advance for all of the responses, I will personally read and respond to each one of you thoughtful enough to give me a response. Also, I hope this post will spark an interesting conversation about the barrier of entry to AI/machine learning.

How do you learn details / potential strategy about technically important new laws in the jurisdictions you operate in?
reddit
LLM Vibe Score0
Human Vibe Score1
friendofherschelThis week

How do you learn details / potential strategy about technically important new laws in the jurisdictions you operate in?

I am reading “The Entrepreneur’s Guide to Law and Strategy” and it’s really fantastic so far about giving a pretty great overview of these aspects of business. It was published by Wiley (a reputable textbook publisher) in 2018. In one chapter, the authors go into the EU’s “right to be forgotten” and it got me thinking about complying with laws like that. Unfortunately, the latest edition of the book is still nearly 7 years old and written pre-COVID, pre-genAI, pre-social network and privacy pushback, etc. I assume every time a new law comes out that can impact my business (say, a random privacy law in California) that businesses aren’t just telling their lawyers “use any amount of hours you need to in order to read the San Jose papers every day and then write me a one paragraph brief with an outline and potential changes needed to our business, also all the other papers across the world”. They’d spend a fortune. There has to be something I’m missing. Is there a law review for business that I should be following? I operate in the US only at this time. A more technical newspaper (I take WSJ, but it’s not technical enough for this sort of thing. It might give the “what”, but won’t give a small business owner “what to do with it”)? PS: I’m the type of person who read every word of my mortgage. I am aware the answer might be “don’t worry about it”. But I do worry about it, and am trying to fix that. For example, the insanely popular new lawsuits about website accessibility. I want to avoid things (essentially low hanging lawsuit fruit) like that before they happen to me.

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months
reddit
LLM Vibe Score0
Human Vibe Score0.333
lazymentorsThis week

80+ Social Media Updates Related to Business Marketing That Occurred in last 5 months

Tiktok expanded its caption limits from 100 to 500 Characters. Reddit Updates Search tools, Now you can search User Comments. “Comment search is here”. Pinterest Announces New Partnership with WooCommerce to Expand Product Listings. Google’s launched ‘multisearch’ feature that lets you search using text and image at the same time. Etsy sellers went on strike after platform increases transaction fees. Reddit launched $1 million fund to support various projects going on platform. Instagram is updating its ranking algorithm to put more focus on Original Content LinkedIn Added New tools In creator mode: improved content analytics and Updates profile video Options. Tiktok launched its own gif library “Effect House”. Instagram Updates Reels editing tools adding reordering clips feature. Google Search got a new label to direct people to original news sources YouTube launches new Profile Rings for Stories and Live. Snapchat launched YouTube Link stickers to make video sharing easier! Messenger adds new shortcuts, including a slack like @everyone feature. Pinterest Expands it’s Creator funds program to help more Underrepresented creators. Reddit brings back r/place after 5 years. Google Adds New Seller Performance Badges, New Pricing Insights for eCommerce Brands. Meta and Google agrees to New Data Transfer agreement to keep Instagram and Facebook running in EU. Twitter tests New Interactive Ad types to boost its promotional Appeal. Instagram removed In-stream Ads from its Advertising Options. Tiktok launched new program “CAP” to help creative agencies reach its audience. Twitch shuts down its desktop app. Meta launched the ability to add “share to Reels” feature to third Party Apps. TikTok Adds New ‘Background Player’ Option for Live-Streams. Twitter rolls out ALT badge and improved image description. Fast, A Checkout Startup with $15 billion valuation shuts down after spending all the funds raised in 2021. Wordpress announced new pricing with more traffic and storage limits after receiving backlash from the community. Sales force upgrades marketing field services and sales tools with AI. Dropbox shop launches in open beta to allow creators to sell digital content. Tiktok is the most downloaded app in Quarter 1 of 2022. WhatsApp announced launch of ‘Communities’ - more structured group chats with admin controls. Tiktok expands testing a private dislike button for comments. Twitter acquired “Openback” A notification app to improve timeline and relevance of push notifications YouTube and Tiktok added New options for Automated Captions, Improving Accessibility. A new social media App “Be Real” is trending across the internet grabbing Gen-Zs attention to try the app. WhatsApp got permission to expand payment services to its Indian user base of 100 Million. YouTube Shorts now allows creators to splice in long-form videos. You can use long form video audios and clips for YT shorts. New Snapchat feature ‘Dynamic Stories’ uses a publisher’s RSS feed to automatically create Stories posts. Zoom launches AI-powered features aimed at sales teams. Tiktok started testing who viewed your profile feature. Ogilvy Announced they will no longer work with who edit their bodies and faces for ads. If you don’t know “Oglivy” is the most successful advertising agency of the decade. YouTube Launches New ‘Search Insights’ for all creators. Snapchat Added 13 million new users in Q1 2022 more than both Twitter and Facebook. Google is Introduced new options to reject tracking cookies in Europe after receiving fines from violating EU data laws. Sony & Microsoft are planning to integrate Ads into their gaming platforms Xbox and PlayStation. YouTube Adds new Shorts Shelf to Trending Tab to show Top Shorts in an alternative section. Instagram started testing a reels template feature which enables creators to copy formats from other reels. Google Tests “What People Are Saying” Search Results. Twitter Launches New Test of Promotions for Third Party Tools Within the App. Instagram is changing how hashtags work by experimenting removing Recents tab from hashtags section. Google Adds New Publisher Verification Badges to Extension Listings in the Google Web Store Amazon AWS launches $30M accelerator program aimed at minority founders. Meta launched more fundraising options for Instagram Reels in 30 countries. Brave Search and DuckDuckGo will no longer support Google AMP due to privacy issues. Instagram is working on a pinned post feature and will officially launch in next few months. Meta: You can now add Music to your Facebook comments Twitter tests new closed caption button to switch on captions in Video Clip Elon Musk Bought Twitter $44 Billion and Company is set to go private. Google now lets you request the removal of personal contact information from search results YouTube reveals that Ads between YT Shorts are being tested with selective brands. LinkedInis rolling out a new website link feature. Google Reduces Visibility Of Business Edits With Color Changes To Profile Updates. Instagram expands testing of 90 second Reels. Microsoft Advertising now offers incentive features like cash-back and adding stock images from your website. Facebook & Pinterest are growing again despite all the hype around slow growth of both platform in last quarter. Google Added 9 new Ad policies to prevent misleading ads taking place. Tiktok Introduces Third-party cookies to its Pixel. (like Facebook Pixel) Twitter reportedly overcounted number of daily active users for last 3 years. Google launched Media CDN to compete on content delivery. YouTube expands Thank You Monetisation tool to all eligible creators. Twitch is looking to expand their cut from streamers earnings from 30 to 50% and also thinks of boosting Ads. Snapchat launches a $230 flying drone camera and new e-commerce integrations in Snap Summit 2022. YouTube Expands its ‘Pre-Publish Checks’ Tool to the Mobile App Google Search Console’s URL parameter tool is officially removed for a time period. Twitter creators can now get paid through Cryptocurrency on Twitter with Stripe. Jellysmack- One of the Influencer marketing agency acquires YouTube analytics tool Google & Microsoft Ads brought more revenue in last quarter- 22% Gains! WhatsApp is working on a paid subscription for multi-phone and tablet chatting. Instagram users now spend 20% of their time in the reels section. Google tests new Color for clicked search results by you. Now Clicked results are in Purple. Twitter: Elon plans to remove employees and focus more on influencers for twitter’s growth + new monetisation ideas were shared. YouTube revenue falls as more users spend time on shorts tab than consuming long form content. Drop 👋 to receive June Updates!

6 principles to data architecture that facilitate innovation
reddit
LLM Vibe Score0
Human Vibe Score1
Competitive_Speech36This week

6 principles to data architecture that facilitate innovation

My team and I have been re-building our company's data architecture. In the process of doing so, I got together six key principles to transforming data architectures and thought I would share them, as a strong data architecture is crucial for businesses looking to stay competitive in the digital landscape, as it improves decision-making, time to market, and data security. When executed with efficiency, a resilient data architecture unleashes unparalleled degrees of agility. Principle 1: Agility and flexibility To quickly adjust to market fluctuations, businesses must create adaptable data infrastructures that can effortlessly manage an ever-growing influx of data. To accomplish this objective, we recommend to our clients to implement Enterprise Service Bus, Enterprise Data Warehouse, and Master Data Management integrated together. ​ I believe the best option is this: \- By centralizing communication, ESB reduces the time and effort required to integrate new systems; \- EDW consolidates data from different sources, resulting in a 50% reduction in software implementation time; \- Finally, MDM ensures consistency and accuracy across the organization, leading to better decision-making and streamlined operations. Implementing these solutions can lead to reduced software implementation time, better ROI, and more manageable data architecture. By fostering a culture of collaboration and adopting modern technologies and practices, businesses can prioritize agility and flexibility in their data architecture to increase the pace of innovation. Principle 2: Modularity and reusability Data architecture that fosters modularity and reusability is essential for accelerating innovation within an organization. By breaking data architecture components into smaller, more manageable pieces, businesses can enable different teams to leverage existing architecture components, reducing redundancy and improving overall efficiency. MDM can promote modularity and reusability by creating a central repository for critical business data. This prevents duplication and errors, improving efficiency and decision-making. MDM enables a single source of truth for data, accessible across multiple systems, which promotes integration and scalability. MDM also provides standardized data models, rules, and governance policies that reduce development time, increase quality, and ensure proper management throughout the data’s lifecycle. Another way to achieve modularity in data architecture is through the use of microservices and scripts for Extract, Transform, and Load (ETL) processes. Adopting a structured methodology and framework can ensure these components are well-organized, making it easier for teams to collaborate and maintain the system. Microservices can also contribute to modularity and reusability in data architecture. These small, independent components can be developed, deployed, and scaled independently of one another. By utilizing microservices, organizations can update or replace individual components without affecting the entire system, improving flexibility and adaptability. Principle 3: Data quality and consistency The efficiency of operations depends on data’s quality, so a meticulously crafted data architecture plays a pivotal role in preserving it, empowering enterprises to make well-informed decisions based on credible information. Here are some key factors to consider that will help your company ensure quality: \- Implementing Master Data Management (MDM) – this way, by consolidating, cleansing, and standardizing data from multiple sources, your IT department will be able to create a single, unified view of the most important data entities (customers, products, and suppliers); \- Assigning data stewardship responsibilities to a small team or an individual specialist; \- Considering implementing data validation, data lineage, and data quality metrics; \- By implementing MDM and adopting a minimal data stewardship approach, organizations can maintain high-quality data that drives innovation and growth. Principle 4: Data governance Data governance is a strategic framework that goes beyond ensuring data quality and consistency. It includes ensuring data security, privacy, accessibility, regulatory compliance, and lifecycle management. Here are some key aspects of data governance: \- Implementing robust measures and controls to protect sensitive data from unauthorized access, breaches, and theft. This is only possible through including encryption, access controls, and intrusion detection systems into your company’s IT architecture; \- Adhering to data privacy regulations and guidelines, such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA); \- Defining stringent conditions for who has access to specific data assets to maintain control over data and ensure its accessibility only for legitimate purposes. Managing the entire lifecycle of data, from creation and storage to archiving and disposal, including defining policies for data retention, archiving, and deletion in compliance with legal and regulatory requirements. To facilitate effective data governance, organizations can leverage various tools and technologies, such as: \- Data cataloging tools: Solutions like Collibra, Alation, or Informatica Enterprise Data Catalog help organizations discover, understand, and manage their data assets. \- Data lineage tools: Tools like Talend, IBM InfoSphere, or Apache Atlas help track data’s origin, transformation, and usage, providing insights into data quality issues and potential areas for improvement. \- Data quality tools: Solutions like Informatica Data Quality, Trifacta, or SAS Data Quality help organizations maintain high-quality data by identifying and correcting errors, inconsistencies, and inaccuracies. \- Data security and privacy tools: Tools like Varonis, BigID, or Spirion help protect sensitive data and ensure compliance with data privacy regulations. Principle 5: Cloud-first approach A cloud-first approach prioritizes cloud-based solutions over on-premises ones when it comes to data management. Cloud-based data management pros: \- Virtually limitless scalability, so that organizations can grow and adapt to changing data requirements without significant infrastructure investments; \- The pay-as-you-go model of cloud services reduces maintenance costs usually associated with the on-premise choice; \- Greater flexibility for deploying and integrating new technologies and services; \- Cloud can be accessed from anywhere, at any time, turning team collaboration and remote work into a breeze; \- Built-in backup and disaster recovery capabilities, ensuring data safety and minimizing downtime in case of emergencies. Cloud-based data management cons: \- Cloud-first approach raises many data security, privacy, and compliance concerns; \- Transferring large data volumes to and from cloud is often time-consuming and results in increased latency for certain apps; \- Relying on a single cloud provider makes it difficult to switch them or move back to the on-premises option without significant funds and effort. Challenges that organizations that choose a cloud-first approach face: \- Integrating cloud-based systems with on-premises ones can be complex and time-consuming; \- Ensuring data governance and compliance in a multi-cloud or hybrid environment is also another problem reported by my clients. How EDW, ESB, and MDM promote cloud-first approach: A cloud-based EDW centralizes data from multiple sources, enabling a unified view of the organization’s data and simplifying data integration across cloud and on-premises systems. An ESB facilitates communication between disparate cloud and on-premises systems, streamlining data integration and promoting a modular architecture. Cloud-based MDM solutions are used for maintaining data quality and consistency across multiple data sources and environments. Principle 6: Automation and artificial intelligence Incorporating automation tools and AI technologies into data architecture can optimize processes and decision-making. Key Applications: \- Data ingestion and integration: Automation simplifies data schema updates and identifies data quality issues, while AI-assisted development helps create tailored connectors, scripts, and microservices. \- Data quality management: Machine learning algorithms improve data quality and consistency by automatically detecting and correcting inconsistencies and duplicates. \- Predictive analytics: AI and machine learning models analyze historical data to predict trends, identify opportunities, and uncover hidden patterns for better-informed decisions. How No-Code Tools and AI-Assisted Development Work: Business users define data requirements and workflows using no-code tools, enabling AI models to understand their needs. AI models process the information, generating recommendations for connector creation, ETL scripts, and microservices. Developers use AI-generated suggestions to accelerate development and tailor solutions to business needs. By combining automation, AI technologies, and no-code tools, organizations can streamline data architecture processes and bridge the gap between business users and developers, ultimately accelerating innovation. I share more tips on building an agile data architectures in my blog.

How I Built A Simple ‘BPO’ Company, All AI Employees (All Local)
reddit
LLM Vibe Score0
Human Vibe Score1
AssistanceOk2217This week

How I Built A Simple ‘BPO’ Company, All AI Employees (All Local)

Disrupting the BPO Industry: My Journey Building a Fully Automated Company with AI Employees Full Article : https://medium.com/@learn-simplified/how-i-built-a-simple-bpo-company-all-ai-employees-all-local-631e48fa908a ​ https://preview.redd.it/htjo1mancl2d1.png?width=1586&format=png&auto=webp&s=7e77f4c66e5ca55a8b0ea6969c43a458503ad921 ● What Are We Doing Today? We are building a BPO (Business Process Outsourcing) call center for an imaginary electric company called "Aniket Very General Electric Company". We will create different departments staffed by AI agents who can chat (and eventually speak in next part) with customers to answer questions, handle complaints, or provide services. ● Why Should You Read This Article? Learning how to build AI agents that can do tasks in real setting, co ordinate w/ human, AI, providing technical support will be a highly valuable skill. ● How Are We Going to Build Our All AI Employees Company? ○ We will explain what BPO and call centers are. ○ Our AI company will have departments like Customer Service, Tech Support, Billing & Payments, Outage Management, and Onboarding Customers. ○ We will use Docker containers to run the Dify AI platform as the base. ○ The AI agents will use the LLaMA-3 language model from Meta AI. ○ We may use Groq's AI accelerator chip to make LLaMA-3 faster. ○ Each department will have a knowledge base of text files that the AI agents can reference. ● Let's Get Cooking! This section provides setup instructions for installing Docker, Ollama (for running LLaMA-3), and the Dify AI platform. It also outlines the different AI agents we will create for departments like Reception, Customer Service, Billing, Tech Support, etc. ● Let's Design our Organization ○ We explain how each department's AI agents will have their own knowledge base, like an employee handbook. ○ The knowledge bases will contain policies, procedures, and other key information. ○ The AI agents can quickly reference this information to provide accurate and knowledgeable responses. ● Let's Meet Our AI Employees ○ We chose the LLaMA-3 70B model as the base for all AI agents across departments. ○ We give the AI agents customized prompts to define their personalities and roles. ○ The knowledge bases act as training materials tailored to each department. ○ In the future, AI agents could have additional tools like ticket systems and integrations. ● Let's Run Our BPO Organization Now that the AI workforce and knowledge bases are ready, we can open our BPO company and have the AI agents start handling customer inquiries across different departments like billing, tech support, outages, and new connections. ● Debugging This section highlights the importance of debugging, showing traces of how the language model understands customer queries and retrieves relevant context from knowledge bases to provide good responses. ● Future Work ○ Scale up to handle more customers using cloud services or distributed computing. ○ Move AI agents and knowledge bases to the cloud for accessibility and maintenance. ○ Fine-tune language models for better performance in each department. ○ Use scalable vector databases for faster knowledge retrieval. ○ Enable voice interfaces and computer vision for more natural interactions. ○ Implement continuous learning so AI agents can expand their knowledge over time. The article demonstrates the potential of building an actual AI-powered company and raises thought-provoking questions about the role of humans, ethics, and using AI to create a better world. ​

IVAN.ed: The platform for Social Learning ( SOMEONE CAN USE THIS IDEA BECAUSE I CURRENTLY DON'T HAVE THE TECH KNOWLEDEGE TO MAKE IT COME TRUE )
reddit
LLM Vibe Score0
Human Vibe Score1
Different_Tip8185This week

IVAN.ed: The platform for Social Learning ( SOMEONE CAN USE THIS IDEA BECAUSE I CURRENTLY DON'T HAVE THE TECH KNOWLEDEGE TO MAKE IT COME TRUE )

Overview: IVAN.ed is an innovative educational platform designed to transform the way students and educators interact and share knowledge. By combining the best elements of social media with a focus on learning, IVAN.ed aims to create a dynamic, engaging, and user-friendly environment for educational content. Key Features: Social Learning Network: A platform where students, educators, and experts can create and share educational content, similar to a social media experience but dedicated to learning. AI-Driven Content Moderation: Implementing advanced AI algorithms to ensure high-quality and relevant content, maintaining the platform’s integrity and usefulness. User Profiles and Content Creation: Users can build profiles, upload videos, create posts, and engage with content through comments, (instead of like there is the knowledge meter , based on what as taught in the videos), notes will be provided down of each video using ai. Enhanced Discovery: Advanced search and recommendation systems to help users find content that matches their interests and educational needs. Minimal Distractions: user interface designed to minimize distractions and enhance focus, making the learning experience more efficient. Goals: Accessibility: Provide a free or low-cost platform where knowledge is accessible to all. Community Engagement: Foster a vibrant learning community with meaningful interactions. Innovation: Leverage AI to maintain high standards of content and user experience. Conclusion: IVAN.ed aims to bridge the gap between traditional education and modern social media, creating an interactive and engaging space for learning. By prioritizing user experience and content quality, IVAN.ed will empower educators and learners alike, making education more accessible and impactful. THIS MESSAGE WAS GENERATED USING GPT , SINCE I AM NOT VERY GOOD AN CONVEING MY IDEAS , BUT NOW I NEED PEOPLE TO SEE THIS IDEA AND CRITIZE IT OR EVEN GIVE ME SOME IDEAS TO MAKE IT BETTER , BUT THIS IS JUST THE BLUEPRINT AND I HAVEN'T EVEN BEGUN THE ACTUAL DEVELOPMENT PHASE, BUT I AM OPEN FOR SOME HELP ! -thank you if you read it this far

Can AI Mentorship and Community Support Help Entrepreneurs Succeed?
reddit
LLM Vibe Score0
Human Vibe Score1
Expensive_Ad_1176This week

Can AI Mentorship and Community Support Help Entrepreneurs Succeed?

Starting a business can often feel like you're flying blind, especially without a mentor to guide you. But what if you could tap into AI-powered mentorship tools and a supportive community to get advice and feedback whenever you need it? 🚀 AI mentorship offers personalized guidance and structured frameworks, minus the need for traditional face-to-face time. And platforms like this one allow us to connect, share experiences, and learn from each other. It’s a game-changer, right? Here’s what I’m curious about: Have you tried AI mentorship tools? What was your experience? How do you currently get advice and feedback on your business? Do you think mentorship should always be face-to-face, or can online tools and communities play a big role in helping entrepreneurs succeed? Would you consider using structured learning tools (like lesson-based frameworks or step-by-step guidance) to guide your entrepreneurship journey? I’m working on Procasio, an educational entrepreneurship app designed to promote inclusivity and accessibility. It would combine AI mentorship, structured learning paths, gamified elements, and case studies, helping small business owners, teachers, students, and aspiring entrepreneurs learn effectively without overwhelming costs. 🎓💡 The app would include: Discussion posts and messaging for real-time advice. Goal setting and personalized learning recommendations. Case studies and practical scenarios to put theory into action. A low-cost, accessible approach for entrepreneurs at any stage. I’d love to hear your thoughts—do you think AI-powered mentorship and structured learning can make entrepreneurship education easier and more effective?

teach-AI-in-business
github
LLM Vibe Score0.443
Human Vibe Score0.018525334165293606
aenyneJan 9, 2025

teach-AI-in-business

Teaching AI in Business ![HitCount] I am collecting material for teaching AI-related issues to non-tech people. The links should provide for a general understanding of AI without going too deep into technical issues. Please contribute! Make this Issue your First Issue I am collecting material for teaching AI-related issues to non-tech people. The links should have provide for a general understanding of AI without going too deep into technical issues. Please contribute! Kindly use only those Resources with NO CODE NEW Check out also the AI Wiki NEW Online Videos & Courses | Link to Issue | Description | |---|---| | Top Trending Technologies | Youtube Channel to master top trending technologyies including artificial intelligence | | AI4All | AI 4 All is a resource for AI facilitators to bring AI to scholars and students | | Elements of AI | Elements of AI is a free open online course to teach AI principles | | Visual Introduction to Machine Learning | Visual introduction to Machine Learning is a beautiful website that gives a comprehensive introduction and easily understood first encounter with machine learning | | CS50's Introduction to Artificial Intelligence with Python | Learn to use machine learning in Python in this introductory course on artificial intelligence.| | Crash course for AI | This is a fun video series that introduces students and educators to Artificial Intelligence and also offers additional more advanced videos. Learn about the basics, neural networks, algorithms, and more. | Youtuber Channel Machine Learning Tutorial | Youtube Channel Turorial Teachable Machine for beginner | | Artificial Intelligence (AI) |Learn the fundamentals of Artificial Intelligence (AI), and apply them. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems | | AI For Everyone by Andrew Ng | AI For Everyone is a course especially for people from a non-technical background to understand AI strategies | | How far is too far? The age of AI| This is a Youtube Orignals series by Robert Downey| | Fundamentals of Artificial Intelligence|This course is for absolute beginners with no technical knowledge.| | Bandit Algorithm (Online Machine Learning)|No requirement of technical knowledge, but a basic understending of Probability Ttheory would help| | An Executive's Guide to AI|This is an interactive guide to teaching business professionals how they might employ artificial intelligence in their business| | AI Business School|Series of videos that teach how AI may be incorporated in various business industries| | Artificial Intelligence Tutorial for Beginners | This video will provide you with a comprehensive and detailed knowledge of Artificial Intelligence concepts with hands-on examples. | | Indonesian Machine Learning Tutorial | Turorial Teachable Machine to train a computer for beginner | | Indonesian Youtube Playlist AI Tutorial | Youtube Playlist AI Tutorial For Beginner | | Artificial Intelligence Search Methods For Problem Solving By Prof. Deepak Khemani|These video lectures are for absolute beginners with no technical knowledge| | AI Basics Tutorial | This video starts from the very basics of AI and ML, and finally has a hands-on demo of the standard MNIST Dataset Number Detection model using Keras and Tensorflow.| | Simple brain.js Tutorial | This video explains a very simple javascript AI library called brain.js so you can easily run AI in the browser.| | Google AI| A complete kit for by google official for non-tech guy to start all over from basics, till advanced | | Microsoft AI for Beginners| A self-driven curriculum by Microsoft, which includes 24 lessons on AI. | Train Your Own AI | Link to Issue | Description | |---|---| | Teachable Machine | Use Teachable Machine to train a computer to recognize your own images, sounds, & poses | | eCraft2Learn | Resource and interactive space (Snap, a visual programming environment like Scratch) to learn how to create AI programs | | Google Quick Draw | Train an AI to guess from drawings| | Deepdream Generator| Merge Pictures to Deep Dreams using the Deepdream Generator| | Create ML|Quickly build and train Core ML models on your Mac with no code.| | What-If Tool|Visually probe the behavior of trained machine learning models, with minimal coding.| | Metaranx|Use and build artificial intelligence tools to analyze and make decisions about your data. Drag-and-drop. No code.| | obviously.ai|The total process of building ML algorithms, explaining results, and predicting outcomes in one single click.| Articles | By & Title | Description | |---|---| | Artificial Intelligence | Wikipedia Page of AI | | The Non-Technical AI Guide | One of the good blog post that could help AI more understandable for people without technical background | | LIAI | A detailed introduction to AI and neural networks | | Layman's Intro | A layman's introduction to AI | | AI and Machine Learning: A Nontechnical Overview | AI and Machine Learning: A Nontechnical Overview from OREILLY themselves is a guide to learn anyone everything they need to know about AI, focussed on non-tech people | | What business leaders need to know about artifical intelligence|Short article that summarizes the essential aspects of AI that business leaders need to understand| | How Will No-Code Impact the Future of Conversational AI | A humble explanation to the current state of converstational AI i.e.Chatbots and how it coul evolve with the current trend of no coding. | | Investopedia | Basic explanation of what AI is in a very basic and comprehensive way | | Packtpub | A non programmer’s guide to learning Machine learning | | Builtin | Artificial Intelligence.What is Artificial Intelligence? How Does AI Work? | | Future Of Life | Benefits & Risks of Artificial Intelligence | | NSDM India -Arpit | 100+ AI Tools For Non-Coders That Will Make Your Marketing Better. | | AI in Marketing for Startups & Non-technical Marketers | A practical guide for non-technical people | | Blog - Machine Learning MAstery | Blogs and Articles by Jason Browniee on ML | | AI Chatbots without programming| Chatbots are increasingly in demand among global businesses. This course will teach you how to build, analyze, deploy and monetize chatbots - with the help of IBM Watson and the power of AI.| Book Resources for Further Reading | Author | Book | Description & Notes | |---|---|---| | Ethem Alpaydin|Machine Learning: The New AI | Graph Theory with Applications to Engineering & Computer Science. A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. | | Charu C. Aggarwal| Neural Networks and Deep Learning | This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. | | Hal Daumé III | A Course in Machine Learning | The purpose of this book is to provide a gentle and pedagogically organized introduction to the field. A second goal of this book is to provide a view of machine learning that focuses on ideas and models, not on math. | | Ian Goodfellow and Yoshua Bengio and Aaron Courville| Deep Learning | The book starts with a discussion on machine learning basics, including the applied mathematics and algorithms needed to effectively study deep learning from an academic perspective. There is no code covered in the book, making it perfect for a non-technical AI enthusiast. | | Peter Harrington|Machine Learning in Action| (Source: https://github.com/kerasking/book-1/blob/master/ML%20Machine%20Learning%20in%20Action.pdf) This book acts as a guide to walk newcomers through the techniques needed for machine learning as well as the concepts behind the practices.| | Jeff Heaton| Artificial Intelligence for Humans |This book helps its readers get an overview and understanding of AI algorithms. It is meant to teach AI for those who don’t have an extensive mathematical background. The readers need to have only a basic knowledge of computer programming and college algebra.| | John D. Kelleher, Brian Mac Namee and Aoife D'Arcy|Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (The MIT Press)|This book covers all the fundamentals of machine learning, diving into the theory of the subject and using practical applications, working examples, and case studies to drive the knowledge home.| | Deepak Khemani| [A First Course in Artificial Intelligence] | It is an introductory course on Artificial Intelligence, a knowledge-based approach using agents all across and detailed, well-structured algorithms with proofs. This book mainly follows a bottom-up approach exploring the basic strategies needed problem-solving on the intelligence part. | | Maxim Lapan | Deep Reinforcement Learning Hands-On - Second Edition | Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. | | Tom M Mitchell | Machine Learning | This book covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. The book is intended to support upper level undergraduate and introductory level graduate courses in machine learning. | | John Paul Mueller and Luca Massaron|Machine Learning For Dummies|This book aims to get readers familiar with the basic concepts and theories of machine learning and how it applies to the real world. And "Dummies" here refers to absolute beginners with no technical background.The book introduces a little coding in Python and R used to teach machines to find patterns and analyze results. From those small tasks and patterns, we can extrapolate how machine learning is useful in daily lives through web searches, internet ads, email filters, fraud detection, and so on. With this book, you can take a small step into the realm of machine learning and we can learn some basic coding in Pyton and R (if interested)| | Michael Nielsen| Neural Networks and Deep Learning |Introduction to the core principles of Neural Networks and Deep Learning in AI| | Simon Rogers and Mark Girolami| A Course in Machine Learning |A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC.| |Peter Norvig| Paradigm of Artificial Intelligence Programming |Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-art Common Lisp, the book teaches students and professionals how to build and debug robust practical programs, while demonstrating superior programming style and important AI concepts.| | Stuart Russel & Peter Norvig | Artificial Intelligence: A Modern Approach, 3rd Edition | This is the prescribed text book for my Introduction to AI university course. It starts off explaining all the basics and definitions of what AI is, before launching into agents, algorithms, and how to apply them. Russel is from the University of California at Berkeley. Norvig is from Google.| | Richard S. Sutton and Andrew G. Barto| Reinforcement Learning: An Introduction |Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment.| | Alex Smola and S.V.N. Vishwanathan | Introduction to Machine Learning | Provides the reader with an overview of the vast applications of ML, including some basic tools of statistics and probability theory. Also includes discussions on sophisticated ideas and concepts. | | Shai Shalev-Shwartz and Shai Ben-David | Understanding Machine Learning From Theory to Algorithms |The primary goal of this book is to provide a rigorous, yet easy to follow, introduction to the main concepts underlying machine learning. | | Chandra S.S.V | Artificial Intelligence and Machine Learning | This book is primarily intended for undergraduate and postgraduate students of computer science and engineering. This textbook covers the gap between the difficult contexts of Artificial Intelligence and Machine Learning. It provides the most number of case studies and worked-out examples. In addition to Artificial Intelligence and Machine Learning, it also covers various types of learning like reinforced, supervised, unsupervised and statistical learning. It features well-explained algorithms and pseudo-codes for each topic which makes this book very useful for students. | | Oliver Theobald|Machine Learning For Absolute Beginners: A Plain English Introduction|This is an absolute beginners ML guide.No mathematical background is needed, nor coding experience — this is the most basic introduction to the topic for anyone interested in machine learning.“Plain” language is highly valued here to prevent beginners from being overwhelmed by technical jargon. Clear, accessible explanations and visual examples accompany the various algorithms to make sure things are easy to follow.| | Tom Taulli | Artificial Intelligence Basics: A Non-Technical Introduction | This book equips you with a fundamental grasp of Artificial Intelligence and its impact. It provides a non-technical introduction to important concepts such as Machine Learning, Deep Learning, Natural Language Processing, Robotics and more. Further the author expands on the questions surrounding the future impact of AI on aspects that include societal trends, ethics, governments, company structures and daily life. | |Cornelius Weber, Mark Elshaw, N. Michael Mayer| Reinforcement Learning |Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning.| |John D. Kelleher, Brian Mac Namee, Aoife D'arcy| Algorithms, Worked Examples, and Case Studies | A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. |