VibeBuilders.ai Logo
VibeBuilders.ai

Not Yet Existing

Explore resources related to not yet existing to help implement AI solutions for your business.

Building in the open with Founder University - I will not promote
reddit
LLM Vibe Score0
Human Vibe Score1
Tim-SylvesterThis week

Building in the open with Founder University - I will not promote

Published Oct 30, 2024 I am on my fifth startup. I ran the last one for a decade, that’s a whole story. A hell of a story. But a different story. I’ll tell it to you when I can, but not right now. The one before that was an e-commerce site that did pretty well but I didn’t love it. Before that were two service businesses. The first one I did for the love of the game, the second one was an attempt to make people stop asking me to fix their computer by charging them outrageous prices, which backfired horribly when they were eager to pay. None are relevant except to say I’ve been around the block and have the scars to prove it. When it was time to get back out there, I wanted to use all I’ve learned to do better. Before I talk about what those lessons produced, I’m going to talk about what those lessons were. Cause before effect, after all. One thing I wanted to do better this time was pattern matching - making the startup look the way that the industry and investors “expect” a startup to look. My last startup was an awesome idea with awesome tech (still is, but like I said, another story), but that one didn’t match patterns. It didn’t match investor patterns, industry buying patterns, patterns of existing, immediate, recognized and admitted needs. Because it didn’t “look” right to anyone, everything about it was way harder than necessary. The “make it look right” approach runs the risk of building a cargo cult, imitating the trappings of something but without understanding the essence of that something, but then again, a thing that looks like a knife is going to make a better knife that a thing that looks like a bowling ball, so sometimes just sharing apparent similarities can get you pretty far, even if it doesn’t get you all the way there. Like how mimicking someone’s accent makes it easier for them to understand you. For this one, I wanted to adopt every tool, method, and pattern that I knew “the industry” wanted to see to minimize the friction from development, go-to-market, scaling, adoption, and that would make investment optional (and, therefore, available if desired) instead of necessary (and, therefore, largely unavailable). That required establishing some expectations for successful patterns I could match against. What patterns am I matching to? Here’s a general sketch of my pattern matching thought process: Software first and software only. It’s the easiest industry to start a business in, lowest startup costs, and easiest customer acquisition. I wanted to build software for an element of the industry that’s actively emerging (and therefore has room to grow) and part of an optimistic investor thesis (and therefore has a cohort of people who are intent on injecting capital into the market to help it grow). It needs to fills a niche that is underexplored (low competition) and highly potent (lots of opportunity), while being aligned to recognized and emerging needs within the industry (readily adopted). I wanted it to have evidence supporting the business thesis that proves the demand exists, but demonstrates that the demand is unanswered (as of yet) by sufficient or adequate supply.* I wanted the lowest number of dominoes to line up and tip for everything to work correctly - the more dominoes in the line, the less likely the last one will fall. I wanted to implement modern toolsets for everything, wherever possible. I wanted to obey the maxim, “When there’s a gold rush, don’t mine the gold, sell the picks and shovels.” Whatever I chose would need to produce cash flow almost immediately with minimal development time or go-to-market delays, because the end of ZIRP killed the “trust me bro” investment thesis predominant over the last 15 years. I wanted to match to YC best practices, not because YC can predict what will definitely work, but because they’ve churned through so many startups in the last 15 years that they have a good sense of what will definitely not work. And I wanted to build client-centric, because if my intent is to to produce cash flow immediately, we need to get clients immediately, and if we need to get clients immediately, we need to focus on what clients need right now. Extra credit: What’s the difference between a customer and a client? Note: Competition is awesome! Competition is validating and not scary, because competition proves a market exists. But competition, especially mature competition against an immature startup, makes it harder to break into a space. A first mover advantage isn’t everything, but seeing demand before it’s sufficiently supplied is a great advantage if you’re capital constrained or otherwise unproven. Think about how much money the first guy to sell fidget spinners or Silly Bandz made versus how much money the last guy to order a pallet of each made. Finding demand that exists already but is as of yet insufficiently satisfied is a great place to start. What opportunity spaces are most relevant? The industries and markets I chose to observe were: AI, because if I’m following a theme & pattern for today, it’s AI. Fintech, because cash is king, and fintech puts your hands on cash flow. Crypto/blockchain, because that’s the “new” fintech (or maybe the “old-new” fintech?), and crypto creates powerful incentives and capital formation strategies, along with a lot of flexibility for transaction systems. Tools, particularly unmet demand in tools, that enable these industries. If you wanted to do some brief and simple homework, you could map each of those bullets to several of the numbered list items preceding them. The reasoning was pretty simplistic - AI is what people want to build and invest in now, while fintech and crypto/blockchain are what people were building and investing in for the last major investment thesis. That means that there’s demand in the market for AI and AI-adjacent startups, while there’s a glut of underutilized and highly developed tools within fintech and crypto/blockchain, with a lot of motivated capital behind the adoption. When someone is thinking “I built this thing and not enough people are using it”, and you then build something that uses it creates a great way to find allies. This rationale harnesses technology that is being built and financed now (which means it needs tools and support methods, and a lot of other “picks and shovels”), while leveraging technology that was recently built and financed and is eager for more widespread adoption of the existing toolkits, which makes it suitable for using to build the AI-adjacent tools that are in demand now. It’s like two harmonics producing constructive interference - it makes two waves into one larger wave, which gives me more momentum to surf against. This was a learning process, and I iterated against my general paradigm repeatedly as I learned more. Neither of us have the patience to go through that in excruciating detail, so I’ll cover the highlights in my next post. Extra credit answer: A customer gets a product, a client gets a service. Challenge: Is software a product or a service?

[D] Why I'm Lukewarm on Graph Neural Networks
reddit
LLM Vibe Score0
Human Vibe Score0.6
VodkaHazeThis week

[D] Why I'm Lukewarm on Graph Neural Networks

TL;DR: GNNs can provide wins over simpler embedding methods, but we're at a point where other research directions matter more I also posted it on my blog here, has footnotes, a nicer layout with inlined images, etc. I'm only lukewarm on Graph Neural Networks (GNNs). There, I said it. It might sound crazy GNNs are one of the hottest fields in machine learning right now. [There][1] were at least [four][2] [review][3] [papers][4] just in the last few months. I think some progress can come of this research, but we're also focusing on some incorrect places. But first, let's take a step back and go over the basics. Models are about compression We say graphs are a "non-euclidean" data type, but that's not really true. A regular graph is just another way to think about a particular flavor of square matrix called the [adjacency matrix][5], like this. It's weird, we look at run-of-the-mill matrix full of real numbers and decide to call it "non-euclidean". This is for practical reasons. Most graphs are fairly sparse, so the matrix is full of zeros. At this point, where the non-zero numbers are matters most, which makes the problem closer to (computationally hard) discrete math rather than (easy) continuous, gradient-friendly math. If you had the full matrix, life would be easy If we step out of the pesky realm of physics for a minute, and assume carrying the full adjacency matrix around isn't a problem, we solve a bunch of problems. First, network node embeddings aren't a thing anymore. A node is a just row in the matrix, so it's already a vector of numbers. Second, all network prediction problems are solved. A powerful enough and well-tuned model will simply extract all information between the network and whichever target variable we're attaching to nodes. NLP is also just fancy matrix compression Let's take a tangent away from graphs to NLP. Most NLP we do can be [thought of in terms of graphs][6] as we'll see, so it's not a big digression. First, note that Ye Olde word embedding models like [Word2Vec][7] and [GloVe][8] are [just matrix factorization][9]. The GloVe algorithm works on a variation of the old [bag of words][10] matrix. It goes through the sentences and creates a (implicit) [co-occurence][11] graph where nodes are words and the edges are weighed by how often the words appear together in a sentence. Glove then does matrix factorization on the matrix representation of that co-occurence graph, Word2Vec is mathematically equivalent. You can read more on this in my [post on embeddings][12] and the one (with code) on [word embeddings][13]. Even language models are also just matrix compression Language models are all the rage. They dominate most of the [state of the art][14] in NLP. Let's take BERT as our main example. BERT predicts a word given the context of the rest of the sentence. This grows the matrix we're factoring from flat co-occurences on pairs of words to co-occurences conditional on the sentence's context, like this We're growing the "ideal matrix" we're factoring combinatorially. As noted by [Hanh & Futrell][15]: [...] human language—and language modelling—has infinite statistical complexity but that it can be approximated well at lower levels. This observation has two implications: 1) We can obtain good results with comparatively small models; and 2) there is a lot of potential for scaling up our models. Language models tackle such a large problem space that they probably approximate a compression of the entire language in the [Kolmogorov Complexity][16] sense. It's also possible that huge language models just [memorize a lot of it][17] rather than compress the information, for what it's worth. Can we upsample any graph like language models do? We're already doing it. Let's call a first-order embedding of a graph a method that works by directly factoring the graph's adjacency matrix or [Laplacian matrix][18]. If you embed a graph using [Laplacian Eigenmaps][19] or by taking the [principal components][20] of the Laplacian, that's first order. Similarly, GloVe is a first-order method on the graph of word co-occurences. One of my favorites first order methods for graphs is [ProNE][21], which works as well as most methods while being two orders of magnitude faster. A higher-order method embeds the original matrix plus connections of neighbours-of-neighbours (2nd degree) and deeper k-step connections. [GraRep][22], shows you can always generate higher-order representations from first order methods by augmenting the graph matrix. Higher order method are the "upsampling" we do on graphs. GNNs that sample on large neighborhoods and random-walk based methods like node2vec are doing higher-order embeddings. Where are the performance gain? Most GNN papers in the last 5 years present empirical numbers that are useless for practitioners to decide on what to use. As noted in the [OpenGraphsBenchmark][4] (OGB) paper, GNN papers do their empirical section on a handful of tiny graphs (Cora, CiteSeer, PubMed) with 2000-20,000 nodes. These datasets can't seriously differentiate between methods. Recent efforts are directly fixing this, but the reasons why researchers focused on tiny, useless datasets for so long are worth discussing. Performance matters by task One fact that surprises a lot of people is that even though language models have the best performance in a lot of NLP tasks, if all you're doing is cram sentence embeddings into a downstream model, there [isn't much gained][23] from language models embeddings over simple methods like summing the individual Word2Vec word embeddings (This makes sense, because the full context of the sentence is captured in the sentence co-occurence matrix that is generating the Word2Vec embeddings). Similarly, [I find][24] that for many graphs simple first-order methods perform just as well on graph clustering and node label prediction tasks than higher-order embedding methods. In fact higher-order methods are massively computationally wasteful for these usecases. Recommended first order embedding methods are ProNE and my [GGVec with order=1][25]. Higher order methods normally perform better on the link prediction tasks. I'm not the only one to find this. In the BioNEV paper, they find: "A large GraRep order value for link prediction tasks (e.g. 3, 4);a small value for node classification tasks (e.g.1, 2)" (p.9). Interestingly, the gap in link prediction performance is inexistant for artificially created graphs. This suggests higher order methods do learn some of the structure intrinsic to [real world graphs][26]. For visualization, first order methods are better. Visualizations of higher order methods tend to have artifacts of their sampling. For instance, Node2Vec visualizations tend to have elongated/filament-like structures which come from the embeddings coming from long single strand random walks. See the following visualizations by [Owen Cornec][27] created by first embedding the graph to 32-300 dimensions using a node embedding algorithm, then mapping this to 2d or 3d with the excellent UMAP algorithm, like this Lastly, sometimes simple methods soundly beat higher order methods (there's an instance of it in the OGB paper). The problem here is that we don't know when any method is better than another and we definitely don't know the reason. There's definitely a reason different graph types respond better/worse to being represented by various methods. This is currently an open question. A big part of why is that the research space is inundated under useless new algorithms because... Academic incentives work against progress Here's the cynic's view of how machine learning papers are made: Take an existing algorithm Add some new layer/hyperparameter, make a cute mathematical story for why it matters Gridsearch your hyperparameters until you beat baselines from the original paper you aped Absolutely don't gridsearch stuff you're comparing against in your results section Make a cute ACRONYM for your new method, put impossible to use python 2 code on github (Or no code at all!) and bask in the citations I'm [not][28] the [only one][29] with these views on the state reproducible research. At least it's gotten slightly better in the last 2 years. Sidebar: I hate Node2Vec A side project of mine is a [node embedding library][25] and the most popular method in it is by far Node2Vec. Don't use Node2Vec. [Node2Vec][30] with p=1; q=1 is the [Deepwalk][31] algorithm. Deepwalk is an actual innovation. The Node2Vec authors closely followed the steps 1-5 including bonus points on step 5 by getting word2vec name recognition. This is not academic fraud -- the hyperparameters [do help a tiny bit][32] if you gridsearch really hard. But it's the presentable-to-your-parents sister of where you make the ML community worse off to progress your academic career. And certainly Node2Vec doesn't deserve 7500 citations. Progress is all about practical issues We've known how to train neural networks for well over 40 years. Yet they only exploded in popularity with [AlexNet][33] in 2012. This is because implementations and hardware came to a point where deep learning was practical. Similarly, we've known about factoring word co-occurence matrices into Word embeddings for at least 20 years. But word embeddings only exploded in 2013 with Word2Vec. The breakthrough here was that the minibatch-based methods let you train a Wikipedia-scale embedding model on commodity hardware. It's hard for methods in a field to make progress if training on a small amount of data takes days or weeks. You're disincentivized to explore new methods. If you want progress, your stuff has to run in reasonable time on commodity hardware. Even Google's original search algorithm [initially ran on commodity hardware][34]. Efficiency is paramount to progress The reason deep learning research took off the way it did is because of improvements in [efficiency][35] as well as much better libraries and hardware support. Academic code is terrible Any amount of time you spend gridsearching Node2Vec on p and q is all put to better use gridsearching Deepwalk itself (on number of walks, length of walks, or word2vec hyperparameters). The problem is that people don't gridsearch over deepwalk because implementations are all terrible. I wrote the [Nodevectors library][36] to have a fast deepwalk implementation because it took 32 hours to embed a graph with a measly 150,000 nodes using the reference Node2Vec implementation (the same takes 3min with Nodevectors). It's no wonder people don't gridsearch on Deepwalk a gridsearch would take weeks with the terrible reference implementations. To give an example, in the original paper of [GraphSAGE][37] they their algorithm to DeepWalk with walk lengths of 5, which is horrid if you've ever hyperparameter tuned a deepwalk algorithm. From their paper: We did observe DeepWalk’s performance could improve with further training, and in some cases it could become competitive with the unsupervised GraphSAGE approaches (but not the supervised approaches) if we let it run for >1000× longer than the other approaches (in terms of wall clock time for prediction on the test set) I don't even think the GraphSAGE authors had bad intent -- deepwalk implementations are simply so awful that they're turned away from using it properly. It's like trying to do deep learning with 2002 deep learning libraries and hardware. Your architectures don't really matter One of the more important papers this year was [OpenAI's "Scaling laws"][38] paper, where the raw number of parameters in your model is the most predictive feature of overall performance. This was noted even in the original BERT paper and drives 2020's increase in absolutely massive language models. This is really just [Sutton' Bitter Lesson][39] in action: General methods that leverage computation are ultimately the most effective, and by a large margin Transformers might be [replacing convolution][40], too. As [Yannic Kilcher said][41], transformers are ruining everything. [They work on graphs][6], in fact it's one of the [recent approaches][42], and seems to be one of the more succesful [when benchmarked][1] Researchers seem to be putting so much effort into architecture, but it doesn't matter much in the end because you can approximate anything by stacking more layers. Efficiency wins are great -- but neural net architectures are just one way to achieve that, and by tremendously over-researching this area we're leaving a lot of huge gains elsewhere on the table. Current Graph Data Structure Implementations suck NetworkX is a bad library. I mean, it's good if you're working on tiny graphs for babies, but for anything serious it chokes and forces you to rewrite everything in... what library, really? At this point most people working on large graphs end up hand-rolling some data structure. This is tough because your computer's memory is a 1-dimensional array of 1's and 0's and a graph has no obvious 1-d mapping. This is even harder when we take updating the graph (adding/removing some nodes/edges) into account. Here's a few options: Disconnected networks of pointers NetworkX is the best example. Here, every node is an object with a list of pointers to other nodes (the node's edges). This layout is like a linked list. Linked lists are the [root of all performance evil][43]. Linked lists go completely against how modern computers are designed. Fetching things from memory is slow, and operating on memory is fast (by two orders of magnitude). Whenever you do anything in this layout, you make a roundtrip to RAM. It's slow by design, you can write this in Ruby or C or assembly and it'll be slow regardless, because memory fetches are slow in hardware. The main advantage of this layout is that adding a new node is O(1). So if you're maintaining a massive graph where adding and removing nodes happens as often as reading from the graph, it makes sense. Another advantage of this layout is that it "scales". Because everything is decoupled from each other you can put this data structure on a cluster. However, you're really creating a complex solution for a problem you created for yourself. Sparse Adjacency Matrix This layout great for read-only graphs. I use it as the backend in my [nodevectors][25] library, and many other library writers use the [Scipy CSR Matrix][44], you can see graph algorithms implemented on it [here][45]. The most popular layout for this use is the [CSR Format][46] where you have 3 arrays holding the graph. One for edge destinations, one for edge weights and an "index pointer" which says which edges come from which node. Because the CSR layout is simply 3 arrays, it scales on a single computer: a CSR matrix can be laid out on a disk instead of in-memory. You simply [memory map][47] the 3 arrays and use them on-disk from there. With modern NVMe drives random seeks aren't slow anymore, much faster than distributed network calls like you do when scaling the linked list-based graph. I haven't seen anyone actually implement this yet, but it's in the roadmap for my implementation at least. The problem with this representation is that adding a node or edge means rebuilding the whole data structure. Edgelist representations This representation is three arrays: one for the edge sources, one for the edge destinations, and one for edge weights. [DGL][48] uses this representation internally. This is a simple and compact layout which can be good for analysis. The problem compared to CSR Graphs is some seek operations are slower. Say you want all the edges for node #4243. You can't jump there without maintaining an index pointer array. So either you maintain sorted order and binary search your way there (O(log2n)) or unsorted order and linear search (O(n)). This data structure can also work on memory mapped disk array, and node append is fast on unsorted versions (it's slow in the sorted version). Global methods are a dead end Methods that work on the entire graph at once can't leverage computation, because they run out of RAM at a certain scale. So any method that want a chance of being the new standard need to be able to update piecemeal on parts of the graph. Sampling-based methods Sampling Efficiency will matter more in the future Edgewise local methods. The only algorithms I know of that do this are GloVe and GGVec, which they pass through an edge list and update embedding weights on each step. The problem with this approach is that it's hard to use them for higher-order methods. The advantage is that they easily scale even on one computer. Also, incrementally adding a new node is as simple as taking the existing embeddings, adding a new one, and doing another epoch over the data Random Walk sampling. This is used by deepwalk and its descendants, usually for node embeddings rather than GNN methods. This can be computationally expensive and make it hard to add new nodes. But this does scale, for instance [Instagram][49] use it to feed their recommendation system models Neighbourhood sampling. This is currently the most common one in GNNs, and can be low or higher order depending on the neighborhood size. It also scales well, though implementing efficiently can be challenging. It's currently used by [Pinterest][50]'s recommendation algorithms. Conclusion Here are a few interesting questions: What is the relation between graph types and methods? Consolidated benchmarking like OGB We're throwing random models at random benchmarks without understanding why or when they do better More fundamental research. Heree's one I'm curious about: can other representation types like [Poincarre Embeddings][51] effectively encode directed relationships? On the other hand, we should stop focusing on adding spicy new layers to test on the same tiny datasets. No one cares. [1]: https://arxiv.org/pdf/2003.00982.pdf [2]: https://arxiv.org/pdf/2002.11867.pdf [3]: https://arxiv.org/pdf/1812.08434.pdf [4]: https://arxiv.org/pdf/2005.00687.pdf [5]: https://en.wikipedia.org/wiki/Adjacency_matrix [6]: https://thegradient.pub/transformers-are-graph-neural-networks/ [7]: https://en.wikipedia.org/wiki/Word2vec [8]: https://nlp.stanford.edu/pubs/glove.pdf [9]: https://papers.nips.cc/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf [10]: https://en.wikipedia.org/wiki/Bag-of-words_model [11]: https://en.wikipedia.org/wiki/Co-occurrence [12]: https://www.singlelunch.com/2020/02/16/embeddings-from-the-ground-up/ [13]: https://www.singlelunch.com/2019/01/27/word-embeddings-from-the-ground-up/ [14]: https://nlpprogress.com/ [15]: http://socsci.uci.edu/~rfutrell/papers/hahn2019estimating.pdf [16]: https://en.wikipedia.org/wiki/Kolmogorov_complexity [17]: https://bair.berkeley.edu/blog/2020/12/20/lmmem/ [18]: https://en.wikipedia.org/wiki/Laplacian_matrix [19]: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1F03130B02DC485C78BF364266B6F0CA?doi=10.1.1.19.8100&rep=rep1&type=pdf [20]: https://en.wikipedia.org/wiki/Principalcomponentanalysis [21]: https://www.ijcai.org/Proceedings/2019/0594.pdf [22]: https://dl.acm.org/doi/10.1145/2806416.2806512 [23]: https://openreview.net/pdf?id=SyK00v5xx [24]: https://github.com/VHRanger/nodevectors/blob/master/examples/link%20prediction.ipynb [25]: https://github.com/VHRanger/nodevectors [26]: https://arxiv.org/pdf/1310.2636.pdf [27]: http://byowen.com/ [28]: https://arxiv.org/pdf/1807.03341.pdf [29]: https://www.youtube.com/watch?v=Kee4ch3miVA [30]: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf [31]: https://arxiv.org/pdf/1403.6652.pdf [32]: https://arxiv.org/pdf/1911.11726.pdf [33]: https://en.wikipedia.org/wiki/AlexNet [34]: https://en.wikipedia.org/wiki/Googledatacenters#Original_hardware [35]: https://openai.com/blog/ai-and-efficiency/ [36]: https://www.singlelunch.com/2019/08/01/700x-faster-node2vec-models-fastest-random-walks-on-a-graph/ [37]: https://arxiv.org/pdf/1706.02216.pdf [38]: https://arxiv.org/pdf/2001.08361.pdf [39]: http://incompleteideas.net/IncIdeas/BitterLesson.html [40]: https://arxiv.org/abs/2010.11929 [41]: https://www.youtube.com/watch?v=TrdevFK_am4 [42]: https://arxiv.org/pdf/1710.10903.pdf [43]: https://www.youtube.com/watch?v=fHNmRkzxHWs [44]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html [45]: https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html [46]: https://en.wikipedia.org/wiki/Sparsematrix#Compressedsparserow(CSR,CRSorYaleformat) [47]: https://en.wikipedia.org/wiki/Mmap [48]: https://github.com/dmlc/dgl [49]: https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/ [50]: https://medium.com/pinterest-engineering/pinsage-a-new-graph-convolutional-neural-network-for-web-scale-recommender-systems-88795a107f48 [51]: https://arxiv.org/pdf/1705.08039.pdf

[D] AI regulation: a review of NTIA's "AI Accountability Policy" doc
reddit
LLM Vibe Score0
Human Vibe Score0.667
elehman839This week

[D] AI regulation: a review of NTIA's "AI Accountability Policy" doc

How will governments respond to the rapid rise of AI? How can sensible regulation keep pace with AI technology? These questions interest many of us! One early US government response has come from the National Telecommunications and Information Administration (NTIA). Specifically, the NTIA published an "AI Accountability Policy Request for Comment" on April 11, 2023. I read the NTIA document carefully, and I'm sharing my observations here for others interested in AI regulation. You can, of course, read the original materials and form your own opinions. Moreover, you can share those opinions not only on this post, but also with the NTIA itself until June 12, 2023. As background, the NTIA (homepage, Wikipedia) consists of a few hundred people within the Department of Commerce. The official mission of the NTIA is "advising the President on telecommunications and information policy issues". Topics covered by NTIA include broadband internet access, spectrum management, internet health, and now artificial intelligence. I do not know whether the NTIA will ultimately drive thinking around AI regulation in the United States or they are just a spunky lot who got something on paper early. The NTIA document is not a specific policy proposal, but rather a thoughtful discussion of AI regulation, followed by a long list of questions on which the NTIA seeks input. This format seems appropriate right now, as we're all trying to make sense of a fast-changing world. The NTIA document leans heavily on two others: the Blueprint for an AI Bill of Rights from the White House Office of Science and Technology and the AI Risk Management Framework from the National Institute of Standards and Technology (NIST). Without going into these two in depth, even tiny snippets convey their differing audiences and flavors: White House Blueprint: "You should be protected from safe and ineffective systems." NIST Framework: "Risk refers to the composite measure of an event’s probability of occurring and the magnitude or degree of the consequences of the corresponding event." Now, turning back to the NTIA document itself, I'll comment on three aspects (1) scope, (2) problems addressed, and (3) solutions contemplated. Scope is critical to understanding the NTIA document, and is probably worth keeping in mind in all near-term discussion of AI regulation. Over the past several years, at least two different technologies have been called "AI". The document mentions both, but the emphasis is NOT on the one you're probably thinking about. In more detail: A few years ago, regulators began scrutinizing "automated decisions systems", which passed as "AI" in those ancient times. An example would be an ML model used by a bank to decide whether or not you get a loan. That model might take in all sorts of information about you, combine it in mysterious ML ways, and reject your loan request. Then you might wonder, "Did that system effectively use my address and name to deduce that I am black and then reject my loan request on the basis of race?" There is some evidence of that happening, and this seems like an injustice. So perhaps such systems should be audited and certified so people know this won't happen. This is the focus of the document. These days, AI more commonly refers to open-ended systems that can engage on a wide range of topics and approximate human intelligence. The document briefly mentions generative AI models, large language models, ChatGPT, and "foundational models" (sic), but this is not the focus. The passing mentions may obscure this, unfortunately. In my opinion, these two notions of "AI" are radically different, and many of the differences matter from a regulatory perspective. Yet NTIA lumps both under a sweeping definition of an "AI system" as "an engineered or machine-based system that can, for a given set of objectives, generate outputs such as predictions, recommendations, or decisions influencing real or virtual environments." (Hmm, this includes my Magic 8-Ball…) Keep scope in mind as we turn to the next aspect: the problems under discussion. Now, NTIA's goal is to solicit input, so considering a wide range of potential problems associated with AI makes sense. Consistent with that, the document refers to democratic values, civil rights, civil liberties, and privacy. And citing the NIST doc, NTIA vaguely notes "a wide range of potential AI risks". Also, AI systems should be "valid and reliable, safe, secure and resilient, accountable and transparent, explainable and interpretable, privacy-enhanced, and fair with their harmful bias managed". And they should call their mothers \every\ week. (Okay, I made that one up.) A few comments on this formulation of the problem. First, these concerns feel more applicable to older-style AI. This includes automated decisions systems, like for a bank loan or for a prison parole recommendation. Sure, I believe such systems should operate in ways consistent with our consensus societal values, and further regulation may be needed to achieve that. But, hello! There's also another, newer class of AI that poses additional challenges. And I don't see those discussed in the NTIA document. Such challenges might include: People losing jobs because AI takes their work. Ensuring malicious people don't use AI tools to wreak havoc on the world. Sorting out intellectual property issues around AI to ensure both rapid progress in the field and respect for creators' rights. Ensuring laws appropriately assign culpability to humans when AIs cause harm. Planning for an incident analogous to the first internet worm, where an AI goes rogue, wreaks some havoc, and everyone is shocked (before it happens 28,385 more times). Bottom line: when I cntrl-F the doc for "robotic overlords", I get zero hits. ZERO. This is why I now believe scope is so important when considering efforts to regulate AI: are we talking about old-school AI or 2023-era AI or what? Because they are pretty different. The last aspect I'll address is the solutions contemplated. Again, NTIA's goal is to stimulate discussion, not propose something specific. Nevertheless, there is a strong push in one particular direction: unlike, "robotic overlord", the word "audit" appears more than 100 times along with many instances of "assessment" and "certification". On one hand, this approach makes sense. Suppose you want to ensure that a bank loan system is fair, that a social media platform isn't spreading misinformation, that a search engine is returning accurate results, etc. Then someone, somewhere has to assess or audit that system and look for problems. That audit might be done by the creator of the system or a third-party auditing agency. Such audits could be incentivized by mandates, prizes, or shiny gold stars. The government might help by fostering development of auditing tools and data. The NTIA is open to all such possibilities and seeks input on how to proceed. On the other hand, this seems like a tactic best suited to automated decision systems operated by financial institutions, government agencies, and the like. Such formal processes seem a poor fit for the current AI wave. For example: Auditing will take time and money. That's something a bank might pay for a system that will run for years. For something fine-tuned over the weekend at a startup or by some guy living in his mother's basement, that's probably not going to happen. Auditing a straightforward decision system seems far easier than assessing an open-ended AI. Beyond basic practicality, the AI could be taught to lie when it senses an audit. Also, auditing procedures (like the NTIA doc itself) will presumably be online, which means that AIs will read them and could potentially respond. Most current ML models fix parameters after training, but I think we'll soon see some models whose parameters evolve as they engage with the world. Auditing such a system that varies continuously over time seems especially difficult. Auditing a foundation model probably tells you little about derivative models. A sweet-hearted model can surely be made into monster with moderate additional training; you don't need to teach the model new cognitive skills, just repurpose existing ones to new ends. More generally, auditing doesn't address many of my concerns about AI regulation (see list above). For example, auditing sort of assumes a basically responsible actor (bank, government agency, big tech company), but AI could be misused by malicious people who, naturally, will not seek a responsible outside assessment. In any case, for both old-school and modern AI, auditing is only one line of defense, and that's not enough. You can audit until you're blue in the face, stuff will still get through, and AI systems will still cause some harm. So what's the next line of defense? For example, is our legal system ready to sensibly assign culpability to humans for AI-related incidents? In summary, the critical problem with the NTIA document is that it creates a largely false appearance of US government engagement with the new class of AI technology. As a result, people could wrongly believe that the US government is already responding to the rise of AI, and fail to advocate for actual, effective engagement. That said, the NTIA document does address important issues around a prominent technology sometimes (formerly?) called "AI". Even there, however, the proposed approach (auditing) seems like an overly-fragile, single line of defense.

AITreasureBox
github
LLM Vibe Score0.447
Human Vibe Score0.1014145151561518
superiorluMar 28, 2025

AITreasureBox

AI TreasureBox English | 中文 Collect practical AI repos, tools, websites, papers and tutorials on AI. Translated from ChatGPT, picture from Midjourney. Catalog Repos Tools Websites Report&Paper Tutorials Repos updated repos and stars every 2 hours and re-ranking automatically. | No. | Repos | Description | | ----:|:-----------------------------------------|:------------------------------------------------------------------------------------------------------| | 1|🔥codecrafters-io/build-your-own-x !2025-03-28364681428|Master programming by recreating your favorite technologies from scratch.| | 2|sindresorhus/awesome !2025-03-28353614145|😎 Awesome lists about all kinds of interesting topics| | 3|public-apis/public-apis !2025-03-28334299125|A collective list of free APIs| | 4|kamranahmedse/developer-roadmap !2025-03-2831269540|Interactive roadmaps, guides and other educational content to help developers grow in their careers.| | 5|vinta/awesome-python !2025-03-28238581114|A curated list of awesome Python frameworks, libraries, software and resources| | 6|practical-tutorials/project-based-learning !2025-03-28222661124|Curated list of project-based tutorials| | 7|tensorflow/tensorflow !2025-03-281888714|An Open Source Machine Learning Framework for Everyone| | 8|Significant-Gravitas/AutoGPT !2025-03-2817391338|An experimental open-source attempt to make GPT-4 fully autonomous.| | 9|jackfrued/Python-100-Days !2025-03-2816305141|Python - 100天从新手到大师| | 10|AUTOMATIC1111/stable-diffusion-webui !2025-03-2815011553|Stable Diffusion web UI| | 11|huggingface/transformers !2025-03-2814207850|🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.| | 12|ollama/ollama !2025-03-28135166151|Get up and running with Llama 2, Mistral, Gemma, and other large language models.| | 13|f/awesome-chatgpt-prompts !2025-03-2812212738 |This repo includes ChatGPT prompt curation to use ChatGPT better.| | 14|justjavac/free-programming-books-zhCN !2025-03-2811316119|📚 免费的计算机编程类中文书籍,欢迎投稿| | 15|krahets/hello-algo !2025-03-2811107930|《Hello 算法》:动画图解、一键运行的数据结构与算法教程。支持 Python, Java, C++, C, C#, JS, Go, Swift, Rust, Ruby, Kotlin, TS, Dart 代码。简体版和繁体版同步更新,English version ongoing| | 16|yt-dlp/yt-dlp !2025-03-28105801114|A feature-rich command-line audio/video downloader| | 17|langchain-ai/langchain !2025-03-2810449479|⚡ Building applications with LLMs through composability ⚡| | 18|goldbergyoni/nodebestpractices !2025-03-281021629|✅ The Node.js best practices list (July 2024)| | 19|puppeteer/puppeteer !2025-03-289018212|JavaScript API for Chrome and Firefox| | 20|pytorch/pytorch !2025-03-288833938|Tensors and Dynamic neural networks in Python with strong GPU acceleration| | 21|neovim/neovim !2025-03-288781482|Vim-fork focused on extensibility and usability| | 22|🔥🔥langgenius/dify !2025-03-2887342639 |One API for plugins and datasets, one interface for prompt engineering and visual operation, all for creating powerful AI applications.| | 23|mtdvio/every-programmer-should-know !2025-03-28867069|A collection of (mostly) technical things every software developer should know about| | 24|open-webui/open-webui !2025-03-2886025159|User-friendly WebUI for LLMs (Formerly Ollama WebUI)| | 25|ChatGPTNextWeb/NextChat !2025-03-288231521|✨ Light and Fast AI Assistant. Support: Web | | 26|supabase/supabase !2025-03-287990956|The open source Firebase alternative.| | 27|openai/whisper !2025-03-287905542|Robust Speech Recognition via Large-Scale Weak Supervision| | 28|home-assistant/core !2025-03-287773219|🏡 Open source home automation that puts local control and privacy first.| | 29|tensorflow/models !2025-03-28774694|Models and examples built with TensorFlow| | 30| ggerganov/llama.cpp !2025-03-287731836 | Port of Facebook's LLaMA model in C/C++ | | 31|3b1b/manim !2025-03-287641918|Animation engine for explanatory math videos| | 32|microsoft/generative-ai-for-beginners !2025-03-287623860|12 Lessons, Get Started Building with Generative AI 🔗 https://microsoft.github.io/generative-ai-for-beginners/| | 33|nomic-ai/gpt4all !2025-03-28729285 |gpt4all: an ecosystem of open-source chatbots trained on a massive collection of clean assistant data including code, stories and dialogue| | 34|comfyanonymous/ComfyUI !2025-03-2872635111|The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface.| | 35|bregman-arie/devops-exercises !2025-03-2872225209|Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions| | 36|elastic/elasticsearch !2025-03-28721419|Free and Open, Distributed, RESTful Search Engine| | 37|🔥n8n-io/n8n !2025-03-2872093495|Free and source-available fair-code licensed workflow automation tool. Easily automate tasks across different services.| | 38|fighting41love/funNLP !2025-03-287200422|The Most Powerful NLP-Weapon Arsenal| | 39|hoppscotch/hoppscotch !2025-03-287060134|Open source API development ecosystem - https://hoppscotch.io (open-source alternative to Postman, Insomnia)| | 40|abi/screenshot-to-code !2025-03-286932817|Drop in a screenshot and convert it to clean HTML/Tailwind/JS code| | 41|binary-husky/gptacademic !2025-03-28680374|Academic Optimization of GPT| | 42|d2l-ai/d2l-zh !2025-03-286774142|Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries| | 43|josephmisiti/awesome-machine-learning !2025-03-286739215|A curated list of awesome Machine Learning frameworks, libraries and software.| | 44|grafana/grafana !2025-03-286725414|The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.| | 45|python/cpython !2025-03-286602218|The Python programming language| | 46|apache/superset !2025-03-286519020|Apache Superset is a Data Visualization and Data Exploration Platform| | 47|xtekky/gpt4free !2025-03-28639391 |decentralizing the Ai Industry, free gpt-4/3.5 scripts through several reverse engineered API's ( poe.com, phind.com, chat.openai.com etc...)| | 48|sherlock-project/sherlock !2025-03-286332536|Hunt down social media accounts by username across social networks| | 49|twitter/the-algorithm !2025-03-28630586 |Source code for Twitter's Recommendation Algorithm| | 50|keras-team/keras !2025-03-28627835|Deep Learning for humans| | 51|openai/openai-cookbook !2025-03-28625136 |Examples and guides for using the OpenAI API| | 52|immich-app/immich !2025-03-286238670|High performance self-hosted photo and video management solution.| | 53|AppFlowy-IO/AppFlowy !2025-03-286173528|Bring projects, wikis, and teams together with AI. AppFlowy is an AI collaborative workspace where you achieve more without losing control of your data. The best open source alternative to Notion.| | 54|scikit-learn/scikit-learn !2025-03-286158212|scikit-learn: machine learning in Python| | 55|binhnguyennus/awesome-scalability !2025-03-286117021|The Patterns of Scalable, Reliable, and Performant Large-Scale Systems| | 56|labmlai/annotateddeeplearningpaperimplementations !2025-03-285951726|🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠| | 57|OpenInterpreter/open-interpreter !2025-03-285894710|A natural language interface for computers| | 58|lobehub/lobe-chat !2025-03-285832054|🤖 Lobe Chat - an open-source, extensible (Function Calling), high-performance chatbot framework. It supports one-click free deployment of your private ChatGPT/LLM web application.| | 59|meta-llama/llama !2025-03-28579536|Inference code for Llama models| | 60|nuxt/nuxt !2025-03-28566437|The Intuitive Vue Framework.| | 61|imartinez/privateGPT !2025-03-28555192|Interact with your documents using the power of GPT, 100% privately, no data leaks| | 62|Stirling-Tools/Stirling-PDF !2025-03-285500846|#1 Locally hosted web application that allows you to perform various operations on PDF files| | 63|PlexPt/awesome-chatgpt-prompts-zh !2025-03-285459720|ChatGPT Chinese Training Guide. Guidelines for various scenarios. Learn how to make it listen to you| | 64|dair-ai/Prompt-Engineering-Guide !2025-03-285451025 |🐙 Guides, papers, lecture, notebooks and resources for prompt engineering| | 65|ageitgey/facerecognition !2025-03-28544382|The world's simplest facial recognition api for Python and the command line| | 66|CorentinJ/Real-Time-Voice-Cloning !2025-03-285384814|Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 67|geekan/MetaGPT !2025-03-285375376|The Multi-Agent Meta Programming Framework: Given one line Requirement, return PRD, Design, Tasks, Repo | | 68|gpt-engineer-org/gpt-engineer !2025-03-285367419|Specify what you want it to build, the AI asks for clarification, and then builds it.| | 69|lencx/ChatGPT !2025-03-2853653-3|🔮 ChatGPT Desktop Application (Mac, Windows and Linux)| | 70|deepfakes/faceswap !2025-03-28535672|Deepfakes Software For All| | 71|langflow-ai/langflow !2025-03-285319584|Langflow is a low-code app builder for RAG and multi-agent AI applications. It’s Python-based and agnostic to any model, API, or database.| | 72|commaai/openpilot !2025-03-28529759|openpilot is an operating system for robotics. Currently, it upgrades the driver assistance system on 275+ supported cars.| | 73|clash-verge-rev/clash-verge-rev !2025-03-2852848124|Continuation of Clash Verge - A Clash Meta GUI based on Tauri (Windows, MacOS, Linux)| | 74|All-Hands-AI/OpenHands !2025-03-285150675|🙌 OpenHands: Code Less, Make More| | 75|xai-org/grok-1 !2025-03-28502504|Grok open release| | 76|meilisearch/meilisearch !2025-03-284999122|A lightning-fast search API that fits effortlessly into your apps, websites, and workflow| | 77|🔥browser-use/browser-use !2025-03-2849910294|Make websites accessible for AI agents| | 78|jgthms/bulma !2025-03-28496783|Modern CSS framework based on Flexbox| | 79|facebookresearch/segment-anything !2025-03-284947116|The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.| |!green-up-arrow.svg 80|hacksider/Deep-Live-Cam !2025-03-2848612146|real time face swap and one-click video deepfake with only a single image (uncensored)| |!red-down-arrow 81|mlabonne/llm-course !2025-03-284860934|Course with a roadmap and notebooks to get into Large Language Models (LLMs).| | 82|PaddlePaddle/PaddleOCR !2025-03-284785530|Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)| | 83|alist-org/alist !2025-03-284732618|🗂️A file list/WebDAV program that supports multiple storages, powered by Gin and Solidjs. / 一个支持多存储的文件列表/WebDAV程序,使用 Gin 和 Solidjs。| | 84|infiniflow/ragflow !2025-03-2847027129|RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.| | 85|Avik-Jain/100-Days-Of-ML-Code !2025-03-284679312|100 Days of ML Coding| | 86|v2ray/v2ray-core !2025-03-28458706|A platform for building proxies to bypass network restrictions.| | 87|hiyouga/LLaMA-Factory !2025-03-284555881|Easy-to-use LLM fine-tuning framework (LLaMA, BLOOM, Mistral, Baichuan, Qwen, ChatGLM)| | 88|Asabeneh/30-Days-Of-Python !2025-03-284544930|30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw| | 89|type-challenges/type-challenges !2025-03-284488511|Collection of TypeScript type challenges with online judge| | 90|lllyasviel/Fooocus !2025-03-284402716|Focus on prompting and generating| | 91|RVC-Boss/GPT-SoVITS !2025-03-284327738|1 min voice data can also be used to train a good TTS model! (few shot voice cloning)| | 92|rasbt/LLMs-from-scratch !2025-03-284320667|Implementing a ChatGPT-like LLM from scratch, step by step| | 93|oobabooga/text-generation-webui !2025-03-284302012 |A gradio web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, OPT, and GALACTICA.| | 94|vllm-project/vllm !2025-03-2842982102|A high-throughput and memory-efficient inference and serving engine for LLMs| | 95|dani-garcia/vaultwarden !2025-03-284297121|Unofficial Bitwarden compatible server written in Rust, formerly known as bitwarden_rs| | 96|microsoft/autogen !2025-03-284233049|Enable Next-Gen Large Language Model Applications. Join our Discord: https://discord.gg/pAbnFJrkgZ| | 97|jeecgboot/JeecgBoot !2025-03-284205920|🔥「企业级低代码平台」前后端分离架构SpringBoot 2.x/3.x,SpringCloud,Ant Design&Vue3,Mybatis,Shiro,JWT。强大的代码生成器让前后端代码一键生成,无需写任何代码! 引领新的开发模式OnlineCoding->代码生成->手工MERGE,帮助Java项目解决70%重复工作,让开发更关注业务,既能快速提高效率,帮助公司节省成本,同时又不失灵活性。| | 98|Mintplex-Labs/anything-llm !2025-03-284186955|A full-stack application that turns any documents into an intelligent chatbot with a sleek UI and easier way to manage your workspaces.| | 99|THUDM/ChatGLM-6B !2025-03-28410192 |ChatGLM-6B: An Open Bilingual Dialogue Language Model| | 100|hpcaitech/ColossalAI !2025-03-28406902|Making large AI models cheaper, faster and more accessible| | 101|Stability-AI/stablediffusion !2025-03-28406337|High-Resolution Image Synthesis with Latent Diffusion Models| | 102|mingrammer/diagrams !2025-03-28405063|🎨 Diagram as Code for prototyping cloud system architectures| | 103|Kong/kong !2025-03-28404616|🦍 The Cloud-Native API Gateway and AI Gateway.| | 104|getsentry/sentry !2025-03-284040913|Developer-first error tracking and performance monitoring| | 105| karpathy/nanoGPT !2025-03-284034613 |The simplest, fastest repository for training/finetuning medium-sized GPTs| | 106|fastlane/fastlane !2025-03-2840014-1|🚀 The easiest way to automate building and releasing your iOS and Android apps| | 107|psf/black !2025-03-28399765|The uncompromising Python code formatter| | 108|OpenBB-finance/OpenBBTerminal !2025-03-283972074 |Investment Research for Everyone, Anywhere.| | 109|2dust/v2rayNG !2025-03-283943415|A V2Ray client for Android, support Xray core and v2fly core| | 110|apache/airflow !2025-03-283937314|Apache Airflow - A platform to programmatically author, schedule, and monitor workflows| | 111|KRTirtho/spotube !2025-03-283902746|🎧 Open source Spotify client that doesn't require Premium nor uses Electron! Available for both desktop & mobile!| | 112|coqui-ai/TTS !2025-03-283889719 |🐸💬 - a deep learning toolkit for Text-to-Speech, battle-tested in research and production| | 113|ggerganov/whisper.cpp !2025-03-283882116|Port of OpenAI's Whisper model in C/C++| | 114|ultralytics/ultralytics !2025-03-283866951|NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite| | 115|typst/typst !2025-03-283863914|A new markup-based typesetting system that is powerful and easy to learn.| | 116|streamlit/streamlit !2025-03-283845828|Streamlit — A faster way to build and share data apps.| | 117|LC044/WeChatMsg !2025-03-283836931|提取微信聊天记录,将其导出成HTML、Word、Excel文档永久保存,对聊天记录进行分析生成年度聊天报告,用聊天数据训练专属于个人的AI聊天助手| | 118|lm-sys/FastChat !2025-03-283822112 |An open platform for training, serving, and evaluating large languages. Release repo for Vicuna and FastChat-T5.| | 119|NaiboWang/EasySpider !2025-03-283819013|A visual no-code/code-free web crawler/spider易采集:一个可视化浏览器自动化测试/数据采集/爬虫软件,可以无代码图形化的设计和执行爬虫任务。别名:ServiceWrapper面向Web应用的智能化服务封装系统。| | 120|microsoft/DeepSpeed !2025-03-283765816 |A deep learning optimization library that makes distributed training and inference easy, efficient, and effective| | 121|QuivrHQ/quivr !2025-03-28376067|Your GenAI Second Brain 🧠 A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.| | 122|freqtrade/freqtrade !2025-03-283757817 |Free, open source crypto trading bot| | 123|suno-ai/bark !2025-03-28373178 |🔊 Text-Prompted Generative Audio Model| | 124|🔥cline/cline !2025-03-2837307282|Autonomous coding agent right in your IDE, capable of creating/editing files, executing commands, and more with your permission every step of the way.| | 125|LAION-AI/Open-Assistant !2025-03-28372712 |OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so.| | 126|penpot/penpot !2025-03-283716217|Penpot: The open-source design tool for design and code collaboration| | 127|gradio-app/gradio !2025-03-283713320|Build and share delightful machine learning apps, all in Python. 🌟 Star to support our work!| | 128|FlowiseAI/Flowise !2025-03-283667135 |Drag & drop UI to build your customized LLM flow using LangchainJS| | 129|SimplifyJobs/Summer2025-Internships !2025-03-28366506|Collection of Summer 2025 tech internships!| | 130|TencentARC/GFPGAN !2025-03-28365027 |GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration.| | 131|ray-project/ray !2025-03-283626819|Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.| | 132|babysor/MockingBird !2025-03-28360498|🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time| | 133|unslothai/unsloth !2025-03-283603691|5X faster 50% less memory LLM finetuning| | 134|zhayujie/chatgpt-on-wechat !2025-03-283600124 |Wechat robot based on ChatGPT, which uses OpenAI api and itchat library| | 135|upscayl/upscayl !2025-03-283599824|🆙 Upscayl - Free and Open Source AI Image Upscaler for Linux, MacOS and Windows built with Linux-First philosophy.| | 136|freeCodeCamp/devdocs !2025-03-28359738|API Documentation Browser| | 137|XingangPan/DragGAN !2025-03-28359043 |Code for DragGAN (SIGGRAPH 2023)| | 138|2noise/ChatTTS !2025-03-283543922|ChatTTS is a generative speech model for daily dialogue.| | 139|google-research/google-research !2025-03-28352207 |Google Research| | 140|karanpratapsingh/system-design !2025-03-28351003|Learn how to design systems at scale and prepare for system design interviews| | 141|lapce/lapce !2025-03-28350855|Lightning-fast and Powerful Code Editor written in Rust| | 142| microsoft/TaskMatrix !2025-03-2834500-3 | Talking, Drawing and Editing with Visual Foundation Models| | 143|chatchat-space/Langchain-Chatchat !2025-03-283442020|Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain| | 144|unclecode/crawl4ai !2025-03-283434163|🔥🕷️ Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper| | 145|Bin-Huang/chatbox !2025-03-283374733 |A desktop app for GPT-4 / GPT-3.5 (OpenAI API) that supports Windows, Mac & Linux| | 146|milvus-io/milvus !2025-03-283366525 |A cloud-native vector database, storage for next generation AI applications| | 147|mendableai/firecrawl !2025-03-2833297128|🔥 Turn entire websites into LLM-ready markdown| | 148|pola-rs/polars !2025-03-283269320|Fast multi-threaded, hybrid-out-of-core query engine focussing on DataFrame front-ends| | 149|Pythagora-io/gpt-pilot !2025-03-28325321|PoC for a scalable dev tool that writes entire apps from scratch while the developer oversees the implementation| | 150|hashicorp/vault !2025-03-28320797|A tool for secrets management, encryption as a service, and privileged access management| | 151|shardeum/shardeum !2025-03-28319580|Shardeum is an EVM based autoscaling blockchain| | 152|Chanzhaoyu/chatgpt-web !2025-03-28319242 |A demonstration website built with Express and Vue3 called ChatGPT| | 153|lllyasviel/ControlNet !2025-03-283186413 |Let us control diffusion models!| | 154|google/jax !2025-03-28317727|Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more| | 155|facebookresearch/detectron2 !2025-03-28315987|Detectron2 is a platform for object detection, segmentation and other visual recognition tasks.| | 156|myshell-ai/OpenVoice !2025-03-28315233|Instant voice cloning by MyShell| | 157|TheAlgorithms/C-Plus-Plus !2025-03-283151411|Collection of various algorithms in mathematics, machine learning, computer science and physics implemented in C++ for educational purposes.| | 158|hiroi-sora/Umi-OCR !2025-03-283138129|OCR图片转文字识别软件,完全离线。截屏/批量导入图片,支持多国语言、合并段落、竖排文字。可排除水印区域,提取干净的文本。基于 PaddleOCR 。| | 159|mudler/LocalAI !2025-03-283127815|🤖 The free, Open Source OpenAI alternative. Self-hosted, community-driven and local-first. Drop-in replacement for OpenAI running on consumer-grade hardware. No GPU required. Runs gguf, transformers, diffusers and many more models architectures. It allows to generate Text, Audio, Video, Images. Also with voice cloning capabilities.| | 160|facebookresearch/fairseq !2025-03-28312124 |Facebook AI Research Sequence-to-Sequence Toolkit written in Python.| | 161|alibaba/nacos !2025-03-28310559|an easy-to-use dynamic service discovery, configuration and service management platform for building cloud native applications.| | 162|yunjey/pytorch-tutorial !2025-03-28310326|PyTorch Tutorial for Deep Learning Researchers| | 163|v2fly/v2ray-core !2025-03-28307448|A platform for building proxies to bypass network restrictions.| | 164|mckaywrigley/chatbot-ui !2025-03-283067714|The open-source AI chat interface for everyone.| | 165|TabbyML/tabby !2025-03-28305949 |Self-hosted AI coding assistant| | 166|deepseek-ai/awesome-deepseek-integration !2025-03-283053193|| | 167|danielmiessler/fabric !2025-03-283028914|fabric is an open-source framework for augmenting humans using AI.| | 168|xinntao/Real-ESRGAN !2025-03-283026623 |Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.| | 169|paul-gauthier/aider !2025-03-283014642|aider is GPT powered coding in your terminal| | 170|tatsu-lab/stanfordalpaca !2025-03-28299022 |Code and documentation to train Stanford's Alpaca models, and generate the data.| | 171|DataTalksClub/data-engineering-zoomcamp !2025-03-282971817|Free Data Engineering course!| | 172|HeyPuter/puter !2025-03-282967014|🌐 The Internet OS! Free, Open-Source, and Self-Hostable.| | 173|mli/paper-reading !2025-03-282962314|Classic Deep Learning and In-Depth Reading of New Papers Paragraph by Paragraph| | 174|linexjlin/GPTs !2025-03-28295568|leaked prompts of GPTs| | 175|s0md3v/roop !2025-03-28295286 |one-click deepfake (face swap)| | 176|JushBJJ/Mr.-Ranedeer-AI-Tutor !2025-03-2829465-1 |A GPT-4 AI Tutor Prompt for customizable personalized learning experiences.| | 177|opendatalab/MinerU !2025-03-282927074|A one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.一站式开源高质量数据提取工具,支持PDF/网页/多格式电子书提取。| | 178|mouredev/Hello-Python !2025-03-282920720|Curso para aprender el lenguaje de programación Python desde cero y para principiantes. 75 clases, 37 horas en vídeo, código, proyectos y grupo de chat. Fundamentos, frontend, backend, testing, IA...| | 179|Lightning-AI/pytorch-lightning !2025-03-28292039|Pretrain, finetune and deploy AI models on multiple GPUs, TPUs with zero code changes.| | 180|crewAIInc/crewAI !2025-03-282919344|Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.| | 181|facebook/folly !2025-03-282916612|An open-source C++ library developed and used at Facebook.| | 182|google-ai-edge/mediapipe !2025-03-28291519|Cross-platform, customizable ML solutions for live and streaming media.| | 183| getcursor/cursor !2025-03-282892025 | An editor made for programming with AI| | 184|chatanywhere/GPTAPIfree !2025-03-282856424|Free ChatGPT API Key, Free ChatGPT API, supports GPT-4 API (free), ChatGPT offers a free domestic forwarding API that allows direct connections without the need for a proxy. It can be used in conjunction with software/plugins like ChatBox, significantly reducing interface usage costs. Enjoy unlimited and unrestricted chatting within China| | 185|meta-llama/llama3 !2025-03-28285552|The official Meta Llama 3 GitHub site| | 186|tinygrad/tinygrad !2025-03-282845811|You like pytorch? You like micrograd? You love tinygrad! ❤️| | 187|google-research/tuningplaybook !2025-03-282841514|A playbook for systematically maximizing the performance of deep learning models.| | 188|huggingface/diffusers !2025-03-282830222|🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch and FLAX.| | 189|tokio-rs/tokio !2025-03-28282408|A runtime for writing reliable asynchronous applications with Rust. Provides I/O, networking, scheduling, timers, ...| | 190|RVC-Project/Retrieval-based-Voice-Conversion-WebUI !2025-03-282823817|Voice data !2025-03-282822612|Jan is an open source alternative to ChatGPT that runs 100% offline on your computer| | 192|openai/CLIP !2025-03-282814720|CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image| | 193|🔥khoj-ai/khoj !2025-03-2828112313|Your AI second brain. A copilot to get answers to your questions, whether they be from your own notes or from the internet. Use powerful, online (e.g gpt4) or private, local (e.g mistral) LLMs. Self-host locally or use our web app. Access from Obsidian, Emacs, Desktop app, Web or Whatsapp.| | 194| acheong08/ChatGPT !2025-03-2828054-2 | Reverse engineered ChatGPT API | | 195|iperov/DeepFaceLive !2025-03-28279345 |Real-time face swap for PC streaming or video calls| | 196|eugeneyan/applied-ml !2025-03-28278471|📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.| | 197|XTLS/Xray-core !2025-03-282778213|Xray, Penetrates Everything. Also the best v2ray-core, with XTLS support. Fully compatible configuration.| | 198|feder-cr/JobsApplierAIAgent !2025-03-282776410|AutoJobsApplierAI_Agent aims to easy job hunt process by automating the job application process. Utilizing artificial intelligence, it enables users to apply for multiple jobs in an automated and personalized way.| | 199|mindsdb/mindsdb !2025-03-282750631|The platform for customizing AI from enterprise data| | 200|DataExpert-io/data-engineer-handbook !2025-03-282721611|This is a repo with links to everything you'd ever want to learn about data engineering| | 201|exo-explore/exo !2025-03-282721633|Run your own AI cluster at home with everyday devices 📱💻 🖥️⌚| | 202|taichi-dev/taichi !2025-03-2826926-1|Productive, portable, and performant GPU programming in Python.| | 203|mem0ai/mem0 !2025-03-282689134|The memory layer for Personalized AI| | 204|svc-develop-team/so-vits-svc !2025-03-28268096 |SoftVC VITS Singing Voice Conversion| | 205|OpenBMB/ChatDev !2025-03-28265624|Create Customized Software using Natural Language Idea (through Multi-Agent Collaboration)| | 206|roboflow/supervision !2025-03-282632010|We write your reusable computer vision tools. 💜| | 207|drawdb-io/drawdb !2025-03-282626913|Free, simple, and intuitive online database design tool and SQL generator.| | 208|karpathy/llm.c !2025-03-28261633|LLM training in simple, raw C/CUDA| | 209|airbnb/lottie-ios !2025-03-28261431|An iOS library to natively render After Effects vector animations| | 210|openai/openai-python !2025-03-282607713|The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language.| | 211|academic/awesome-datascience !2025-03-28259876|📝 An awesome Data Science repository to learn and apply for real world problems.| | 212|harry0703/MoneyPrinterTurbo !2025-03-282576618|Generate short videos with one click using a large model| | 213|gabime/spdlog !2025-03-282571511|Fast C++ logging library.| | 214|ocrmypdf/OCRmyPDF !2025-03-2825674217|OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched| | 215|Vision-CAIR/MiniGPT-4 !2025-03-28256170 |Enhancing Vision-language Understanding with Advanced Large Language Models| | 216|Stability-AI/generative-models !2025-03-28255936|Generative Models by Stability AI| | 217|DS4SD/docling !2025-03-282555662|Get your docs ready for gen AI| | 218|PostHog/posthog !2025-03-282533227|🦔 PostHog provides open-source product analytics, session recording, feature flagging and A/B testing that you can self-host.| | 219|nrwl/nx !2025-03-282509612|Smart Monorepos · Fast CI| | 220|continuedev/continue !2025-03-282500737|⏩ the open-source copilot chat for software development—bring the power of ChatGPT to VS Code| | 221|opentofu/opentofu !2025-03-28247968|OpenTofu lets you declaratively manage your cloud infrastructure.| | 222|invoke-ai/InvokeAI !2025-03-28247293|InvokeAI is a leading creative engine for Stable Diffusion models, empowering professionals, artists, and enthusiasts to generate and create visual media using the latest AI-driven technologies. The solution offers an industry leading WebUI, supports terminal use through a CLI, and serves as the foundation for multiple commercial products.| | 223|deepinsight/insightface !2025-03-282471615 |State-of-the-art 2D and 3D Face Analysis Project| | 224|apache/flink !2025-03-28246865|Apache Flink| | 225|ComposioHQ/composio !2025-03-28246436|Composio equips agents with well-crafted tools empowering them to tackle complex tasks| | 226|Genesis-Embodied-AI/Genesis !2025-03-282458314|A generative world for general-purpose robotics & embodied AI learning.| | 227|stretchr/testify !2025-03-28243184|A toolkit with common assertions and mocks that plays nicely with the standard library| | 228| yetone/openai-translator !2025-03-28242921 | Browser extension and cross-platform desktop application for translation based on ChatGPT API | | 229|frappe/erpnext !2025-03-282425211|Free and Open Source Enterprise Resource Planning (ERP)| | 230|songquanpeng/one-api !2025-03-282410034|OpenAI 接口管理 & 分发系统,支持 Azure、Anthropic Claude、Google PaLM 2 & Gemini、智谱 ChatGLM、百度文心一言、讯飞星火认知、阿里通义千问、360 智脑以及腾讯混元,可用于二次分发管理 key,仅单可执行文件,已打包好 Docker 镜像,一键部署,开箱即用. OpenAI key management & redistribution system, using a single API for all LLMs, and features an English UI.| | 231| microsoft/JARVIS !2025-03-28240604 | a system to connect LLMs with ML community | | 232|google/flatbuffers !2025-03-28239965|FlatBuffers: Memory Efficient Serialization Library| | 233|microsoft/graphrag !2025-03-282398928|A modular graph-based Retrieval-Augmented Generation (RAG) system| | 234|rancher/rancher !2025-03-28239675|Complete container management platform| | 235|bazelbuild/bazel !2025-03-282384618|a fast, scalable, multi-language and extensible build system| | 236|modularml/mojo !2025-03-28238236 |The Mojo Programming Language| | 237|danny-avila/LibreChat !2025-03-282378753|Enhanced ChatGPT Clone: Features OpenAI, GPT-4 Vision, Bing, Anthropic, OpenRouter, Google Gemini, AI model switching, message search, langchain, DALL-E-3, ChatGPT Plugins, OpenAI Functions, Secure Multi-User System, Presets, completely open-source for self-hosting. More features in development| |!green-up-arrow.svg 238|🔥🔥🔥Shubhamsaboo/awesome-llm-apps !2025-03-28237391211|Collection of awesome LLM apps with RAG using OpenAI, Anthropic, Gemini and opensource models.| |!red-down-arrow 239|microsoft/semantic-kernel !2025-03-282373611|Integrate cutting-edge LLM technology quickly and easily into your apps| |!red-down-arrow 240|TheAlgorithms/Rust !2025-03-28236995|All Algorithms implemented in Rust| | 241|stanford-oval/storm !2025-03-28236326|An LLM-powered knowledge curation system that researches a topic and generates a full-length report with citations.| | 242|openai/gpt-2 !2025-03-28232483|Code for the paper "Language Models are Unsupervised Multitask Learners"| | 243|labring/FastGPT !2025-03-282319445|A platform that uses the OpenAI API to quickly build an AI knowledge base, supporting many-to-many relationships.| | 244|pathwaycom/llm-app !2025-03-2822928-10|Ready-to-run cloud templates for RAG, AI pipelines, and enterprise search with live data. 🐳Docker-friendly.⚡Always in sync with Sharepoint, Google Drive, S3, Kafka, PostgreSQL, real-time data APIs, and more.| | 245|warpdotdev/Warp !2025-03-282286825|Warp is a modern, Rust-based terminal with AI built in so you and your team can build great software, faster.| | 246|🔥agno-agi/agno !2025-03-2822833298|Agno is a lightweight library for building Multimodal Agents. It exposes LLMs as a unified API and gives them superpowers like memory, knowledge, tools and reasoning.| | 247|qdrant/qdrant !2025-03-282275214 |Qdrant - Vector Database for the next generation of AI applications. Also available in the cloud https://cloud.qdrant.io/| | 248|ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code !2025-03-282271815|500 AI Machine learning Deep learning Computer vision NLP Projects with code| | 249|stanfordnlp/dspy !2025-03-282268321|Stanford DSPy: The framework for programming—not prompting—foundation models| | 250|PaddlePaddle/Paddle !2025-03-28226246|PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)| | 251|zulip/zulip !2025-03-28225464|Zulip server and web application. Open-source team chat that helps teams stay productive and focused.| | 252|Hannibal046/Awesome-LLM !2025-03-282240721|Awesome-LLM: a curated list of Large Language Model| | 253|facefusion/facefusion !2025-03-282218812|Next generation face swapper and enhancer| | 254|Mozilla-Ocho/llamafile !2025-03-28220624|Distribute and run LLMs with a single file.| | 255|yuliskov/SmartTube !2025-03-282201614|SmartTube - an advanced player for set-top boxes and tvs running Android OS| | 256|haotian-liu/LLaVA !2025-03-282201316 |Large Language-and-Vision Assistant built towards multimodal GPT-4 level capabilities.| | 257|ashishps1/awesome-system-design-resources !2025-03-282189367|This repository contains System Design resources which are useful while preparing for interviews and learning Distributed Systems| | 258|Cinnamon/kotaemon !2025-03-28218248|An open-source RAG-based tool for chatting with your documents.| | 259|CodePhiliaX/Chat2DB !2025-03-282179757|🔥🔥🔥AI-driven database tool and SQL client, The hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL Server, DB2, SQLite, H2, ClickHouse, and more.| | 260|blakeblackshear/frigate !2025-03-282177113|NVR with realtime local object detection for IP cameras| | 261|facebookresearch/audiocraft !2025-03-28217111|Audiocraft is a library for audio processing and generation with deep learning. It features the state-of-the-art EnCodec audio compressor / tokenizer, along with MusicGen, a simple and controllable music generation LM with textual and melodic conditioning.| | 262|karpathy/minGPT !2025-03-28216567|A minimal PyTorch re-implementation of the OpenAI GPT (Generative Pretrained Transformer) training| | 263|grpc/grpc-go !2025-03-282159510|The Go language implementation of gRPC. HTTP/2 based RPC| | 264|HumanSignal/label-studio !2025-03-282137618|Label Studio is a multi-type data labeling and annotation tool with standardized output format| | 265|yoheinakajima/babyagi !2025-03-28212764 |uses OpenAI and Pinecone APIs to create, prioritize, and execute tasks, This is a pared-down version of the original Task-Driven Autonomous Agent| | 266|deepseek-ai/DeepSeek-Coder !2025-03-282118210|DeepSeek Coder: Let the Code Write Itself| | 267|BuilderIO/gpt-crawler !2025-03-282118010|Crawl a site to generate knowledge files to create your own custom GPT from a URL| | 268| openai/chatgpt-retrieval-plugin !2025-03-2821152-1 | Plugins are chat extensions designed specifically for language models like ChatGPT, enabling them to access up-to-date information, run computations, or interact with third-party services in response to a user's request.| | 269|microsoft/OmniParser !2025-03-282113123|A simple screen parsing tool towards pure vision based GUI agent| | 270|black-forest-labs/flux !2025-03-282107219|Official inference repo for FLUX.1 models| | 271|ItzCrazyKns/Perplexica !2025-03-282099154|Perplexica is an AI-powered search engine. It is an Open source alternative to Perplexity AI| | 272|microsoft/unilm !2025-03-28209876|Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities| | 273|Sanster/lama-cleaner !2025-03-282077614|Image inpainting tool powered by SOTA AI Model. Remove any unwanted object, defect, people from your pictures or erase and replace(powered by stable diffusion) any thing on your pictures.| | 274|assafelovic/gpt-researcher !2025-03-282057222|GPT based autonomous agent that does online comprehensive research on any given topic| | 275|PromtEngineer/localGPT !2025-03-28204230 |Chat with your documents on your local device using GPT models. No data leaves your device and 100% private.| | 276|elastic/kibana !2025-03-28203482|Your window into the Elastic Stack| | 277|fishaudio/fish-speech !2025-03-282033222|Brand new TTS solution| | 278|mlc-ai/mlc-llm !2025-03-282028110 |Enable everyone to develop, optimize and deploy AI models natively on everyone's devices.| | 279|deepset-ai/haystack !2025-03-282005320|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| | 280|tree-sitter/tree-sitter !2025-03-28200487|An incremental parsing system for programming tools| | 281|Anjok07/ultimatevocalremovergui !2025-03-281999811|GUI for a Vocal Remover that uses Deep Neural Networks.| | 282|guidance-ai/guidance !2025-03-28199622|A guidance language for controlling large language models.| | 283|ml-explore/mlx !2025-03-28199619|MLX: An array framework for Apple silicon| | 284|mlflow/mlflow !2025-03-281995314|Open source platform for the machine learning lifecycle| | 285|ml-tooling/best-of-ml-python !2025-03-28198631|🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.| | 286|BerriAI/litellm !2025-03-281981862|Call all LLM APIs using the OpenAI format. Use Bedrock, Azure, OpenAI, Cohere, Anthropic, Ollama, Sagemaker, HuggingFace, Replicate (100+ LLMs)| | 287|LazyVim/LazyVim !2025-03-281981320|Neovim config for the lazy| | 288|wez/wezterm !2025-03-281976018|A GPU-accelerated cross-platform terminal emulator and multiplexer written by @wez and implemented in Rust| | 289|valkey-io/valkey !2025-03-281970416|A flexible distributed key-value datastore that supports both caching and beyond caching workloads.| | 290|LiLittleCat/awesome-free-chatgpt !2025-03-28196185|🆓免费的 ChatGPT 镜像网站列表,持续更新。List of free ChatGPT mirror sites, continuously updated.| | 291|Byaidu/PDFMathTranslate !2025-03-281947645|PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker| | 292|openai/swarm !2025-03-281947111|Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.| | 293|HqWu-HITCS/Awesome-Chinese-LLM !2025-03-281921423|Organizing smaller, cost-effective, privately deployable open-source Chinese language models, including related datasets and tutorials| | 294|stitionai/devika !2025-03-28190903|Devika is an Agentic AI Software Engineer that can understand high-level human instructions, break them down into steps, research relevant information, and write code to achieve the given objective. Devika aims to be a competitive open-source alternative to Devin by Cognition AI.| | 295|OpenBMB/MiniCPM-o !2025-03-28190887|MiniCPM-o 2.6: A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone| | 296|samber/lo !2025-03-281904815|💥 A Lodash-style Go library based on Go 1.18+ Generics (map, filter, contains, find...)| | 297|chroma-core/chroma !2025-03-281895221 |the AI-native open-source embedding database| | 298|DarkFlippers/unleashed-firmware !2025-03-28189278|Flipper Zero Unleashed Firmware| | 299|brave/brave-browser !2025-03-281892710|Brave browser for Android, iOS, Linux, macOS, Windows.| | 300| tloen/alpaca-lora !2025-03-28188641 | Instruct-tune LLaMA on consumer hardware| | 301|VinciGit00/Scrapegraph-ai !2025-03-281884618|Python scraper based on AI| | 302|gitroomhq/postiz-app !2025-03-281879110|📨 Schedule social posts, measure them, exchange with other members and get a lot of help from AI 🚀| | 303|PrefectHQ/prefect !2025-03-281878715|Prefect is a workflow orchestration tool empowering developers to build, observe, and react to data pipelines| | 304|ymcui/Chinese-LLaMA-Alpaca !2025-03-28187723 |Chinese LLaMA & Alpaca LLMs| | 305|kenjihiranabe/The-Art-of-Linear-Algebra !2025-03-28187335|Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"| | 306|joonspk-research/generativeagents !2025-03-28187288|Generative Agents: Interactive Simulacra of Human Behavior| | 307|renovatebot/renovate !2025-03-28186820|Universal dependency update tool that fits into your workflows.| | 308|gventuri/pandas-ai !2025-03-28186109 |Pandas AI is a Python library that integrates generative artificial intelligence capabilities into Pandas, making dataframes conversational| | 309|thingsboard/thingsboard !2025-03-28185184|Open-source IoT Platform - Device management, data collection, processing and visualization.| | 310|ente-io/ente !2025-03-28184722|Fully open source, End to End Encrypted alternative to Google Photos and Apple Photos| | 311|serengil/deepface !2025-03-281840113|A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python| | 312|Raphire/Win11Debloat !2025-03-281840132|A simple, easy to use PowerShell script to remove pre-installed apps from windows, disable telemetry, remove Bing from windows search as well as perform various other changes to declutter and improve your windows experience. This script works for both windows 10 and windows 11.| | 313|Avaiga/taipy !2025-03-28179235|Turns Data and AI algorithms into production-ready web applications in no time.| | 314|microsoft/qlib !2025-03-281784231|Qlib is an AI-oriented quantitative investment platform that aims to realize the potential, empower research, and create value using AI technologies in quantitative investment, from exploring ideas to implementing productions. Qlib supports diverse machine learning modeling paradigms. including supervised learning, market dynamics modeling, and RL.| | 315|CopilotKit/CopilotKit !2025-03-281778571|Build in-app AI chatbots 🤖, and AI-powered Textareas ✨, into react web apps.| | 316|QwenLM/Qwen-7B !2025-03-281766017|The official repo of Qwen-7B (通义千问-7B) chat & pretrained large language model proposed by Alibaba Cloud.| | 317|w-okada/voice-changer !2025-03-28176078 |リアルタイムボイスチェンジャー Realtime Voice Changer| | 318|rlabbe/Kalman-and-Bayesian-Filters-in-Python !2025-03-281756011|Kalman Filter book using Jupyter Notebook. Focuses on building intuition and experience, not formal proofs. Includes Kalman filters,extended Kalman filters, unscented Kalman filters, particle filters, and more. All exercises include solutions.| | 319|Mikubill/sd-webui-controlnet !2025-03-28174794 |WebUI extension for ControlNet| | 320|jingyaogong/minimind !2025-03-2817380116|「大模型」3小时完全从0训练26M的小参数GPT,个人显卡即可推理训练!| | 321|apify/crawlee !2025-03-28172696|Crawlee—A web scraping and browser automation library for Node.js to build reliable crawlers. In JavaScript and TypeScript. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with Puppeteer, Playwright, Cheerio, JSDOM, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 322|apple/ml-stable-diffusion !2025-03-28172395|Stable Diffusion with Core ML on Apple Silicon| | 323| transitive-bullshit/chatgpt-api !2025-03-28172095 | Node.js client for the official ChatGPT API. | | 324|teableio/teable !2025-03-281719222|✨ The Next Gen Airtable Alternative: No-Code Postgres| | 325| xx025/carrot !2025-03-28170900 | Free ChatGPT Site List | | 326|microsoft/LightGBM !2025-03-28170723|A fast, distributed, high-performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.| | 327|VikParuchuri/surya !2025-03-28169827|Accurate line-level text detection and recognition (OCR) in any language| | 328|deepseek-ai/Janus !2025-03-281692825|Janus-Series: Unified Multimodal Understanding and Generation Models| | 329|ardalis/CleanArchitecture !2025-03-28168823|Clean Architecture Solution Template: A starting point for Clean Architecture with ASP.NET Core| | 330|neondatabase/neon !2025-03-28166466|Neon: Serverless Postgres. We separated storage and compute to offer autoscaling, code-like database branching, and scale to zero.| | 331|kestra-io/kestra !2025-03-281661313|⚡ Workflow Automation Platform. Orchestrate & Schedule code in any language, run anywhere, 500+ plugins. Alternative to Zapier, Rundeck, Camunda, Airflow...| | 332|Dao-AILab/flash-attention !2025-03-281659720|Fast and memory-efficient exact attention| | 333|RPCS3/rpcs3 !2025-03-281655712|PS3 emulator/debugger| | 334|meta-llama/llama-recipes !2025-03-28165486|Scripts for fine-tuning Llama2 with composable FSDP & PEFT methods to cover single/multi-node GPUs. Supports default & custom datasets for applications such as summarization & question answering. Supporting a number of candid inference solutions such as HF TGI, VLLM for local or cloud deployment.Demo apps to showcase Llama2 for WhatsApp & Messenger| | 335|emilwallner/Screenshot-to-code !2025-03-28165180|A neural network that transforms a design mock-up into a static website.| | 336|datawhalechina/llm-cookbook !2025-03-281650922|面向开发者的 LLM 入门教程,吴恩达大模型系列课程中文版| | 337|e2b-dev/awesome-ai-agents !2025-03-281643923|A list of AI autonomous agents| | 338|QwenLM/Qwen2.5 !2025-03-281641114|Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.| | 339|dair-ai/ML-YouTube-Courses !2025-03-28164114|📺 Discover the latest machine learning / AI courses on YouTube.| | 340|pybind/pybind11 !2025-03-28163620|Seamless operability between C++11 and Python| | 341|graphdeco-inria/gaussian-splatting !2025-03-281627116|Original reference implementation of "3D Gaussian Splatting for Real-Time Radiance Field Rendering"| | 342|meta-llama/codellama !2025-03-28162531|Inference code for CodeLlama models| | 343|TransformerOptimus/SuperAGI !2025-03-28161292 | SuperAGI - A dev-first open source autonomous AI agent framework. Enabling developers to build, manage & run useful autonomous agents quickly and reliably.| | 344|microsoft/onnxruntime !2025-03-28161169|ONNX Runtime: cross-platform, high-performance ML inferencing and training accelerator| | 345|IDEA-Research/Grounded-Segment-Anything !2025-03-281601411 |Marrying Grounding DINO with Segment Anything & Stable Diffusion & BLIP - Automatically Detect, Segment and Generate Anything with Image and Text Inputs| | 346|ddbourgin/numpy-ml !2025-03-28160054|Machine learning, in numpy| | 347|eosphoros-ai/DB-GPT !2025-03-281585225|Revolutionizing Database Interactions with Private LLM Technology| | 348|Stability-AI/StableLM !2025-03-28158310 |Stability AI Language Models| | 349|openai/evals !2025-03-28157935 |Evals is a framework for evaluating LLMs and LLM systems, and an open-source registry of benchmarks.| | 350|THUDM/ChatGLM2-6B !2025-03-28157500|ChatGLM2-6B: An Open Bilingual Chat LLM | | 351|sunner/ChatALL !2025-03-28156761 |Concurrently chat with ChatGPT, Bing Chat, Bard, Alpaca, Vincuna, Claude, ChatGLM, MOSS, iFlytek Spark, ERNIE and more, discover the best answers| | 352|abseil/abseil-cpp !2025-03-28156656|Abseil Common Libraries (C++)| | 353|NVIDIA/open-gpu-kernel-modules !2025-03-28156531|NVIDIA Linux open GPU kernel module source| | 354|letta-ai/letta !2025-03-281563718|Letta (formerly MemGPT) is a framework for creating LLM services with memory.| | 355|typescript-eslint/typescript-eslint !2025-03-28156211|✨ Monorepo for all the tooling which enables ESLint to support TypeScript| | 356|umijs/umi !2025-03-28156211|A framework in react community ✨| | 357|AI4Finance-Foundation/FinGPT !2025-03-281561215|Data-Centric FinGPT. Open-source for open finance! Revolutionize 🔥 We'll soon release the trained model.| | 358|amplication/amplication !2025-03-28156022|🔥🔥🔥 The Only Production-Ready AI-Powered Backend Code Generation| | 359|KindXiaoming/pykan !2025-03-28155477|Kolmogorov Arnold Networks| | 360|arc53/DocsGPT !2025-03-28154900|GPT-powered chat for documentation, chat with your documents| | 361|influxdata/telegraf !2025-03-28154502|Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.| | 362|microsoft/Bringing-Old-Photos-Back-to-Life !2025-03-28154084|Bringing Old Photo Back to Life (CVPR 2020 oral)| | 363|GaiZhenbiao/ChuanhuChatGPT !2025-03-2815394-2|GUI for ChatGPT API and many LLMs. Supports agents, file-based QA, GPT finetuning and query with web search. All with a neat UI.| | 364|Zeyi-Lin/HivisionIDPhotos !2025-03-281529710|⚡️HivisionIDPhotos: a lightweight and efficient AI ID photos tools. 一个轻量级的AI证件照制作算法。| | 365| mayooear/gpt4-pdf-chatbot-langchain !2025-03-281529518 | GPT4 & LangChain Chatbot for large PDF docs | | 366|1Panel-dev/MaxKB !2025-03-2815277148|? Based on LLM large language model knowledge base Q&A system. Ready to use out of the box, supports quick integration into third-party business systems. Officially produced by 1Panel| | 367|ai16z/eliza !2025-03-281526811|Conversational Agent for Twitter and Discord| | 368|apache/arrow !2025-03-28151684|Apache Arrow is a multi-language toolbox for accelerated data interchange and in-memory processing| | 369|princeton-nlp/SWE-agent !2025-03-281516119|SWE-agent: Agent Computer Interfaces Enable Software Engineering Language Models| | 370|mlc-ai/web-llm !2025-03-281509311 |Bringing large-language models and chat to web browsers. Everything runs inside the browser with no server support.| | 371|guillaumekln/faster-whisper !2025-03-281507117 |Faster Whisper transcription with CTranslate2| | 372|overleaf/overleaf !2025-03-28150316|A web-based collaborative LaTeX editor| | 373|triton-lang/triton !2025-03-28150169|Development repository for the Triton language and compiler| | 374|soxoj/maigret !2025-03-281500410|🕵️‍♂️ Collect a dossier on a person by username from thousands of sites| | 375|alibaba/lowcode-engine !2025-03-28149841|An enterprise-class low-code technology stack with scale-out design / 一套面向扩展设计的企业级低代码技术体系| | 376|espressif/esp-idf !2025-03-28148545|Espressif IoT Development Framework. Official development framework for Espressif SoCs.| | 377|pgvector/pgvector !2025-03-281484913|Open-source vector similarity search for Postgres| | 378|datawhalechina/leedl-tutorial !2025-03-28148246|《李宏毅深度学习教程》(李宏毅老师推荐👍),PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases| | 379|xcanwin/KeepChatGPT !2025-03-28147972 |Using ChatGPT is more efficient and smoother, perfectly solving ChatGPT network errors. No longer do you need to frequently refresh the webpage, saving over 10 unnecessary steps| | 380|m-bain/whisperX !2025-03-281471313|WhisperX: Automatic Speech Recognition with Word-level Timestamps (& Diarization)| | 381|HumanAIGC/AnimateAnyone !2025-03-2814706-1|Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation| |!green-up-arrow.svg 382|naklecha/llama3-from-scratch !2025-03-281469024|llama3 implementation one matrix multiplication at a time| |!red-down-arrow 383| fauxpilot/fauxpilot !2025-03-28146871 | An open-source GitHub Copilot server | | 384|LlamaFamily/Llama-Chinese !2025-03-28145111|Llama Chinese Community, the best Chinese Llama large model, fully open source and commercially available| | 385|BradyFU/Awesome-Multimodal-Large-Language-Models !2025-03-281450121|Latest Papers and Datasets on Multimodal Large Language Models| | 386|vanna-ai/vanna !2025-03-281449819|🤖 Chat with your SQL database 📊. Accurate Text-to-SQL Generation via LLMs using RAG 🔄.| | 387|bleedline/aimoneyhunter !2025-03-28144845|AI Side Hustle Money Mega Collection: Teaching You How to Utilize AI for Various Side Projects to Earn Extra Income.| | 388|stefan-jansen/machine-learning-for-trading !2025-03-28144629|Code for Machine Learning for Algorithmic Trading, 2nd edition.| | 389|state-spaces/mamba !2025-03-28144139|Mamba: Linear-Time Sequence Modeling with Selective State Spaces| | 390|vercel/ai-chatbot !2025-03-281434614|A full-featured, hackable Next.js AI chatbot built by Vercel| | 391|steven-tey/novel !2025-03-281428410|Notion-style WYSIWYG editor with AI-powered autocompletions| | 392|unifyai/ivy !2025-03-281409348|Unified AI| | 393|chidiwilliams/buzz !2025-03-281402411 |Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper.| | 394|lukas-blecher/LaTeX-OCR !2025-03-28139769|pix2tex: Using a ViT to convert images of equations into LaTeX code.| | 395|openai/tiktoken !2025-03-28139599|tiktoken is a fast BPE tokeniser for use with OpenAI's models.| | 396|nocobase/nocobase !2025-03-281391522|NocoBase is a scalability-first, open-source no-code/low-code platform for building business applications and enterprise solutions.| | 397|neonbjb/tortoise-tts !2025-03-28139010 |A multi-voice TTS system trained with an emphasis on quality| | 398|yamadashy/repomix !2025-03-281382036|📦 Repomix (formerly Repopack) is a powerful tool that packs your entire repository into a single, AI-friendly file. Perfect for when you need to feed your codebase to Large Language Models (LLMs) or other AI tools like Claude, ChatGPT, and Gemini.| | 399|adobe/react-spectrum !2025-03-28136766|A collection of libraries and tools that help you build adaptive, accessible, and robust user experiences.| | 400|THUDM/ChatGLM3 !2025-03-28136684|ChatGLM3 series: Open Bilingual Chat LLMs | | 401|NVIDIA/NeMo !2025-03-28134837|A scalable generative AI framework built for researchers and developers working on Large Language Models, Multimodal, and Speech AI (Automatic Speech Recognition and Text-to-Speech)| | 402|BlinkDL/RWKV-LM !2025-03-28134346 |RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). So it combines the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.| | 403| fuergaosi233/wechat-chatgpt !2025-03-28133330 | Use ChatGPT On Wechat via wechaty | | 404|udecode/plate !2025-03-28133325|A rich-text editor powered by AI| | 405|xenova/transformers.js !2025-03-281331219|State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!| | 406|stas00/ml-engineering !2025-03-281325615|Machine Learning Engineering Guides and Tools| | 407| wong2/chatgpt-google-extension !2025-03-2813241-1 | A browser extension that enhances search engines with ChatGPT, this repos will not be updated from 2023-02-20| | 408|mrdbourke/pytorch-deep-learning !2025-03-281317520|Materials for the Learn PyTorch for Deep Learning: Zero to Mastery course.| | 409|Koenkk/zigbee2mqtt !2025-03-28131544|Zigbee 🐝 to MQTT bridge 🌉, get rid of your proprietary Zigbee bridges 🔨| | 410|vercel-labs/ai !2025-03-281298528|Build AI-powered applications with React, Svelte, and Vue| | 411|netease-youdao/QAnything !2025-03-28129318|Question and Answer based on Anything.| | 412|huggingface/trl !2025-03-281289622|Train transformer language models with reinforcement learning.| | 413|microsoft/BitNet !2025-03-28128503|Official inference framework for 1-bit LLMs| | 414|mediar-ai/screenpipe !2025-03-281283915|24/7 local AI screen & mic recording. Build AI apps that have the full context. Works with Ollama. Alternative to Rewind.ai. Open. Secure. You own your data. Rust.| | 415|Skyvern-AI/skyvern !2025-03-281277612|Automate browser-based workflows with LLMs and Computer Vision| | 416|pytube/pytube !2025-03-28126591|A lightweight, dependency-free Python library (and command-line utility) for downloading YouTube Videos.| | 417|official-stockfish/Stockfish !2025-03-28126574|UCI chess engine| | 418|sgl-project/sglang !2025-03-281260143|SGLang is a structured generation language designed for large language models (LLMs). It makes your interaction with LLMs faster and more controllable.| | 419|plasma-umass/scalene !2025-03-28125535|Scalene: a high-performance, high-precision CPU, GPU, and memory profiler for Python with AI-powered optimization proposals| | 420|danswer-ai/danswer !2025-03-28125503|Ask Questions in natural language and get Answers backed by private sources. Connects to tools like Slack, GitHub, Confluence, etc.| | 421|OpenTalker/SadTalker !2025-03-28125226|[CVPR 2023] SadTalker:Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation| | 422|facebookresearch/AnimatedDrawings !2025-03-28123693 |Code to accompany "A Method for Animating Children's Drawings of the Human Figure"| | 423|activepieces/activepieces !2025-03-28123609|Your friendliest open source all-in-one automation tool ✨ Workflow automation tool 100+ integration / Enterprise automation tool / Zapier Alternative| | 424|ggerganov/ggml !2025-03-28121992 |Tensor library for machine learning| | 425|bytebase/bytebase !2025-03-28121694|World's most advanced database DevOps and CI/CD for Developer, DBA and Platform Engineering teams. The GitLab/GitHub for database DevOps.| | 426| willwulfken/MidJourney-Styles-and-Keywords-Reference !2025-03-28120971 | A reference containing Styles and Keywords that you can use with MidJourney AI| | 427|Huanshere/VideoLingo !2025-03-281207013|Netflix-level subtitle cutting, translation, alignment, and even dubbing - one-click fully automated AI video subtitle team | | 428|OpenLMLab/MOSS !2025-03-28120330 |An open-source tool-augmented conversational language model from Fudan University| | 429|llmware-ai/llmware !2025-03-281200727|Providing enterprise-grade LLM-based development framework, tools, and fine-tuned models.| | 430|PKU-YuanGroup/Open-Sora-Plan !2025-03-28119362|This project aim to reproduce Sora (Open AI T2V model), but we only have limited resource. We deeply wish the all open source community can contribute to this project.| | 431|ShishirPatil/gorilla !2025-03-28119332 |Gorilla: An API store for LLMs| | 432|NVIDIA/Megatron-LM !2025-03-281192716|Ongoing research training transformer models at scale| | 433|illacloud/illa-builder !2025-03-28119192|Create AI-Driven Apps like Assembling Blocks| | 434|marimo-team/marimo !2025-03-281191521|A reactive notebook for Python — run reproducible experiments, execute as a script, deploy as an app, and version with git.| | 435|smol-ai/developer !2025-03-28119111 | With 100k context windows on the way, it's now feasible for every dev to have their own smol developer| | 436|Lightning-AI/litgpt !2025-03-28118878|Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.| | 437|openai/shap-e !2025-03-28118474 |Generate 3D objects conditioned on text or images| | 438|eugeneyan/open-llms !2025-03-28118451 |A list of open LLMs available for commercial use.| | 439|andrewyng/aisuite !2025-03-28118124|Simple, unified interface to multiple Generative AI providers| | 440|hajimehoshi/ebiten !2025-03-28117816|Ebitengine - A dead simple 2D game engine for Go| | 441|kgrzybek/modular-monolith-with-ddd !2025-03-28117493|Full Modular Monolith application with Domain-Driven Design approach.| | 442|h2oai/h2ogpt !2025-03-2811736-1 |Come join the movement to make the world's best open source GPT led by H2O.ai - 100% private chat and document search, no data leaks, Apache 2.0| | 443|owainlewis/awesome-artificial-intelligence !2025-03-28117332|A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.| | 444|DataTalksClub/mlops-zoomcamp !2025-03-28116643|Free MLOps course from DataTalks.Club| | 445|Rudrabha/Wav2Lip !2025-03-281163410|This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020.| | 446|aishwaryanr/awesome-generative-ai-guide !2025-03-281152810|A one stop repository for generative AI research updates, interview resources, notebooks and much more!| | 447|karpathy/micrograd !2025-03-28115146|A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API| | 448|InstantID/InstantID !2025-03-28115111|InstantID : Zero-shot Identity-Preserving Generation in Seconds 🔥| | 449|facebookresearch/seamlesscommunication !2025-03-28114434|Foundational Models for State-of-the-Art Speech and Text Translation| | 450|anthropics/anthropic-cookbook !2025-03-281140112|A collection of notebooks/recipes showcasing some fun and effective ways of using Claude.| | 451|mastra-ai/mastra !2025-03-281139240|the TypeScript AI agent framework| | 452|NVIDIA/TensorRT !2025-03-28113864|NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference on NVIDIA GPUs. This repository contains the open source components of TensorRT.| | 453|plandex-ai/plandex !2025-03-28113645|An AI coding engine for complex tasks| | 454|RUCAIBox/LLMSurvey !2025-03-28112735 |A collection of papers and resources related to Large Language Models.| | 455|kubeshark/kubeshark !2025-03-28112711|The API traffic analyzer for Kubernetes providing real-time K8s protocol-level visibility, capturing and monitoring all traffic and payloads going in, out and across containers, pods, nodes and clusters. Inspired by Wireshark, purposely built for Kubernetes| | 456|electric-sql/pglite !2025-03-28112617|Lightweight Postgres packaged as WASM into a TypeScript library for the browser, Node.js, Bun and Deno from https://electric-sql.com| | 457|lightaime/camel !2025-03-281124441 |🐫 CAMEL: Communicative Agents for “Mind” Exploration of Large Scale Language Model Society| | 458|huggingface/lerobot !2025-03-281120184|🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch| | 459|normal-computing/outlines !2025-03-28111657|Generative Model Programming| | 460|libretro/RetroArch !2025-03-28110701|Cross-platform, sophisticated frontend for the libretro API. Licensed GPLv3.| | 461|THUDM/CogVideo !2025-03-28110599|Text-to-video generation: CogVideoX (2024) and CogVideo (ICLR 2023)| | 462|bentoml/OpenLLM !2025-03-28110495|An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease.| | 463|vosen/ZLUDA !2025-03-28110429|CUDA on AMD GPUs| | 464|dair-ai/ML-Papers-of-the-Week !2025-03-28110304 |🔥Highlighting the top ML papers every week.| | 465|WordPress/gutenberg !2025-03-28110212|The Block Editor project for WordPress and beyond. Plugin is available from the official repository.| | 466|microsoft/data-formulator !2025-03-281099827|🪄 Create rich visualizations with AI| | 467|LibreTranslate/LibreTranslate !2025-03-28109887|Free and Open Source Machine Translation API. Self-hosted, offline capable and easy to setup.| | 468|block/goose !2025-03-281097737|an open-source, extensible AI agent that goes beyond code suggestions - install, execute, edit, and test with any LLM| | 469|getumbrel/llama-gpt !2025-03-28109553|A self-hosted, offline, ChatGPT-like chatbot. Powered by Llama 2. 100% private, with no data leaving your device.| | 470|HigherOrderCO/HVM !2025-03-28109182|A massively parallel, optimal functional runtime in Rust| | 471|databrickslabs/dolly !2025-03-2810812-3 | A large language model trained on the Databricks Machine Learning Platform| | 472|srush/GPU-Puzzles !2025-03-28108014|Solve puzzles. Learn CUDA.| | 473|Z3Prover/z3 !2025-03-28107952|The Z3 Theorem Prover| | 474|UFund-Me/Qbot !2025-03-281079313 |Qbot is an AI-oriented quantitative investment platform, which aims to realize the potential, empower AI technologies in quantitative investment| | 475|langchain-ai/langgraph !2025-03-281077336|| | 476|lz4/lz4 !2025-03-28107647|Extremely Fast Compression algorithm| | 477|magic-research/magic-animate !2025-03-28107160|MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model| | 478|PaperMC/Paper !2025-03-281071410|The most widely used, high performance Minecraft server that aims to fix gameplay and mechanics inconsistencies| | 479|getomni-ai/zerox !2025-03-281071015|Zero shot pdf OCR with gpt-4o-mini| |!green-up-arrow.svg 480|🔥NirDiamant/GenAIAgents !2025-03-2810693318|This repository provides tutorials and implementations for various Generative AI Agent techniques, from basic to advanced. It serves as a comprehensive guide for building intelligent, interactive AI systems.| |!red-down-arrow 481|Unstructured-IO/unstructured !2025-03-28106889|Open source libraries and APIs to build custom preprocessing pipelines for labeling, training, or production machine learning pipelines.| | 482|apache/thrift !2025-03-28106610|Apache Thrift| | 483| TheR1D/shellgpt !2025-03-28106097 | A command-line productivity tool powered by ChatGPT, will help you accomplish your tasks faster and more efficiently | | 484|TheRamU/Fay !2025-03-281060312 |Fay is a complete open source project that includes Fay controller and numeral models, which can be used in different applications such as virtual hosts, live promotion, numeral human interaction and so on| | 485|zyronon/douyin !2025-03-28105566|Vue3 + Pinia + Vite5 仿抖音,Vue 在移动端的最佳实践 . Imitate TikTok ,Vue Best practices on Mobile| | 486|THU-MIG/yolov10 !2025-03-28105485|YOLOv10: Real-Time End-to-End Object Detection| | 487|idootop/mi-gpt !2025-03-281052522|? Transform XiaoAi speaker into a personal voice assistant with ChatGPT and DouBao integration.| | 488|SakanaAI/AI-Scientist !2025-03-281051310|The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery 🧑‍🔬| | 489|szimek/sharedrop !2025-03-28105101|Easy P2P file transfer powered by WebRTC - inspired by Apple AirDrop| | 490|salesforce/LAVIS !2025-03-28103942 |LAVIS - A One-stop Library for Language-Vision Intelligence| | 491|aws/amazon-sagemaker-examples !2025-03-28103654|Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.| | 492|artidoro/qlora !2025-03-28103402 |QLoRA: Efficient Finetuning of Quantized LLMs| | 493|lllyasviel/stable-diffusion-webui-forge !2025-03-281029314| a platform on top of Stable Diffusion WebUI (based on Gradio) to make development easier, optimize resource management, and speed up inference| | 494|NielsRogge/Transformers-Tutorials !2025-03-28102487|This repository contains demos I made with the Transformers library by HuggingFace.| | 495|kedro-org/kedro !2025-03-28102371|Kedro is a toolbox for production-ready data science. It uses software engineering best practices to help you create data engineering and data science pipelines that are reproducible, maintainable, and modular.| | 496| chathub-dev/chathub !2025-03-28102301 | All-in-one chatbot client | | 497|microsoft/promptflow !2025-03-28101612|Build high-quality LLM apps - from prototyping, testing to production deployment and monitoring.| | 498|mistralai/mistral-src !2025-03-28101372|Reference implementation of Mistral AI 7B v0.1 model.| | 499|burn-rs/burn !2025-03-28101183|Burn - A Flexible and Comprehensive Deep Learning Framework in Rust| | 500|AIGC-Audio/AudioGPT !2025-03-28101150 |AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head| | 501|facebookresearch/dinov2 !2025-03-281011210 |PyTorch code and models for the DINOv2 self-supervised learning method.| | 502|RockChinQ/LangBot !2025-03-281008455|😎丰富生态、🧩支持扩展、🦄多模态 - 大模型原生即时通信机器人平台 🤖 | | 503|78/xiaozhi-esp32 !2025-03-281008180|Build your own AI friend| | 504|cumulo-autumn/StreamDiffusion !2025-03-28100761|StreamDiffusion: A Pipeline-Level Solution for Real-Time Interactive Generation| | 505|DataTalksClub/machine-learning-zoomcamp !2025-03-28100664|The code from the Machine Learning Bookcamp book and a free course based on the book| | 506|nerfstudio-project/nerfstudio !2025-03-28100343|A collaboration friendly studio for NeRFs| | 507|cupy/cupy !2025-03-28100344|NumPy & SciPy for GPU| | 508|NVIDIA/TensorRT-LLM !2025-03-281000823|TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.| | 509|wasp-lang/open-saas !2025-03-2899665|A free, open-source SaaS app starter for React & Node.js with superpowers. Production-ready. Community-driven.| | 510|huggingface/text-generation-inference !2025-03-2899383|Large Language Model Text Generation Inference| | 511|jxnl/instructor !2025-03-2899224|structured outputs for llms| | 512|GoogleCloudPlatform/generative-ai !2025-03-2899086|Sample code and notebooks for Generative AI on Google Cloud| | 513|manticoresoftware/manticoresearch !2025-03-2898799|Easy to use open source fast database for search | | 514|langfuse/langfuse !2025-03-28985134|🪢 Open source LLM engineering platform. Observability, metrics, evals, prompt management, testing, prompt playground, datasets, LLM evaluations -- 🍊YC W23 🤖 integrate via Typescript, Python / Decorators, OpenAI, Langchain, LlamaIndex, Litellm, Instructor, Mistral, Perplexity, Claude, Gemini, Vertex| | 515|keephq/keep !2025-03-2897949|The open-source alert management and AIOps platform| | 516|sashabaranov/go-openai !2025-03-2897843|OpenAI ChatGPT, GPT-3, GPT-4, DALL·E, Whisper API wrapper for Go| | 517|autowarefoundation/autoware !2025-03-2897766|Autoware - the world's leading open-source software project for autonomous driving| | 518|anthropics/courses !2025-03-2897269|Anthropic's educational courses| | 519|popcorn-official/popcorn-desktop !2025-03-2896853|Popcorn Time is a multi-platform, free software BitTorrent client that includes an integrated media player ( Windows / Mac / Linux ) A Butter-Project Fork| | 520|getmaxun/maxun !2025-03-28968515|🔥 Open-source no-code web data extraction platform. Turn websites to APIs and spreadsheets with no-code robots in minutes! [In Beta]| | 521|wandb/wandb !2025-03-2896763|🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.| | 522|karpathy/minbpe !2025-03-2895353|Minimal, clean, code for the Byte Pair Encoding (BPE) algorithm commonly used in LLM tokenization.| | 523|bigscience-workshop/petals !2025-03-2895142|🌸 Run large language models at home, BitTorrent-style. Fine-tuning and inference up to 10x faster than offloading| | 524|OthersideAI/self-operating-computer !2025-03-2894931|A framework to enable multimodal models to operate a computer.| | 525|mshumer/gpt-prompt-engineer !2025-03-2894911|| | 526| BloopAI/bloop !2025-03-2894710 | A fast code search engine written in Rust| | 527|BlinkDL/ChatRWKV !2025-03-289467-1 |ChatRWKV is like ChatGPT but powered by RWKV (100% RNN) language model, and open source.| | 528|timlrx/tailwind-nextjs-starter-blog !2025-03-2894677|This is a Next.js, Tailwind CSS blogging starter template. Comes out of the box configured with the latest technologies to make technical writing a breeze. Easily configurable and customizable. Perfect as a replacement to existing Jekyll and Hugo individual blogs.| | 529|google/benchmark !2025-03-2893634|A microbenchmark support library| | 530|facebookresearch/nougat !2025-03-2893603|Implementation of Nougat Neural Optical Understanding for Academic Documents| | 531|modelscope/facechain !2025-03-2893536|FaceChain is a deep-learning toolchain for generating your Digital-Twin.| | 532|DrewThomasson/ebook2audiobook !2025-03-2893388|Convert ebooks to audiobooks with chapters and metadata using dynamic AI models and voice cloning. Supports 1,107+ languages!| | 533|RayTracing/raytracing.github.io !2025-03-2893035|Main Web Site (Online Books)| | 534|QwenLM/Qwen2.5-VL !2025-03-28930249|Qwen2.5-VL is the multimodal large language model series developed by Qwen team, Alibaba Cloud.| | 535|WongKinYiu/yolov9 !2025-03-2892201|Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information| | 536|alibaba-damo-academy/FunASR !2025-03-28920222|A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.| | 537|Visualize-ML/Book4Power-of-Matrix !2025-03-2891931|Book4 'Power of Matrix' | | 538|dice2o/BingGPT !2025-03-289185-1 |Desktop application of new Bing's AI-powered chat (Windows, macOS and Linux)| | 539|browserbase/stagehand !2025-03-28917621|An AI web browsing framework focused on simplicity and extensibility.| | 540|FlagOpen/FlagEmbedding !2025-03-28914111|Dense Retrieval and Retrieval-augmented LLMs| | 541|Const-me/Whisper !2025-03-2890979|High-performance GPGPU inference of OpenAI's Whisper automatic speech recognition (ASR) model| | 542|lucidrains/denoising-diffusion-pytorch !2025-03-2890942|Implementation of Denoising Diffusion Probabilistic Model in Pytorch| | 543|Chainlit/chainlit !2025-03-28904422|Build Conversational AI in minutes ⚡️| | 544|togethercomputer/OpenChatKit !2025-03-2890160 |OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications| | 545|Stability-AI/StableStudio !2025-03-2889631 |Community interface for generative AI| | 546|voicepaw/so-vits-svc-fork !2025-03-2889482 |so-vits-svc fork with realtime support, improved interface and more features.| | 547|pymc-devs/pymc !2025-03-2889413|Bayesian Modeling and Probabilistic Programming in Python| | 548|espnet/espnet !2025-03-2889302|End-to-End Speech Processing Toolkit| | 549|kedacore/keda !2025-03-2888991|KEDA is a Kubernetes-based Event Driven Autoscaling component. It provides event driven scale for any container running in Kubernetes| | 550|open-mmlab/Amphion !2025-03-28886911|Amphion (/æmˈfaɪən/) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.| | 551|gorse-io/gorse !2025-03-2888451|Gorse open source recommender system engine| | 552|adams549659584/go-proxy-bingai !2025-03-288768-1 |A Microsoft New Bing demo site built with Vue3 and Go, providing a consistent UI experience, supporting ChatGPT prompts, and accessible within China| | 553|open-mmlab/mmsegmentation !2025-03-2887513|OpenMMLab Semantic Segmentation Toolbox and Benchmark.| | 554|bytedance/monolith !2025-03-2887223|ByteDance's Recommendation System| | 555|LouisShark/chatgptsystemprompt !2025-03-2887216|store all agent's system prompt| | 556|brexhq/prompt-engineering !2025-03-2887080 |Tips and tricks for working with Large Language Models like OpenAI's GPT-4.| | 557|erincatto/box2d !2025-03-2886841|Box2D is a 2D physics engine for games| | 558|🔥microsoft/ai-agents-for-beginners !2025-03-288669323|10 Lessons to Get Started Building AI Agents| | 559|nashsu/FreeAskInternet !2025-03-2886102|FreeAskInternet is a completely free, private and locally running search aggregator & answer generate using LLM, without GPU needed. The user can ask a question and the system will make a multi engine search and combine the search result to the ChatGPT3.5 LLM and generate the answer based on search results.| | 560|goldmansachs/gs-quant !2025-03-2885981|Python toolkit for quantitative finance| | 561|srbhr/Resume-Matcher !2025-03-2885800|Open Source Free ATS Tool to compare Resumes with Job Descriptions and create a score to rank them.| | 562|facebookresearch/ImageBind !2025-03-2885681 |ImageBind One Embedding Space to Bind Them All| | 563|ashawkey/stable-dreamfusion !2025-03-2885481 |A pytorch implementation of text-to-3D dreamfusion, powered by stable diffusion.| | 564|meetecho/janus-gateway !2025-03-2885232|Janus WebRTC Server| | 565|google/magika !2025-03-2885003|Detect file content types with deep learning| | 566|huggingface/chat-ui !2025-03-2884871 |Open source codebase powering the HuggingChat app| | 567|EleutherAI/lm-evaluation-harness !2025-03-28843012|A framework for few-shot evaluation of autoregressive language models.| | 568|jina-ai/reader !2025-03-2884089|Convert any URL to an LLM-friendly input with a simple prefix https://r.jina.ai/| | 569|microsoft/TypeChat !2025-03-288406-1|TypeChat is a library that makes it easy to build natural language interfaces using types.| | 570|thuml/Time-Series-Library !2025-03-28839715|A Library for Advanced Deep Time Series Models.| | 571|OptimalScale/LMFlow !2025-03-2883882|An Extensible Toolkit for Finetuning and Inference of Large Foundation Models. Large Model for All.| | 572|baptisteArno/typebot.io !2025-03-2883845|💬 Typebot is a powerful chatbot builder that you can self-host.| | 573|jzhang38/TinyLlama !2025-03-2883504|The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.| | 574|fishaudio/Bert-VITS2 !2025-03-2883472|vits2 backbone with multilingual-bert| | 575|OpenBMB/XAgent !2025-03-2882683|An Autonomous LLM Agent for Complex Task Solving| | 576|Acly/krita-ai-diffusion !2025-03-2882387|Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.| | 577|jasonppy/VoiceCraft !2025-03-2882151|Zero-Shot Speech Editing and Text-to-Speech in the Wild| | 578|SJTU-IPADS/PowerInfer !2025-03-2881693|High-speed Large Language Model Serving on PCs with Consumer-grade GPUs| | 579|modelscope/DiffSynth-Studio !2025-03-28814713|Enjoy the magic of Diffusion models!| | 580|o3de/o3de !2025-03-2881443|Open 3D Engine (O3DE) is an Apache 2.0-licensed multi-platform 3D engine that enables developers and content creators to build AAA games, cinema-quality 3D worlds, and high-fidelity simulations without any fees or commercial obligations.| | 581|zmh-program/chatnio !2025-03-2881325|🚀 Next Generation AI One-Stop Internationalization Solution. 🚀 下一代 AI 一站式 B/C 端解决方案,支持 OpenAI,Midjourney,Claude,讯飞星火,Stable Diffusion,DALL·E,ChatGLM,通义千问,腾讯混元,360 智脑,百川 AI,火山方舟,新必应,Gemini,Moonshot 等模型,支持对话分享,自定义预设,云端同步,模型市场,支持弹性计费和订阅计划模式,支持图片解析,支持联网搜索,支持模型缓存,丰富美观的后台管理与仪表盘数据统计。| | 582|leptonai/searchwithlepton !2025-03-2880632|Building a quick conversation-based search demo with Lepton AI.| | 583|sebastianstarke/AI4Animation !2025-03-2880620|Bringing Characters to Life with Computer Brains in Unity| | 584|wangrongding/wechat-bot !2025-03-2880528|🤖一个基于 WeChaty 结合 DeepSeek / ChatGPT / Kimi / 讯飞等Ai服务实现的微信机器人 ,可以用来帮助你自动回复微信消息,或者管理微信群/好友,检测僵尸粉等...| | 585|openvinotoolkit/openvino !2025-03-2880528|OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference| | 586|steven2358/awesome-generative-ai !2025-03-28802610|A curated list of modern Generative Artificial Intelligence projects and services| | 587|adam-maj/tiny-gpu !2025-03-2880234|A minimal GPU design in Verilog to learn how GPUs work from the ground up| | 588| anse-app/chatgpt-demo !2025-03-2880180 | A demo repo based on OpenAI API (gpt-3.5-turbo) | | 589| acheong08/EdgeGPT !2025-03-288015-1 |Reverse engineered API of Microsoft's Bing Chat | | 590|ai-collection/ai-collection !2025-03-2879994 |The Generative AI Landscape - A Collection of Awesome Generative AI Applications| | 591|GreyDGL/PentestGPT !2025-03-2879953 |A GPT-empowered penetration testing tool| | 592|delta-io/delta !2025-03-2879112|An open-source storage framework that enables building a Lakehouse architecture with compute engines including Spark, PrestoDB, Flink, Trino, and Hive and APIs| | 593|dataelement/bisheng !2025-03-2879085|Bisheng is an open LLM devops platform for next generation AI applications.| | 594|e2b-dev/e2b !2025-03-2878447 |Vercel for AI agents. We help developers to build, deploy, and monitor AI agents. Focusing on specialized AI agents that build software for you - your personal software developers.| | 595|01-ai/Yi !2025-03-2878311|A series of large language models trained from scratch by developers @01-ai| | 596|Plachtaa/VALL-E-X !2025-03-287830-1|An open source implementation of Microsoft's VALL-E X zero-shot TTS model. The demo is available at https://plachtaa.github.io| | 597|abhishekkrthakur/approachingalmost !2025-03-2878204|Approaching (Almost) Any Machine Learning Problem| | 598|pydantic/pydantic-ai !2025-03-28781041|Agent Framework / shim to use Pydantic with LLMs| | 599|rany2/edge-tts !2025-03-2877901|Use Microsoft Edge's online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key| | 600|CASIA-IVA-Lab/FastSAM !2025-03-2877881|Fast Segment Anything| | 601|netease-youdao/EmotiVoice !2025-03-2877817|EmotiVoice 😊: a Multi-Voice and Prompt-Controlled TTS Engine| | 602|lllyasviel/IC-Light !2025-03-2877804|More relighting!| | 603|kroma-network/tachyon !2025-03-287774-1|Modular ZK(Zero Knowledge) backend accelerated by GPU| | 604|deep-floyd/IF !2025-03-2877731 |A novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding| | 605|oumi-ai/oumi !2025-03-2877705|Everything you need to build state-of-the-art foundation models, end-to-end.| | 606|reorproject/reor !2025-03-2877681|AI note-taking app that runs models locally.| | 607|lightpanda-io/browser !2025-03-28775813|Lightpanda: the headless browser designed for AI and automation| | 608|xiangsx/gpt4free-ts !2025-03-287755-1|Providing a free OpenAI GPT-4 API ! This is a replication project for the typescript version of xtekky/gpt4free| | 609|IDEA-Research/GroundingDINO !2025-03-28773311|Official implementation of the paper "Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection"| | 610|bunkerity/bunkerweb !2025-03-2877326|🛡️ Make your web services secure by default !| | 611|vikhyat/moondream !2025-03-2877057|tiny vision language model| | 612|firmai/financial-machine-learning !2025-03-287703-1|A curated list of practical financial machine learning tools and applications.| | 613|n8n-io/self-hosted-ai-starter-kit !2025-03-28765121|The Self-hosted AI Starter Kit is an open-source template that quickly sets up a local AI environment. Curated by n8n, it provides essential tools for creating secure, self-hosted AI workflows.| | 614|intel-analytics/ipex-llm !2025-03-2876507|Accelerate local LLM inference and finetuning (LLaMA, Mistral, ChatGLM, Qwen, Baichuan, Mixtral, Gemma, etc.) on Intel CPU and GPU (e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max). A PyTorch LLM library that seamlessly integrates with llama.cpp, HuggingFace, LangChain, LlamaIndex, DeepSpeed, vLLM, FastChat, ModelScope, etc.| | 615|jrouwe/JoltPhysics !2025-03-28764510|A multi core friendly rigid body physics and collision detection library. Written in C++. Suitable for games and VR applications. Used by Horizon Forbidden West.| | 616|THUDM/CodeGeeX2 !2025-03-2876270|CodeGeeX2: A More Powerful Multilingual Code Generation Model| | 617|meta-llama/llama-stack !2025-03-2875866|Composable building blocks to build Llama Apps| | 618|sweepai/sweep !2025-03-287530-1|Sweep is an AI junior developer| | 619|lllyasviel/Omost !2025-03-2875301|Your image is almost there!| | 620|ahmedbahaaeldin/From-0-to-Research-Scientist-resources-guide !2025-03-2875050|Detailed and tailored guide for undergraduate students or anybody want to dig deep into the field of AI with solid foundation.| | 621|dair-ai/ML-Papers-Explained !2025-03-2875050|Explanation to key concepts in ML| | 622|zaidmukaddam/scira !2025-03-28750110|Scira (Formerly MiniPerplx) is a minimalistic AI-powered search engine that helps you find information on the internet. Powered by Vercel AI SDK! Search with models like Grok 2.0.| | 623|Portkey-AI/gateway !2025-03-28749416|A Blazing Fast AI Gateway. Route to 100+ LLMs with 1 fast & friendly API.| | 624|web-infra-dev/midscene !2025-03-28748729|An AI-powered automation SDK can control the page, perform assertions, and extract data in JSON format using natural language.| | 625|zilliztech/GPTCache !2025-03-2874801 |GPTCache is a library for creating semantic cache to store responses from LLM queries.| | 626|niedev/RTranslator !2025-03-2874742|RTranslator is the world's first open source real-time translation app.| |!green-up-arrow.svg 627|roboflow/notebooks !2025-03-2874666|Examples and tutorials on using SOTA computer vision models and techniques. Learn everything from old-school ResNet, through YOLO and object-detection transformers like DETR, to the latest models like Grounding DINO and SAM.| |!red-down-arrow 628|openlm-research/openllama !2025-03-2874652|OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset| | 629|LiheYoung/Depth-Anything !2025-03-2874155|Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data| | 630|enso-org/enso !2025-03-2874040|Hybrid visual and textual functional programming.| | 631|bigcode-project/starcoder !2025-03-287401-1 |Home of StarCoder: fine-tuning & inference!| | 632|git-ecosystem/git-credential-manager !2025-03-2873975|Secure, cross-platform Git credential storage with authentication to GitHub, Azure Repos, and other popular Git hosting services.| | 633|OpenGVLab/InternVL !2025-03-2873634|[CVPR 2024 Oral] InternVL Family: A Pioneering Open-Source Alternative to GPT-4V. 接近GPT-4V表现的可商用开源模型| | 634|WooooDyy/LLM-Agent-Paper-List !2025-03-2873551|The paper list of the 86-page paper "The Rise and Potential of Large Language Model Based Agents: A Survey" by Zhiheng Xi et al.| | 635|lencx/Noi !2025-03-2873157|🦄 AI + Tools + Plugins + Community| | 636|udlbook/udlbook !2025-03-2873075|Understanding Deep Learning - Simon J.D. Prince| | 637|OpenBMB/MiniCPM !2025-03-2872841|MiniCPM-2B: An end-side LLM outperforms Llama2-13B.| | 638|jaywalnut310/vits !2025-03-2872815 |VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech| | 639|xorbitsai/inference !2025-03-28727528|Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop.| | 640|PWhiddy/PokemonRedExperiments !2025-03-2872492|Playing Pokemon Red with Reinforcement Learning| | 641|Canner/WrenAI !2025-03-28723213|🤖 Open-source AI Agent that empowers data-driven teams to chat with their data to generate Text-to-SQL, charts, spreadsheets, reports, and BI. 📈📊📋🧑‍💻| | 642|miurla/morphic !2025-03-2872258|An AI-powered answer engine with a generative UI| | 643|ml-explore/mlx-examples !2025-03-2872168|Examples in the MLX framework| | 644|PKU-YuanGroup/ChatLaw !2025-03-2872010|Chinese Legal Large Model| | 645|NVIDIA/cutlass !2025-03-2871883|CUDA Templates for Linear Algebra Subroutines| | 646|FoundationVision/VAR !2025-03-28717444|[GPT beats diffusion🔥] [scaling laws in visual generation📈] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction"| | 647|ymcui/Chinese-LLaMA-Alpaca-2 !2025-03-2871561|Chinese LLaMA-2 & Alpaca-2 LLMs| | 648|nadermx/backgroundremover !2025-03-2871514 |Background Remover lets you Remove Background from images and video using AI with a simple command line interface that is free and open source.| | 649|onuratakan/gpt-computer-assistant !2025-03-28714514|gpt-4o for windows, macos and ubuntu| | 650|graviraja/MLOps-Basics !2025-03-2871326|| | 651|Future-House/paper-qa !2025-03-287118-1|High accuracy RAG for answering questions from scientific documents with citations| | 652|open-mmlab/mmagic !2025-03-2871102 |OpenMMLab Multimodal Advanced, Generative, and Intelligent Creation Toolbox| | 653|bhaskatripathi/pdfGPT !2025-03-2870941 |PDF GPT allows you to chat with the contents of your PDF file by using GPT capabilities. The only open source solution to turn your pdf files in a chatbot!| | 654|ollama/ollama-python !2025-03-28709117|Ollama Python library| | 655|facebookresearch/DiT !2025-03-2870376|Official PyTorch Implementation of "Scalable Diffusion Models with Transformers"| | 656|geekyutao/Inpaint-Anything !2025-03-2870262 |Inpaint anything using Segment Anything and inpainting models.| | 657|AbdullahAlfaraj/Auto-Photoshop-StableDiffusion-Plugin !2025-03-2870160 |A user-friendly plug-in that makes it easy to generate stable diffusion images inside Photoshop using Automatic1111-sd-webui as a backend.| | 658|apple/corenet !2025-03-2869990|CoreNet: A library for training deep neural networks| | 659|openstatusHQ/openstatus !2025-03-2869926|🏓 The open-source synthetic monitoring platform 🏓| | 660|weaviate/Verba !2025-03-2869772|Retrieval Augmented Generation (RAG) chatbot powered by Weaviate| | 661|meshery/meshery !2025-03-2869630|Meshery, the cloud native manager| | 662|OpenTalker/video-retalking !2025-03-2869530|[SIGGRAPH Asia 2022] VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild| | 663|digitalinnovationone/dio-lab-open-source !2025-03-28689013|Repositório do lab "Contribuindo em um Projeto Open Source no GitHub" da Digital Innovation One.| | 664|jianchang512/ChatTTS-ui !2025-03-2868842|一个简单的本地网页界面,直接使用ChatTTS将文字合成为语音,同时支持对外提供API接口。| | 665|patchy631/ai-engineering-hub !2025-03-28686434|In-depth tutorials on LLMs, RAGs and real-world AI agent applications.| | 666|gunnarmorling/1brc !2025-03-2868512|1️⃣🐝🏎️ The One Billion Row Challenge -- A fun exploration of how quickly 1B rows from a text file can be aggregated with Java| | 667|Azure-Samples/azure-search-openai-demo !2025-03-2868482 |A sample app for the Retrieval-Augmented Generation pattern running in Azure, using Azure Cognitive Search for retrieval and Azure OpenAI large language models to power ChatGPT-style and Q&A experiences.| | 668|mit-han-lab/streaming-llm !2025-03-2868382|Efficient Streaming Language Models with Attention Sinks| | 669|InternLM/InternLM !2025-03-2868352|InternLM has open-sourced a 7 billion parameter base model, a chat model tailored for practical scenarios and the training system.| | 670|dependency-check/DependencyCheck !2025-03-2868191|OWASP dependency-check is a software composition analysis utility that detects publicly disclosed vulnerabilities in application dependencies.| | 671|Soulter/AstrBot !2025-03-28678643|✨易上手的多平台 LLM 聊天机器人及开发框架✨。支持 QQ、QQ频道、Telegram、微信平台(Gewechat, 企业微信)、内置 Web Chat,OpenAI GPT、DeepSeek、Ollama、Llama、GLM、Gemini、OneAPI、LLMTuner,支持 LLM Agent 插件开发,可视化面板。一键部署。支持 Dify 工作流、代码执行器、Whisper 语音转文字。| | 672|react-native-webview/react-native-webview !2025-03-2867792|React Native Cross-Platform WebView| | 673|modelscope/agentscope !2025-03-28676916|Start building LLM-empowered multi-agent applications in an easier way.| | 674|mylxsw/aidea !2025-03-2867381|AIdea is a versatile app that supports GPT and domestic large language models,also supports "Stable Diffusion" text-to-image generation, image-to-image generation, SDXL 1.0, super-resolution, and image colorization| | 675|langchain-ai/ollama-deep-researcher !2025-03-28668635|Fully local web research and report writing assistant| | 676|threestudio-project/threestudio !2025-03-2866653|A unified framework for 3D content generation.| | 677|gaomingqi/Track-Anything !2025-03-2866631 |A flexible and interactive tool for video object tracking and segmentation, based on Segment Anything, XMem, and E2FGVI.| | 678|spdustin/ChatGPT-AutoExpert !2025-03-2866570|🚀🧠💬 Supercharged Custom Instructions for ChatGPT (non-coding) and ChatGPT Advanced Data Analysis (coding).| | 679|HariSekhon/DevOps-Bash-tools !2025-03-2866463|1000+ DevOps Bash Scripts - AWS, GCP, Kubernetes, Docker, CI/CD, APIs, SQL, PostgreSQL, MySQL, Hive, Impala, Kafka, Hadoop, Jenkins, GitHub, GitLab, BitBucket, Azure DevOps, TeamCity, Spotify, MP3, LDAP, Code/Build Linting, pkg mgmt for Linux, Mac, Python, Perl, Ruby, NodeJS, Golang, Advanced dotfiles: .bashrc, .vimrc, .gitconfig, .screenrc, tmux..| | 680|modelscope/swift !2025-03-28661530|ms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs| | 681|langchain-ai/opengpts !2025-03-2866080|This is an open source effort to create a similar experience to OpenAI's GPTs and Assistants API| | 682| yihong0618/xiaogpt !2025-03-2865131 | Play ChatGPT with xiaomi ai speaker | | 683| civitai/civitai !2025-03-2865111 | Build a platform where people can share their stable diffusion models | | 684|KoljaB/RealtimeSTT !2025-03-28649513|A robust, efficient, low-latency speech-to-text library with advanced voice activity detection, wake word activation and instant transcription.| | 685|qunash/chatgpt-advanced !2025-03-2864910 | A browser extension that augments your ChatGPT prompts with web results.| | 686|Licoy/ChatGPT-Midjourney !2025-03-2864850|🎨 Own your own ChatGPT+Midjourney web service with one click| | 687|friuns2/BlackFriday-GPTs-Prompts !2025-03-2864744|List of free GPTs that doesn't require plus subscription| | 688|PixarAnimationStudios/OpenUSD !2025-03-2864700|Universal Scene Description| | 689|linyiLYi/street-fighter-ai !2025-03-2864630 |This is an AI agent for Street Fighter II Champion Edition.| | 690|run-llama/rags !2025-03-2864380|Build ChatGPT over your data, all with natural language| | 691|frdel/agent-zero !2025-03-2864154|Agent Zero AI framework| | 692|microsoft/DeepSpeedExamples !2025-03-2863911 |Example models using DeepSpeed| | 693|k8sgpt-ai/k8sgpt !2025-03-2863882|Giving Kubernetes Superpowers to everyone| | 694|open-metadata/OpenMetadata !2025-03-2863514|OpenMetadata is a unified platform for discovery, observability, and governance powered by a central metadata repository, in-depth lineage, and seamless team collaboration.| | 695|google/gemma.cpp !2025-03-2863163|lightweight, standalone C++ inference engine for Google's Gemma models.| | 696|RayVentura/ShortGPT !2025-03-286314-1|🚀🎬 ShortGPT - An experimental AI framework for automated short/video content creation. Enables creators to rapidly produce, manage, and deliver content using AI and automation.| | 697|openai/consistencymodels !2025-03-2862940 |Official repo for consistency models.| | 698|yangjianxin1/Firefly !2025-03-2862924|Firefly: Chinese conversational large language model (full-scale fine-tuning + QLoRA), supporting fine-tuning of Llma2, Llama, Baichuan, InternLM, Ziya, Bloom, and other large models| | 699|enricoros/big-AGI !2025-03-2862665|Generative AI suite powered by state-of-the-art models and providing advanced AI/AGI functions. It features AI personas, AGI functions, multi-model chats, text-to-image, voice, response streaming, code highlighting and execution, PDF import, presets for developers, much more. Deploy on-prem or in the cloud.| | 700|aptos-labs/aptos-core !2025-03-2862633|Aptos is a layer 1 blockchain built to support the widespread use of blockchain through better technology and user experience.| | 701|wenda-LLM/wenda !2025-03-286262-1 |Wenda: An LLM invocation platform. Its objective is to achieve efficient content generation tailored to specific environments while considering the limited computing resources of individuals and small businesses, as well as knowledge security and privacy concerns| | 702|Project-MONAI/MONAI !2025-03-2862603|AI Toolkit for Healthcare Imaging| | 703|HVision-NKU/StoryDiffusion !2025-03-2862470|Create Magic Story!| | 704|deepseek-ai/DeepSeek-LLM !2025-03-2862463|DeepSeek LLM: Let there be answers| | 705|Tohrusky/Final2x !2025-03-2862393|2^x Image Super-Resolution| | 706|OpenSPG/KAG !2025-03-28619611|KAG is a logical form-guided reasoning and retrieval framework based on OpenSPG engine and LLMs. It is used to build logical reasoning and factual Q&A solutions for professional domain knowledge bases. It can effectively overcome the shortcomings of the traditional RAG vector similarity calculation model.| | 707|Moonvy/OpenPromptStudio !2025-03-2861861 |AIGC Hint Word Visualization Editor| | 708|levihsu/OOTDiffusion !2025-03-2861761|Official implementation of OOTDiffusion| | 709|tmc/langchaingo !2025-03-2861729|LangChain for Go, the easiest way to write LLM-based programs in Go| | 710|vladmandic/automatic !2025-03-2861374|SD.Next: Advanced Implementation of Stable Diffusion and other Diffusion-based generative image models| | 711|clovaai/donut !2025-03-2861231 |Official Implementation of OCR-free Document Understanding Transformer (Donut) and Synthetic Document Generator (SynthDoG), ECCV 2022| | 712|Shaunwei/RealChar !2025-03-286121-1|🎙️🤖Create, Customize and Talk to your AI Character/Companion in Realtime(All in One Codebase!). Have a natural seamless conversation with AI everywhere(mobile, web and terminal) using LLM OpenAI GPT3.5/4, Anthropic Claude2, Chroma Vector DB, Whisper Speech2Text, ElevenLabs Text2Speech🎙️🤖| | 713|microsoft/TinyTroupe !2025-03-2861142|LLM-powered multiagent persona simulation for imagination enhancement and business insights.| | 714| rustformers/llm !2025-03-2861010 | Run inference for Large Language Models on CPU, with Rust| | 715|firebase/firebase-ios-sdk !2025-03-2860950|Firebase SDK for Apple App Development| | 716|vespa-engine/vespa !2025-03-2860824|The open big data serving engine. https://vespa.ai| | 717|n4ze3m/page-assist !2025-03-28607610|Use your locally running AI models to assist you in your web browsing| | 718|Dooy/chatgpt-web-midjourney-proxy !2025-03-2860646|chatgpt web, midjourney, gpts,tts, whisper 一套ui全搞定| | 719|ethereum-optimism/optimism !2025-03-2860213|Optimism is Ethereum, scaled.| | 720|sczhou/ProPainter !2025-03-2859971|[ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting| | 721|MineDojo/Voyager !2025-03-2859951 |An Open-Ended Embodied Agent with Large Language Models| | 722|lavague-ai/LaVague !2025-03-2859800|Automate automation with Large Action Model framework| | 723|SevaSk/ecoute !2025-03-2859770 |Ecoute is a live transcription tool that provides real-time transcripts for both the user's microphone input (You) and the user's speakers output (Speaker) in a textbox. It also generates a suggested response using OpenAI's GPT-3.5 for the user to say based on the live transcription of the conversation.| | 724|google/mesop !2025-03-2859661|| | 725|pengxiao-song/LaWGPT !2025-03-2859542 |Repo for LaWGPT, Chinese-Llama tuned with Chinese Legal knowledge| | 726|fr0gger/Awesome-GPT-Agents !2025-03-2859434|A curated list of GPT agents for cybersecurity| | 727|google-deepmind/graphcast !2025-03-2859412|| | 728|comet-ml/opik !2025-03-28594126|Open-source end-to-end LLM Development Platform| | 729|SciPhi-AI/R2R !2025-03-28594033|A framework for rapid development and deployment of production-ready RAG systems| | 730|SkalskiP/courses !2025-03-2859272 |This repository is a curated collection of links to various courses and resources about Artificial Intelligence (AI)| | 731|QuivrHQ/MegaParse !2025-03-2859122|File Parser optimised for LLM Ingestion with no loss 🧠 Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.| | 732|pytorch-labs/gpt-fast !2025-03-2858971|Simple and efficient pytorch-native transformer text generation in !2025-03-2858886|Curated list of chatgpt prompts from the top-rated GPTs in the GPTs Store. Prompt Engineering, prompt attack & prompt protect. Advanced Prompt Engineering papers.| | 734|nilsherzig/LLocalSearch !2025-03-2858852|LLocalSearch is a completely locally running search aggregator using LLM Agents. The user can ask a question and the system will use a chain of LLMs to find the answer. The user can see the progress of the agents and the final answer. No OpenAI or Google API keys are needed.| | 735|kuafuai/DevOpsGPT !2025-03-285874-2|Multi agent system for AI-driven software development. Convert natural language requirements into working software. Supports any development language and extends the existing base code.| | 736|myshell-ai/MeloTTS !2025-03-2858486|High-quality multi-lingual text-to-speech library by MyShell.ai. Support English, Spanish, French, Chinese, Japanese and Korean.| | 737|OpenGVLab/LLaMA-Adapter !2025-03-2858421 |Fine-tuning LLaMA to follow Instructions within 1 Hour and 1.2M Parameters| | 738|volcengine/verl !2025-03-28582563|veRL: Volcano Engine Reinforcement Learning for LLM| | 739|a16z-infra/companion-app !2025-03-2858171|AI companions with memory: a lightweight stack to create and host your own AI companions| | 740|HumanAIGC/OutfitAnyone !2025-03-285816-1|Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person| | 741|josStorer/RWKV-Runner !2025-03-2857472|A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.| | 742|648540858/wvp-GB28181-pro !2025-03-2857414|WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台,支持NAT穿透,支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联,支持rtsp/rtmp等视频流转发到国标平台,支持rtsp/rtmp等推流转发到国标平台。| | 743|ToonCrafter/ToonCrafter !2025-03-2857345|a research paper for generative cartoon interpolation| | 744|PawanOsman/ChatGPT !2025-03-2857191|OpenAI API Free Reverse Proxy| | 745|apache/hudi !2025-03-2857091|Upserts, Deletes And Incremental Processing on Big Data.| | 746| nsarrazin/serge !2025-03-2857081 | A web interface for chatting with Alpaca through llama.cpp. Fully dockerized, with an easy to use API| | 747|homanp/superagent !2025-03-2857021|🥷 Superagent - Build, deploy, and manage LLM-powered agents| | 748|ramonvc/freegpt-webui !2025-03-2856910|GPT 3.5/4 with a Chat Web UI. No API key is required.| | 749|baichuan-inc/baichuan-7B !2025-03-2856901|A large-scale 7B pretraining language model developed by BaiChuan-Inc.| | 750|Azure/azure-sdk-for-net !2025-03-2856792|This repository is for active development of the Azure SDK for .NET. For consumers of the SDK we recommend visiting our public developer docs at https://learn.microsoft.com/dotnet/azure/ or our versioned developer docs at https://azure.github.io/azure-sdk-for-net.| | 751|mnotgod96/AppAgent !2025-03-2856643|AppAgent: Multimodal Agents as Smartphone Users, an LLM-based multimodal agent framework designed to operate smartphone apps.| | 752|microsoft/TaskWeaver !2025-03-2856243|A code-first agent framework for seamlessly planning and executing data analytics tasks.| | 753| yetone/bob-plugin-openai-translator !2025-03-285600-1 | A Bob Plugin base ChatGPT API | | 754|PrefectHQ/marvin !2025-03-2855840 |A batteries-included library for building AI-powered software| | 755|microsoft/promptbase !2025-03-2855832|All things prompt engineering| | 756|fullstackhero/dotnet-starter-kit !2025-03-2855560|Production Grade Cloud-Ready .NET 8 Starter Kit (Web API + Blazor Client) with Multitenancy Support, and Clean/Modular Architecture that saves roughly 200+ Development Hours! All Batteries Included.| | 757|deepseek-ai/DeepSeek-Coder-V2 !2025-03-2855435|DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence| | 758|aiwaves-cn/agents !2025-03-2855391|An Open-source Framework for Autonomous Language Agents| | 759|microsoft/Mastering-GitHub-Copilot-for-Paired-Programming !2025-03-2855158|A 6 Lesson course teaching everything you need to know about harnessing GitHub Copilot and an AI Paired Programing resource.| | 760|allenai/OLMo !2025-03-2854506|Modeling, training, eval, and inference code for OLMo| | 761|apify/crawlee-python !2025-03-2854493|Crawlee—A web scraping and browser automation library for Python to build reliable crawlers. Extract data for AI, LLMs, RAG, or GPTs. Download HTML, PDF, JPG, PNG, and other files from websites. Works with BeautifulSoup, Playwright, and raw HTTP. Both headful and headless mode. With proxy rotation.| | 762|k2-fsa/sherpa-onnx !2025-03-28541520|Speech-to-text, text-to-speech, and speaker recongition using next-gen Kaldi with onnxruntime without Internet connection. Support embedded systems, Android, iOS, Raspberry Pi, RISC-V, x86_64 servers, websocket server/client, C/C++, Python, Kotlin, C#, Go, NodeJS, Java, Swift| | 763|TEN-framework/TEN-Agent !2025-03-28541411|TEN Agent is a realtime conversational AI agent powered by TEN. It seamlessly integrates the OpenAI Realtime API, RTC capabilities, and advanced features like weather updates, web search, computer vision, and Retrieval-Augmented Generation (RAG).| | 764|google/gemmapytorch !2025-03-2854010|The official PyTorch implementation of Google's Gemma models| | 765|snakers4/silero-vad !2025-03-2853858|Silero VAD: pre-trained enterprise-grade Voice Activity Detector| | 766|livekit/agents !2025-03-2853836|Build real-time multimodal AI applications 🤖🎙️📹| | 767|pipecat-ai/pipecat !2025-03-28537811|Open Source framework for voice and multimodal conversational AI| | 768|EricLBuehler/mistral.rs !2025-03-28536324|Blazingly fast LLM inference.| | 769|asg017/sqlite-vec !2025-03-28535810|Work-in-progress vector search SQLite extension that runs anywhere.| | 770|albertan017/LLM4Decompile !2025-03-2853563|Reverse Engineering: Decompiling Binary Code with Large Language Models| | 771|Permify/permify !2025-03-2853235|An open-source authorization as a service inspired by Google Zanzibar, designed to build and manage fine-grained and scalable authorization systems for any application.| | 772|imoneoi/openchat !2025-03-2853171|OpenChat: Advancing Open-source Language Models with Imperfect Data| | 773|mosaicml/composer !2025-03-2853140|Train neural networks up to 7x faster| | 774|dsdanielpark/Bard-API !2025-03-285277-1 |The python package that returns a response of Google Bard through API.| | 775|lxfater/inpaint-web !2025-03-2852552|A free and open-source inpainting & image-upscaling tool powered by webgpu and wasm on the browser。| | 776|leanprover/lean4 !2025-03-2852441|Lean 4 programming language and theorem prover| | 777|AILab-CVC/YOLO-World !2025-03-2852415|Real-Time Open-Vocabulary Object Detection| | 778|openchatai/OpenChat !2025-03-2852260 |Run and create custom ChatGPT-like bots with OpenChat, embed and share these bots anywhere, the open-source chatbot console.| | 779|mufeedvh/code2prompt !2025-03-28519414|A CLI tool to convert your codebase into a single LLM prompt with source tree, prompt templating, and token counting.| | 780|biobootloader/wolverine !2025-03-2851700 |Automatically repair python scripts through GPT-4 to give them regenerative abilities.| | 781|huggingface/parler-tts !2025-03-2851671|Inference and training library for high-quality TTS models.| | 782|Akegarasu/lora-scripts !2025-03-2851308 |LoRA training scripts use kohya-ss's trainer, for diffusion model.| | 783|openchatai/OpenCopilot !2025-03-285128-3|🤖 🔥 Let your users chat with your product features and execute things by text - open source Shopify sidekick| | 784|e2b-dev/fragments !2025-03-2851228|Open-source Next.js template for building apps that are fully generated by AI. By E2B.| | 785|microsoft/SynapseML !2025-03-2851132|Simple and Distributed Machine Learning| | 786|aigc-apps/sd-webui-EasyPhoto !2025-03-285108-1|📷 EasyPhoto | | 787|ChaoningZhang/MobileSAM !2025-03-2850944|This is the official code for Faster Segment Anything (MobileSAM) project that makes SAM lightweight| | 788|huggingface/alignment-handbook !2025-03-2850932|Robust recipes for to align language models with human and AI preferences| | 789|alpkeskin/mosint !2025-03-2850920|An automated e-mail OSINT tool| | 790|TaskingAI/TaskingAI !2025-03-2850891|The open source platform for AI-native application development.| | 791|lipku/metahuman-stream !2025-03-28507615|Real time interactive streaming digital human| | 792|OpenInterpreter/01 !2025-03-2850530|The open-source language model computer| | 793|open-compass/opencompass !2025-03-28505111|OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.| | 794|xxlong0/Wonder3D !2025-03-2850491|A cross-domain diffusion model for 3D reconstruction from a single image| | 795|pytorch/torchtune !2025-03-2850342|A Native-PyTorch Library for LLM Fine-tuning| | 796|SuperDuperDB/superduperdb !2025-03-2850192|🔮 SuperDuperDB: Bring AI to your database: Integrate, train and manage any AI models and APIs directly with your database and your data.| | 797|WhiskeySockets/Baileys !2025-03-2850057|Lightweight full-featured typescript/javascript WhatsApp Web API| | 798| mpociot/chatgpt-vscode !2025-03-2849890 | A VSCode extension that allows you to use ChatGPT | | 799|OpenGVLab/DragGAN !2025-03-2849880|Unofficial Implementation of DragGAN - "Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold" (DragGAN 全功能实现,在线Demo,本地部署试用,代码、模型已全部开源,支持Windows, macOS, Linux)| | 800|microsoft/LLMLingua !2025-03-2849824|To speed up LLMs' inference and enhance LLM's perceive of key information, compress the prompt and KV-Cache, which achieves up to 20x compression with minimal performance loss.| | 801|Zipstack/unstract !2025-03-2849745|No-code LLM Platform to launch APIs and ETL Pipelines to structure unstructured documents| | 802|OpenBMB/ToolBench !2025-03-2849621|An open platform for training, serving, and evaluating large language model for tool learning.| | 803|Fanghua-Yu/SUPIR !2025-03-2849593|SUPIR aims at developing Practical Algorithms for Photo-Realistic Image Restoration In the Wild| | 804|GaiaNet-AI/gaianet-node !2025-03-2849360|Install and run your own AI agent service| | 805|qodo-ai/qodo-cover !2025-03-284922-1|Qodo-Cover: An AI-Powered Tool for Automated Test Generation and Code Coverage Enhancement! 💻🤖🧪🐞| | 806|Zejun-Yang/AniPortrait !2025-03-2849042|AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animation| | 807|lvwzhen/law-cn-ai !2025-03-2848901 |⚖️ AI Legal Assistant| | 808|developersdigest/llm-answer-engine !2025-03-2848740|Build a Perplexity-Inspired Answer Engine Using Next.js, Groq, Mixtral, Langchain, OpenAI, Brave & Serper| | 809|Plachtaa/VITS-fast-fine-tuning !2025-03-2848640|This repo is a pipeline of VITS finetuning for fast speaker adaptation TTS, and many-to-many voice conversion| | 810|espeak-ng/espeak-ng !2025-03-2848601|eSpeak NG is an open source speech synthesizer that supports more than hundred languages and accents.| | 811|ant-research/CoDeF !2025-03-2848581|[CVPR'24 Highlight] Official PyTorch implementation of CoDeF: Content Deformation Fields for Temporally Consistent Video Processing| | 812|deepseek-ai/DeepSeek-V2 !2025-03-2848512|| | 813|XRPLF/rippled !2025-03-2848210|Decentralized cryptocurrency blockchain daemon implementing the XRP Ledger protocol in C++| | 814|AutoMQ/automq !2025-03-28478721|AutoMQ is a cloud-first alternative to Kafka by decoupling durability to S3 and EBS. 10x cost-effective. Autoscale in seconds. Single-digit ms latency.| | 815|AILab-CVC/VideoCrafter !2025-03-2847800|VideoCrafter1: Open Diffusion Models for High-Quality Video Generation| | 816|nautechsystems/nautilustrader !2025-03-2847702|A high-performance algorithmic trading platform and event-driven backtester| | 817|kyegomez/swarms !2025-03-2847563|The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework Join our Community: https://discord.com/servers/agora-999382051935506503| | 818|Deci-AI/super-gradients !2025-03-2847310 |Easily train or fine-tune SOTA computer vision models with one open source training library. The home of Yolo-NAS.| | 819|QwenLM/Qwen2.5-Coder !2025-03-2847236|Qwen2.5-Coder is the code version of Qwen2.5, the large language model series developed by Qwen team, Alibaba Cloud.| | 820|SCIR-HI/Huatuo-Llama-Med-Chinese !2025-03-2847191 |Repo for HuaTuo (华驼), Llama-7B tuned with Chinese medical knowledge| | 821|togethercomputer/RedPajama-Data !2025-03-2846841 |code for preparing large datasets for training large language models| | 822|mishushakov/llm-scraper !2025-03-2846704|Turn any webpage into structured data using LLMs| | 823|1rgs/jsonformer !2025-03-2846663 |A Bulletproof Way to Generate Structured JSON from Language Models| | 824|anti-work/shortest !2025-03-2846565|QA via natural language AI tests| | 825|dnhkng/GlaDOS !2025-03-2846510|This is the Personality Core for GLaDOS, the first steps towards a real-life implementation of the AI from the Portal series by Valve.| | 826|Nukem9/dlssg-to-fsr3 !2025-03-2846380|Adds AMD FSR3 Frame Generation to games by replacing Nvidia DLSS-G Frame Generation (nvngx_dlssg).| | 827|BuilderIO/ai-shell !2025-03-2846373 |A CLI that converts natural language to shell commands.| | 828|facebookincubator/AITemplate !2025-03-2846220 |AITemplate is a Python framework which renders neural network into high performance CUDA/HIP C++ code. Specialized for FP16 TensorCore (NVIDIA GPU) and MatrixCore (AMD GPU) inference.| | 829|terraform-aws-modules/terraform-aws-eks !2025-03-2846030|Terraform module to create AWS Elastic Kubernetes (EKS) resources 🇺🇦| | 830|timescale/pgai !2025-03-2845915|A suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL| | 831|awslabs/multi-agent-orchestrator !2025-03-2845788|Flexible and powerful framework for managing multiple AI agents and handling complex conversations| | 832|sanchit-gandhi/whisper-jax !2025-03-2845771 |Optimised JAX code for OpenAI's Whisper Model, largely built on the Hugging Face Transformers Whisper implementation| | 833|NVIDIA/NeMo-Guardrails !2025-03-2845755|NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems.| | 834|PathOfBuildingCommunity/PathOfBuilding !2025-03-2845480|Offline build planner for Path of Exile.| | 835|UX-Decoder/Segment-Everything-Everywhere-All-At-Once !2025-03-2845412 |Official implementation of the paper "Segment Everything Everywhere All at Once"| | 836|build-trust/ockam !2025-03-2845171|Orchestrate end-to-end encryption, cryptographic identities, mutual authentication, and authorization policies between distributed applications – at massive scale.| | 837|google-research/timesfm !2025-03-2845135|TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.| | 838|luosiallen/latent-consistency-model !2025-03-2844842|Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference| | 839|NVlabs/neuralangelo !2025-03-2844740|Official implementation of "Neuralangelo: High-Fidelity Neural Surface Reconstruction" (CVPR 2023)| | 840|kyegomez/tree-of-thoughts !2025-03-2844720 |Plug in and Play Implementation of Tree of Thoughts: Deliberate Problem Solving with Large Language Models that Elevates Model Reasoning by atleast 70%| | 841|sjvasquez/handwriting-synthesis !2025-03-2844720 |Handwriting Synthesis with RNNs ✏️| | 842| madawei2699/myGPTReader !2025-03-2844420 | A slack bot that can read any webpage, ebook or document and summarize it with chatGPT | | 843|OpenBMB/AgentVerse !2025-03-2844413|🤖 AgentVerse 🪐 provides a flexible framework that simplifies the process of building custom multi-agent environments for large language models (LLMs).| | 844|argmaxinc/WhisperKit !2025-03-2844395|Swift native speech recognition on-device for iOS and macOS applications.| | 845|landing-ai/vision-agent !2025-03-2844346|Vision agent| | 846|InternLM/xtuner !2025-03-2844273|An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM, Llama, Baichuan, Qwen, ChatGLM)| | 847|google-deepmind/alphageometry !2025-03-284421-1|Solving Olympiad Geometry without Human Demonstrations| | 848|ostris/ai-toolkit !2025-03-2844093|Various AI scripts. Mostly Stable Diffusion stuff.| | 849|LLM-Red-Team/kimi-free-api !2025-03-2844004|🚀 KIMI AI 长文本大模型白嫖服务,支持高速流式输出、联网搜索、长文档解读、图像解析、多轮对话,零配置部署,多路token支持,自动清理会话痕迹。| | 850|argilla-io/argilla !2025-03-2843991|Argilla is a collaboration platform for AI engineers and domain experts that require high-quality outputs, full data ownership, and overall efficiency.| | 851|spring-projects/spring-ai !2025-03-28438419|An Application Framework for AI Engineering| | 852|alibaba-damo-academy/FunClip !2025-03-2843555|Open-source, accurate and easy-to-use video clipping tool, LLM based AI clipping intergrated | | 853|yisol/IDM-VTON !2025-03-2843541|IDM-VTON : Improving Diffusion Models for Authentic Virtual Try-on in the Wild| | 854|fchollet/ARC-AGI !2025-03-2843368|The Abstraction and Reasoning Corpus| | 855|MahmoudAshraf97/whisper-diarization !2025-03-2843064|Automatic Speech Recognition with Speaker Diarization based on OpenAI Whisper| | 856|Speykious/cve-rs !2025-03-2843047|Blazingly 🔥 fast 🚀 memory vulnerabilities, written in 100% safe Rust. 🦀| | 857|Blealtan/efficient-kan !2025-03-2842770|An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN).| | 858|smol-ai/GodMode !2025-03-284249-1|AI Chat Browser: Fast, Full webapp access to ChatGPT / Claude / Bard / Bing / Llama2! I use this 20 times a day.| | 859|openai/plugins-quickstart !2025-03-284235-4 |Get a ChatGPT plugin up and running in under 5 minutes!| | 860|Doriandarko/maestro !2025-03-2842260|A framework for Claude Opus to intelligently orchestrate subagents.| | 861|philz1337x/clarity-upscaler !2025-03-2842204|Clarity-Upscaler: Reimagined image upscaling for everyone| | 862|facebookresearch/co-tracker !2025-03-2842142|CoTracker is a model for tracking any point (pixel) on a video.| | 863|xlang-ai/OpenAgents !2025-03-2842031|OpenAgents: An Open Platform for Language Agents in the Wild| | 864|alibaba/higress !2025-03-28419514|🤖 AI Gateway | | 865|ray-project/llm-numbers !2025-03-2841920 |Numbers every LLM developer should know| | 866|fudan-generative-vision/champ !2025-03-2841820|Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance| | 867|NVIDIA/garak !2025-03-2841795|the LLM vulnerability scanner| | 868|leetcode-mafia/cheetah !2025-03-2841740 |Whisper & GPT-based app for passing remote SWE interviews| | 869|ragapp/ragapp !2025-03-2841710|The easiest way to use Agentic RAG in any enterprise| | 870|collabora/WhisperSpeech !2025-03-2841692|An Open Source text-to-speech system built by inverting Whisper.| | 871|Facico/Chinese-Vicuna !2025-03-2841520 |Chinese-Vicuna: A Chinese Instruction-following LLaMA-based Model| | 872|openai/grok !2025-03-2841381|| | 873|CrazyBoyM/llama3-Chinese-chat !2025-03-2841361|Llama3 Chinese Repository with modified versions, and training and deployment resources| | 874|luban-agi/Awesome-AIGC-Tutorials !2025-03-2841301|Curated tutorials and resources for Large Language Models, AI Painting, and more.| | 875|damo-vilab/AnyDoor !2025-03-2841192|Official implementations for paper: Anydoor: zero-shot object-level image customization| | 876|raspberrypi/pico-sdk !2025-03-2841072|| | 877|mshumer/gpt-llm-trainer !2025-03-284097-1|| | 878|metavoiceio/metavoice-src !2025-03-284076-1|AI for human-level speech intelligence| | 879|intelowlproject/IntelOwl !2025-03-2840763|IntelOwl: manage your Threat Intelligence at scale| | 880|a16z-infra/ai-getting-started !2025-03-2840682|A Javascript AI getting started stack for weekend projects, including image/text models, vector stores, auth, and deployment configs| | 881|MarkFzp/mobile-aloha !2025-03-2840641|Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation| | 882| keijiro/AICommand !2025-03-2840380 | ChatGPT integration with Unity Editor | | 883|Tencent/HunyuanDiT !2025-03-2840214|Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding| | 884|hengyoush/kyanos !2025-03-2840061|Visualize the time packets spend in the kernel, watch & analyze in command line.| | 885|agiresearch/AIOS !2025-03-2840045|AIOS: LLM Agent Operating System| | 886|truefoundry/cognita !2025-03-2839773|RAG (Retrieval Augmented Generation) Framework for building modular, open source applications for production by TrueFoundry| | 887|X-PLUG/MobileAgent !2025-03-2839557|Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception| | 888|jackMort/ChatGPT.nvim !2025-03-2839231|ChatGPT Neovim Plugin: Effortless Natural Language Generation with OpenAI's ChatGPT API| | 889|microsoft/RD-Agent !2025-03-28388422|Research and development (R&D) is crucial for the enhancement of industrial productivity, especially in the AI era, where the core aspects of R&D are mainly focused on data and models. We are committed to automate these high-value generic R&D processes through our open source R&D automation tool RD-Agent, which let AI drive data-driven AI.| | 890|Significant-Gravitas/Auto-GPT-Plugins !2025-03-283882-1 |Plugins for Auto-GPT| | 891|apple/ml-mgie !2025-03-2838770|| | 892|OpenDriveLab/UniAD !2025-03-2838727|[CVPR 2023 Best Paper] Planning-oriented Autonomous Driving| | 893|llSourcell/DoctorGPT !2025-03-2838640|DoctorGPT is an LLM that can pass the US Medical Licensing Exam. It works offline, it's cross-platform, & your health data stays private.| | 894|FlagAI-Open/FlagAI !2025-03-2838601|FlagAI (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model.| | 895|krishnaik06/Roadmap-To-Learn-Generative-AI-In-2024 !2025-03-2838513|Roadmap To Learn Generative AI In 2024| | 896|SysCV/sam-hq !2025-03-2838491|Segment Anything in High Quality| | 897|google/security-research !2025-03-2838420|This project hosts security advisories and their accompanying proof-of-concepts related to research conducted at Google which impact non-Google owned code.| | 898|shroominic/codeinterpreter-api !2025-03-2838330|Open source implementation of the ChatGPT Code Interpreter 👾| | 899|Yonom/assistant-ui !2025-03-2838308|React Components for AI Chat 💬 🚀| | 900|nucleuscloud/neosync !2025-03-2838262|Open source data anonymization and synthetic data orchestration for developers. Create high fidelity synthetic data and sync it across your environments.| | 901|ravenscroftj/turbopilot !2025-03-2838230 |Turbopilot is an open source large-language-model based code completion engine that runs locally on CPU| | 902|NVlabs/Sana !2025-03-28380810|SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer| | 903|huggingface/distil-whisper !2025-03-2838061|Distilled variant of Whisper for speech recognition. 6x faster, 50% smaller, within 1% word error rate.| | 904|Codium-ai/AlphaCodium !2025-03-2837971|code generation tool that surpasses most human competitors in CodeContests| | 905|fixie-ai/ultravox !2025-03-2837710|A fast multimodal LLM for real-time voice| | 906|unit-mesh/auto-dev !2025-03-28375715|🧙‍AutoDev: The AI-powered coding wizard with multilingual support 🌐, auto code generation 🏗️, and a helpful bug-slaying assistant 🐞! Customizable prompts 🎨 and a magic Auto Dev/Testing/Document/Agent feature 🧪 included! 🚀| | 907|Marker-Inc-Korea/AutoRAG !2025-03-2837432|AutoML tool for RAG| | 908|deepseek-ai/DeepSeek-VL !2025-03-283734-1|DeepSeek-VL: Towards Real-World Vision-Language Understanding| | 909|hiyouga/ChatGLM-Efficient-Tuning !2025-03-283692-1|Fine-tuning ChatGLM-6B with PEFT | | 910| Yue-Yang/ChatGPT-Siri !2025-03-2836921 | Shortcuts for Siri using ChatGPT API gpt-3.5-turbo model | | 911|0hq/WebGPT !2025-03-2836901 |Run GPT model on the browser with WebGPU. An implementation of GPT inference in less than ~2000 lines of vanilla Javascript.| | 912|cvg/LightGlue !2025-03-2836903|LightGlue: Local Feature Matching at Light Speed (ICCV 2023)| | 913|deanxv/coze-discord-proxy !2025-03-2836791|代理Discord-Bot对话Coze-Bot,实现API形式请求GPT4对话模型/微调模型| | 914|MervinPraison/PraisonAI !2025-03-2836764|PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.| | 915|Ironclad/rivet !2025-03-2836345 |The open-source visual AI programming environment and TypeScript library| | 916|BasedHardware/OpenGlass !2025-03-2835851|Turn any glasses into AI-powered smart glasses| | 917|ricklamers/gpt-code-ui !2025-03-2835840 |An open source implementation of OpenAI's ChatGPT Code interpreter| | 918|whoiskatrin/chart-gpt !2025-03-2835830 |AI tool to build charts based on text input| | 919|github/CopilotForXcode !2025-03-2835788|Xcode extension for GitHub Copilot| | 920|hemansnation/God-Level-Data-Science-ML-Full-Stack !2025-03-2835570 |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 921|pytorch/torchchat !2025-03-2835461|Run PyTorch LLMs locally on servers, desktop and mobile| | 922| Kent0n-Li/ChatDoctor !2025-03-2835451 | A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge | | 923|xtekky/chatgpt-clone !2025-03-283519-1 |ChatGPT interface with better UI| | 924|jupyterlab/jupyter-ai !2025-03-2835120|A generative AI extension for JupyterLab| | 925|pytorch/torchtitan !2025-03-2835064|A native PyTorch Library for large model training| | 926|minimaxir/simpleaichat !2025-03-2835031|Python package for easily interfacing with chat apps, with robust features and minimal code complexity.| | 927|srush/Tensor-Puzzles !2025-03-2834930|Solve puzzles. Improve your pytorch.| | 928|Helicone/helicone !2025-03-2834918|🧊 Open source LLM-Observability Platform for Developers. One-line integration for monitoring, metrics, evals, agent tracing, prompt management, playground, etc. Supports OpenAI SDK, Vercel AI SDK, Anthropic SDK, LiteLLM, LLamaIndex, LangChain, and more. 🍓 YC W23| | 929|run-llama/llama-hub !2025-03-2834740|A library of data loaders for LLMs made by the community -- to be used with LlamaIndex and/or LangChain| | 930|NExT-GPT/NExT-GPT !2025-03-2834700|Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model| | 931|souzatharsis/podcastfy !2025-03-2834661|An Open Source Python alternative to NotebookLM's podcast feature: Transforming Multimodal Content into Captivating Multilingual Audio Conversations with GenAI| | 932|Dataherald/dataherald !2025-03-2834450|Interact with your SQL database, Natural Language to SQL using LLMs| | 933|iryna-kondr/scikit-llm !2025-03-2834350 |Seamlessly integrate powerful language models like ChatGPT into scikit-learn for enhanced text analysis tasks.| | 934|Netflix/maestro !2025-03-2834230|Maestro: Netflix’s Workflow Orchestrator| | 935|CanadaHonk/porffor !2025-03-2833560|A from-scratch experimental AOT JS engine, written in JS| | 936|hustvl/Vim !2025-03-2833323|Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model| | 937|pashpashpash/vault-ai !2025-03-2833250 |OP Vault ChatGPT: Give ChatGPT long-term memory using the OP Stack (OpenAI + Pinecone Vector Database). Upload your own custom knowledge base files (PDF, txt, etc) using a simple React frontend.| | 938|tencentmusic/supersonic !2025-03-28330611|SuperSonic is the next-generation BI platform that integrates Chat BI (powered by LLM) and Headless BI (powered by semantic layer) paradigms.| | 939|billmei/every-chatgpt-gui !2025-03-2832981|Every front-end GUI client for ChatGPT| | 940|microsoft/torchgeo !2025-03-2832772|TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data| | 941|LLMBook-zh/LLMBook-zh.github.io !2025-03-28326110|《大语言模型》作者:赵鑫,李军毅,周昆,唐天一,文继荣| | 942|dvlab-research/MiniGemini !2025-03-2832601|Official implementation for Mini-Gemini| | 943|rashadphz/farfalle !2025-03-2832460|🔍 AI search engine - self-host with local or cloud LLMs| | 944|Luodian/Otter !2025-03-2832450|🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.| | 945|AprilNEA/ChatGPT-Admin-Web !2025-03-2832370 | ChatGPT WebUI with user management and admin dashboard system| | 946|MarkFzp/act-plus-plus !2025-03-2832365|Imitation Learning algorithms with Co-traing for Mobile ALOHA: ACT, Diffusion Policy, VINN| | 947|ethen8181/machine-learning !2025-03-2832310|🌎 machine learning tutorials (mainly in Python3)| | 948|opengeos/segment-geospatial !2025-03-2832312 |A Python package for segmenting geospatial data with the Segment Anything Model (SAM)| | 949|iusztinpaul/hands-on-llms !2025-03-283225-2|🦖 𝗟𝗲𝗮𝗿𝗻 about 𝗟𝗟𝗠𝘀, 𝗟𝗟𝗠𝗢𝗽𝘀, and 𝘃𝗲𝗰𝘁𝗼𝗿 𝗗𝗕𝘀 for free by designing, training, and deploying a real-time financial advisor LLM system ~ 𝘴𝘰𝘶𝘳𝘤𝘦 𝘤𝘰𝘥𝘦 + 𝘷𝘪𝘥𝘦𝘰 & 𝘳𝘦𝘢𝘥𝘪𝘯𝘨 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭𝘴| | 950|ToTheBeginning/PuLID !2025-03-2832221|Official code for PuLID: Pure and Lightning ID Customization via Contrastive Alignment| | 951|neo4j-labs/llm-graph-builder !2025-03-2832164|Neo4j graph construction from unstructured data using LLMs| | 952|OpenGVLab/InternGPT !2025-03-2832150 |InternGPT (iGPT) is an open source demo platform where you can easily showcase your AI models. Now it supports DragGAN, ChatGPT, ImageBind, multimodal chat like GPT-4, SAM, interactive image editing, etc. Try it at igpt.opengvlab.com (支持DragGAN、ChatGPT、ImageBind、SAM的在线Demo系统)| | 953|PKU-YuanGroup/Video-LLaVA !2025-03-2832060 |Video-LLaVA: Learning United Visual Representation by Alignment Before Projection| | 954|DataTalksClub/llm-zoomcamp !2025-03-2832030|LLM Zoomcamp - a free online course about building an AI bot that can answer questions about your knowledge base| | 955|gptscript-ai/gptscript !2025-03-2832010|Natural Language Programming| |!green-up-arrow.svg 956|isaac-sim/IsaacLab !2025-03-28320113|Unified framework for robot learning built on NVIDIA Isaac Sim| |!red-down-arrow 957|ai-boost/Awesome-GPTs !2025-03-2832003|Curated list of awesome GPTs 👍.| | 958|huggingface/safetensors !2025-03-2831901|Simple, safe way to store and distribute tensors| | 959|linyiLYi/bilibot !2025-03-2831771|A local chatbot fine-tuned by bilibili user comments.| | 960| project-baize/baize-chatbot !2025-03-283168-1 | Let ChatGPT teach your own chatbot in hours with a single GPU! | | 961|Azure-Samples/cognitive-services-speech-sdk !2025-03-2831280|Sample code for the Microsoft Cognitive Services Speech SDK| | 962|microsoft/Phi-3CookBook !2025-03-2831231|This is a Phi-3 book for getting started with Phi-3. Phi-3, a family of open AI models developed by Microsoft. Phi-3 models are the most capable and cost-effective small language models (SLMs) available, outperforming models of the same size and next size up across a variety of language, reasoning, coding, and math benchmarks.| | 963|neuralmagic/deepsparse !2025-03-2831180|Sparsity-aware deep learning inference runtime for CPUs| | 964|sugarforever/chat-ollama !2025-03-2831000|ChatOllama is an open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.| | 965|amazon-science/chronos-forecasting !2025-03-2830974|Chronos: Pretrained (Language) Models for Probabilistic Time Series Forecasting| | 966|damo-vilab/i2vgen-xl !2025-03-2830902|Official repo for VGen: a holistic video generation ecosystem for video generation building on diffusion models| | 967|google-deepmind/gemma !2025-03-2830733|Open weights LLM from Google DeepMind.| | 968|iree-org/iree !2025-03-2830733|A retargetable MLIR-based machine learning compiler and runtime toolkit.| | 969|NVlabs/VILA !2025-03-2830724|VILA - a multi-image visual language model with training, inference and evaluation recipe, deployable from cloud to edge (Jetson Orin and laptops)| | 970|microsoft/torchscale !2025-03-2830661|Foundation Architecture for (M)LLMs| | 971|openai/openai-realtime-console !2025-03-2830656|React app for inspecting, building and debugging with the Realtime API| | 972|daveshap/OpenAIAgentSwarm !2025-03-2830610|HAAS = Hierarchical Autonomous Agent Swarm - "Resistance is futile!"| | 973|microsoft/PromptWizard !2025-03-2830555|Task-Aware Agent-driven Prompt Optimization Framework| | 974|CVI-SZU/Linly !2025-03-2830490 |Chinese-LLaMA basic model; ChatFlow Chinese conversation model; NLP pre-training/command fine-tuning dataset| | 975|cohere-ai/cohere-toolkit !2025-03-2830130|Toolkit is a collection of prebuilt components enabling users to quickly build and deploy RAG applications.| | 976|adamcohenhillel/ADeus !2025-03-2830131|An open source AI wearable device that captures what you say and hear in the real world and then transcribes and stores it on your own server. You can then chat with Adeus using the app, and it will have all the right context about what you want to talk about - a truly personalized, personal AI.| | 977|Lightning-AI/LitServe !2025-03-2830132|Lightning-fast serving engine for AI models. Flexible. Easy. Enterprise-scale.| | 978|potpie-ai/potpie !2025-03-2829973|Prompt-To-Agent : Create custom engineering agents for your codebase| | 979|ant-design/x !2025-03-28299529|Craft AI-driven interfaces effortlessly 🤖| | 980|meta-llama/PurpleLlama !2025-03-2829832|Set of tools to assess and improve LLM security.| | 981|williamyang1991/RerenderAVideo !2025-03-2829800|[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation| | 982|baichuan-inc/Baichuan-13B !2025-03-2829790|A 13B large language model developed by Baichuan Intelligent Technology| | 983|Stability-AI/stable-audio-tools !2025-03-2829761|Generative models for conditional audio generation| | 984|li-plus/chatglm.cpp !2025-03-2829720|C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & more LLMs| | 985|NVIDIA/GenerativeAIExamples !2025-03-2829546|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| | 986|Josh-XT/AGiXT !2025-03-2829521 |AGiXT is a dynamic AI Automation Platform that seamlessly orchestrates instruction management and complex task execution across diverse AI providers. Combining adaptive memory, smart features, and a versatile plugin system, AGiXT delivers efficient and comprehensive AI solutions.| | 987|MrForExample/ComfyUI-3D-Pack !2025-03-2829515|An extensive node suite that enables ComfyUI to process 3D inputs (Mesh & UV Texture, etc) using cutting edge algorithms (3DGS, NeRF, etc.)| | 988|olimorris/codecompanion.nvim !2025-03-28295111|✨ AI-powered coding, seamlessly in Neovim. Supports Anthropic, Copilot, Gemini, Ollama, OpenAI and xAI LLMs| | 989|salesforce/CodeT5 !2025-03-282940-1 |Home of CodeT5: Open Code LLMs for Code Understanding and Generation| | 990|facebookresearch/ijepa !2025-03-2829391|Official codebase for I-JEPA, the Image-based Joint-Embedding Predictive Architecture. First outlined in the CVPR paper, "Self-supervised learning from images with a joint-embedding predictive architecture."| | 991|eureka-research/Eureka !2025-03-2829351|Official Repository for "Eureka: Human-Level Reward Design via Coding Large Language Models"| | 992|NVIDIA/trt-llm-rag-windows !2025-03-282934-1|A developer reference project for creating Retrieval Augmented Generation (RAG) chatbots on Windows using TensorRT-LLM| | 993|gmpetrov/databerry !2025-03-282930-1|The no-code platform for building custom LLM Agents| | 994|AI4Finance-Foundation/FinRobot !2025-03-28291946|FinRobot: An Open-Source AI Agent Platform for Financial Applications using LLMs 🚀 🚀 🚀| | 995|nus-apr/auto-code-rover !2025-03-2829013|A project structure aware autonomous software engineer aiming for autonomous program improvement| | 996|deepseek-ai/DreamCraft3D !2025-03-2828921|[ICLR 2024] Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior| | 997|mlabonne/llm-datasets !2025-03-2828848|High-quality datasets, tools, and concepts for LLM fine-tuning.| | 998|facebookresearch/jepa !2025-03-2828712|PyTorch code and models for V-JEPA self-supervised learning from video.| | 999|facebookresearch/habitat-sim !2025-03-2828604|A flexible, high-performance 3D simulator for Embodied AI research.| | 1000|xenova/whisper-web !2025-03-2828581|ML-powered speech recognition directly in your browser| | 1001|cvlab-columbia/zero123 !2025-03-2828530|Zero-1-to-3: Zero-shot One Image to 3D Object: https://zero123.cs.columbia.edu/| | 1002|yuruotong1/autoMate !2025-03-28285121|Like Manus, Computer Use Agent(CUA) and Omniparser, we are computer-using agents.AI-driven local automation assistant that uses natural language to make computers work by themselves| | 1003|muellerberndt/mini-agi !2025-03-282845-1 |A minimal generic autonomous agent based on GPT3.5/4. Can analyze stock prices, perform network security tests, create art, and order pizza.| | 1004|allenai/open-instruct !2025-03-2828432|| | 1005|CodingChallengesFYI/SharedSolutions !2025-03-2828360|Publicly shared solutions to Coding Challenges| | 1006|hegelai/prompttools !2025-03-2828220|Open-source tools for prompt testing and experimentation, with support for both LLMs (e.g. OpenAI, LLaMA) and vector databases (e.g. Chroma, Weaviate).| | 1007|mazzzystar/Queryable !2025-03-2828222|Run CLIP on iPhone to Search Photos.| | 1008|Doubiiu/DynamiCrafter !2025-03-2828173|DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors| | 1009|SamurAIGPT/privateGPT !2025-03-282805-1 |An app to interact privately with your documents using the power of GPT, 100% privately, no data leaks| | 1010|facebookresearch/Pearl !2025-03-2827951|A Production-ready Reinforcement Learning AI Agent Library brought by the Applied Reinforcement Learning team at Meta.| | 1011|intuitem/ciso-assistant-community !2025-03-2827954|CISO Assistant is a one-stop-shop for GRC, covering Risk, AppSec and Audit Management and supporting +70 frameworks worldwide with auto-mapping: NIST CSF, ISO 27001, SOC2, CIS, PCI DSS, NIS2, CMMC, PSPF, GDPR, HIPAA, Essential Eight, NYDFS-500, DORA, NIST AI RMF, 800-53, 800-171, CyFun, CJIS, AirCyber, NCSC, ECC, SCF and so much more| | 1012|facebookresearch/audio2photoreal !2025-03-2827840|Code and dataset for photorealistic Codec Avatars driven from audio| | 1013|Azure/azure-rest-api-specs !2025-03-2827770|The source for REST API specifications for Microsoft Azure.| | 1014|SCUTlihaoyu/open-chat-video-editor !2025-03-2827690 |Open source short video automatic generation tool| | 1015|Alpha-VLLM/LLaMA2-Accessory !2025-03-2827642|An Open-source Toolkit for LLM Development| | 1016|johnma2006/mamba-minimal !2025-03-2827601|Simple, minimal implementation of the Mamba SSM in one file of PyTorch.| | 1017|nerfstudio-project/gsplat !2025-03-2827576|CUDA accelerated rasterization of gaussian splatting| | 1018|Physical-Intelligence/openpi !2025-03-28274617|| | 1019|leptonai/leptonai !2025-03-2827246|A Pythonic framework to simplify AI service building| |!green-up-arrow.svg 1020|joanrod/star-vector !2025-03-28271149|StarVector is a foundation model for SVG generation that transforms vectorization into a code generation task. Using a vision-language modeling architecture, StarVector processes both visual and textual inputs to produce high-quality SVG code with remarkable precision.| |!red-down-arrow 1021|jqnatividad/qsv !2025-03-2827092|CSVs sliced, diced & analyzed.| | 1022|FranxYao/chain-of-thought-hub !2025-03-2826991|Benchmarking large language models' complex reasoning ability with chain-of-thought prompting| | 1023|princeton-nlp/SWE-bench !2025-03-2826965|[ICLR 2024] SWE-Bench: Can Language Models Resolve Real-world Github Issues?| | 1024|elastic/otel-profiling-agent !2025-03-2826930|The production-scale datacenter profiler| | 1025|src-d/hercules !2025-03-2826900|Gaining advanced insights from Git repository history.| | 1026|lanqian528/chat2api !2025-03-2826695|A service that can convert ChatGPT on the web to OpenAI API format.| | 1027|ishan0102/vimGPT !2025-03-2826681|Browse the web with GPT-4V and Vimium| | 1028|TMElyralab/MuseV !2025-03-2826650|MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising| | 1029|georgia-tech-db/eva !2025-03-2826600 |AI-Relational Database System | | 1030|kubernetes-sigs/controller-runtime !2025-03-2826590|Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)| | 1031|gptlink/gptlink !2025-03-2826550 |Build your own free commercial ChatGPT environment in 10 minutes. The setup is simple and includes features such as user management, orders, tasks, and payments| | 1032|pytorch/executorch !2025-03-2826534|On-device AI across mobile, embedded and edge for PyTorch| | 1033|NVIDIA/nv-ingest !2025-03-2826290|NVIDIA Ingest is an early access set of microservices for parsing hundreds of thousands of complex, messy unstructured PDFs and other enterprise documents into metadata and text to embed into retrieval systems.| | 1034|SuperTux/supertux !2025-03-2826081|SuperTux source code| | 1035|abi/secret-llama !2025-03-2826050|Fully private LLM chatbot that runs entirely with a browser with no server needed. Supports Mistral and LLama 3.| | 1036|liou666/polyglot !2025-03-2825841 |Desktop AI Language Practice Application| | 1037|janhq/nitro !2025-03-2825821|A fast, lightweight, embeddable inference engine to supercharge your apps with local AI. OpenAI-compatible API| | 1038|deepseek-ai/DeepSeek-Math !2025-03-2825825|DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models| | 1039|anthropics/prompt-eng-interactive-tutorial !2025-03-2825781|Anthropic's Interactive Prompt Engineering Tutorial| | 1040|microsoft/promptbench !2025-03-2825741|A unified evaluation framework for large language models| | 1041|baaivision/Painter !2025-03-2825580 |Painter & SegGPT Series: Vision Foundation Models from BAAI| | 1042|OpenPipe/OpenPipe !2025-03-2825581|Turn expensive prompts into cheap fine-tuned models| | 1043|TracecatHQ/tracecat !2025-03-2825531|😼 The AI-native, open source alternative to Tines / Splunk SOAR.| | 1044|JoshuaC215/agent-service-toolkit !2025-03-2825528|Full toolkit for running an AI agent service built with LangGraph, FastAPI and Streamlit| | 1045|databricks/dbrx !2025-03-2825460|Code examples and resources for DBRX, a large language model developed by Databricks| | 1046|lamini-ai/lamini !2025-03-2825271 |Official repo for Lamini's data generator for generating instructions to train instruction-following LLMs| | 1047|mshumer/gpt-author !2025-03-282510-1|| | 1048|TMElyralab/MusePose !2025-03-2824971|MusePose: a Pose-Driven Image-to-Video Framework for Virtual Human Generation| | 1049|Kludex/fastapi-tips !2025-03-2824974|FastAPI Tips by The FastAPI Expert!| | 1050|openai/simple-evals !2025-03-2824813|| | 1051|iterative/datachain !2025-03-2824732|AI-data warehouse to enrich, transform and analyze data from cloud storages| | 1052|girafe-ai/ml-course !2025-03-2824703|Open Machine Learning course| | 1053|kevmo314/magic-copy !2025-03-2824620 |Magic Copy is a Chrome extension that uses Meta's Segment Anything Model to extract a foreground object from an image and copy it to the clipboard.| | 1054|Eladlev/AutoPrompt !2025-03-2824432|A framework for prompt tuning using Intent-based Prompt Calibration| | 1055|OpenBMB/CPM-Bee !2025-03-282434-1 |A bilingual large-scale model with trillions of parameters| | 1056|IDEA-Research/T-Rex !2025-03-2824310|T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy| | 1057|microsoft/genaiscript !2025-03-2824202|Automatable GenAI Scripting| | 1058|paulpierre/RasaGPT !2025-03-2824090 |💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram| | 1059|ashishpatel26/LLM-Finetuning !2025-03-2823911|LLM Finetuning with peft| | 1060|SoraWebui/SoraWebui !2025-03-2823570|SoraWebui is an open-source Sora web client, enabling users to easily create videos from text with OpenAI's Sora model.| | 1061|6drf21e/ChatTTScolab !2025-03-2823491|🚀 一键部署(含离线整合包)!基于 ChatTTS ,支持音色抽卡、长音频生成和分角色朗读。简单易用,无需复杂安装。| | 1062|Azure/PyRIT !2025-03-2823343|The Python Risk Identification Tool for generative AI (PyRIT) is an open access automation framework to empower security professionals and machine learning engineers to proactively find risks in their generative AI systems.| | 1063|tencent-ailab/V-Express !2025-03-2823201|V-Express aims to generate a talking head video under the control of a reference image, an audio, and a sequence of V-Kps images.| | 1064|THUDM/CogVLM2 !2025-03-2823170|GPT4V-level open-source multi-modal model based on Llama3-8B| | 1065|dvmazur/mixtral-offloading !2025-03-2823001|Run Mixtral-8x7B models in Colab or consumer desktops| | 1066|semanser/codel !2025-03-2822950|✨ Fully autonomous AI Agent that can perform complicated tasks and projects using terminal, browser, and editor.| | 1067|mshumer/gpt-investor !2025-03-2822590|| | 1068|aixcoder-plugin/aiXcoder-7B !2025-03-2822550|official repository of aiXcoder-7B Code Large Language Model| | 1069|Azure-Samples/graphrag-accelerator !2025-03-2822503|One-click deploy of a Knowledge Graph powered RAG (GraphRAG) in Azure| | 1070|emcf/engshell !2025-03-2821830 |An English-language shell for any OS, powered by LLMs| | 1071|hncboy/chatgpt-web-java !2025-03-2821771|ChatGPT project developed in Java, based on Spring Boot 3 and JDK 17, supports both AccessToken and ApiKey modes| | 1072|openai/consistencydecoder !2025-03-2821692|Consistency Distilled Diff VAE| | 1073|Alpha-VLLM/Lumina-T2X !2025-03-2821681|Lumina-T2X is a unified framework for Text to Any Modality Generation| | 1074|bghira/SimpleTuner !2025-03-2821612|A general fine-tuning kit geared toward Stable Diffusion 2.1, Stable Diffusion 3, DeepFloyd, and SDXL.| | 1075|JiauZhang/DragGAN !2025-03-2821530 |Implementation of DragGAN: Interactive Point-based Manipulation on the Generative Image Manifold| | 1076|cgpotts/cs224u !2025-03-2821390|Code for Stanford CS224u| | 1077|PKU-YuanGroup/MoE-LLaVA !2025-03-2821300|Mixture-of-Experts for Large Vision-Language Models| | 1078|darrenburns/elia !2025-03-2820831|A snappy, keyboard-centric terminal user interface for interacting with large language models. Chat with ChatGPT, Claude, Llama 3, Phi 3, Mistral, Gemma and more.| | 1079|ageerle/ruoyi-ai !2025-03-28207898|RuoYi AI 是一个全栈式 AI 开发平台,旨在帮助开发者快速构建和部署个性化的 AI 应用。| | 1080|NVIDIA/gpu-operator !2025-03-2820510|NVIDIA GPU Operator creates/configures/manages GPUs atop Kubernetes| | 1081|BAAI-Agents/Cradle !2025-03-2820481|The Cradle framework is a first attempt at General Computer Control (GCC). Cradle supports agents to ace any computer task by enabling strong reasoning abilities, self-improvment, and skill curation, in a standardized general environment with minimal requirements.| | 1082|microsoft/aici !2025-03-2820080|AICI: Prompts as (Wasm) Programs| | 1083|PRIS-CV/DemoFusion !2025-03-2820040|Let us democratise high-resolution generation! (arXiv 2023)| | 1084|apple/axlearn !2025-03-2820012|An Extensible Deep Learning Library| | 1085|naver/mast3r !2025-03-2819685|Grounding Image Matching in 3D with MASt3R| | 1086|liltom-eth/llama2-webui !2025-03-281958-1|Run Llama 2 locally with gradio UI on GPU or CPU from anywhere (Linux/Windows/Mac). Supporting Llama-2-7B/13B/70B with 8-bit, 4-bit. Supporting GPU inference (6 GB VRAM) and CPU inference.| | 1087|GaParmar/img2img-turbo !2025-03-2819582|One-step image-to-image with Stable Diffusion turbo: sketch2image, day2night, and more| | 1088|Niek/chatgpt-web !2025-03-2819560|ChatGPT web interface using the OpenAI API| | 1089|huggingface/cookbook !2025-03-2819421|Open-source AI cookbook| | 1090|pytorch/ao !2025-03-2819241|PyTorch native quantization and sparsity for training and inference| | 1091|emcie-co/parlant !2025-03-2819053|The behavior guidance framework for customer-facing LLM agents| | 1092|ymcui/Chinese-LLaMA-Alpaca-3 !2025-03-2818980|中文羊驼大模型三期项目 (Chinese Llama-3 LLMs) developed from Meta Llama 3| | 1093|Nutlope/notesGPT !2025-03-2818811|Record voice notes & transcribe, summarize, and get tasks| | 1094|InstantStyle/InstantStyle !2025-03-2818791|InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation 🔥| | 1095|idaholab/moose !2025-03-2818771|Multiphysics Object Oriented Simulation Environment| | 1096|The-OpenROAD-Project/OpenROAD !2025-03-2818351|OpenROAD's unified application implementing an RTL-to-GDS Flow. Documentation at https://openroad.readthedocs.io/en/latest/| | 1097|alibaba/spring-ai-alibaba !2025-03-281831121|Agentic AI Framework for Java Developers| | 1098|ytongbai/LVM !2025-03-2817990|Sequential Modeling Enables Scalable Learning for Large Vision Models| | 1099|microsoft/sample-app-aoai-chatGPT !2025-03-2817981|[PREVIEW] Sample code for a simple web chat experience targeting chatGPT through AOAI.| | 1100|AI-Citizen/SolidGPT !2025-03-2817830|Chat everything with your code repository, ask repository level code questions, and discuss your requirements. AI Scan and learning your code repository, provide you code repository level answer🧱 🧱| | 1101|YangLing0818/RPG-DiffusionMaster !2025-03-2817784|Mastering Text-to-Image Diffusion: Recaptioning, Planning, and Generating with Multimodal LLMs (PRG)| | 1102|kyegomez/BitNet !2025-03-2817710|Implementation of "BitNet: Scaling 1-bit Transformers for Large Language Models" in pytorch| | 1103|eloialonso/diamond !2025-03-2817671|DIAMOND (DIffusion As a Model Of eNvironment Dreams) is a reinforcement learning agent trained in a diffusion world model.| | 1104|flowdriveai/flowpilot !2025-03-2817250|flow-pilot is an openpilot based driver assistance system that runs on linux, windows and android powered machines.| | 1105|xlang-ai/OSWorld !2025-03-2817200|OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments| | 1106|linyiLYi/snake-ai !2025-03-2817031|An AI agent that beats the classic game "Snake".| | 1107|baaivision/Emu !2025-03-2816991|Emu Series: Generative Multimodal Models from BAAI| | 1108|kevmo314/scuda !2025-03-2816870|SCUDA is a GPU over IP bridge allowing GPUs on remote machines to be attached to CPU-only machines.| | 1109|SharifiZarchi/IntroductiontoMachineLearning !2025-03-2816701|دوره‌ی مقدمه‌ای بر یادگیری ماشین، برای دانشجویان| | 1110|google/maxtext !2025-03-2816670|A simple, performant and scalable Jax LLM!| | 1111|ml-explore/mlx-swift-examples !2025-03-2816471|Examples using MLX Swift| | 1112|unitreerobotics/unitreerlgym !2025-03-2816256|| | 1113|collabora/WhisperFusion !2025-03-2815901|WhisperFusion builds upon the capabilities of WhisperLive and WhisperSpeech to provide a seamless conversations with an AI.| | 1114|lichao-sun/Mora !2025-03-2815520|Mora: More like Sora for Generalist Video Generation| | 1115|GoogleCloudPlatform/localllm !2025-03-2815370|Run LLMs locally on Cloud Workstations| | 1116|TencentARC/BrushNet !2025-03-2815330|The official implementation of paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"| | 1117|ai-christianson/RA.Aid !2025-03-2815288|Develop software autonomously.| | 1118|stephansturges/WALDO !2025-03-2815170|Whereabouts Ascertainment for Low-lying Detectable Objects. The SOTA in FOSS AI for drones!| | 1119|skills/copilot-codespaces-vscode !2025-03-2815112|Develop with AI-powered code suggestions using GitHub Copilot and VS Code| | 1120|andrewnguonly/Lumos !2025-03-2814920|A RAG LLM co-pilot for browsing the web, powered by local LLMs| | 1121|TeamNewPipe/NewPipeExtractor !2025-03-2814811|NewPipe's core library for extracting data from streaming sites| | 1122|mhamilton723/FeatUp !2025-03-2814770|Official code for "FeatUp: A Model-Agnostic Frameworkfor Features at Any Resolution" ICLR 2024| | 1123|AnswerDotAI/fsdpqlora !2025-03-2814671|Training LLMs with QLoRA + FSDP| | 1124|jgravelle/AutoGroq !2025-03-2814330|| | 1125|OpenGenerativeAI/llm-colosseum !2025-03-2814130|Benchmark LLMs by fighting in Street Fighter 3! The new way to evaluate the quality of an LLM| | 1126|microsoft/vscode-ai-toolkit !2025-03-2814000|| | 1127|McGill-NLP/webllama !2025-03-2813930|Llama-3 agents that can browse the web by following instructions and talking to you| | 1128|lucidrains/self-rewarding-lm-pytorch !2025-03-2813760|Implementation of the training framework proposed in Self-Rewarding Language Model, from MetaAI| | 1129|ishaan1013/sandbox !2025-03-2813650|A cloud-based code editing environment with an AI copilot and real-time collaboration.| | 1130|goatcorp/Dalamud !2025-03-2813275|FFXIV plugin framework and API| | 1131|Lightning-AI/lightning-thunder !2025-03-2813151|Make PyTorch models Lightning fast! Thunder is a source to source compiler for PyTorch. It enables using different hardware executors at once.| | 1132|PKU-YuanGroup/MagicTime !2025-03-2813052|MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators| | 1133|SakanaAI/evolutionary-model-merge !2025-03-2813000|Official repository of Evolutionary Optimization of Model Merging Recipes| | 1134|a-real-ai/pywinassistant !2025-03-2812950|The first open source Large Action Model generalist Artificial Narrow Intelligence that controls completely human user interfaces by only using natural language. PyWinAssistant utilizes Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models.| | 1135|TraceMachina/nativelink !2025-03-2812630|NativeLink is an open source high-performance build cache and remote execution server, compatible with Bazel, Buck2, Reclient, and other RBE-compatible build systems. It offers drastically faster builds, reduced test flakiness, and significant infrastructure cost savings.| | 1136|MLSysOps/MLE-agent !2025-03-2812500|🤖 MLE-Agent: Your intelligent companion for seamless AI engineering and research. 🔍 Integrate with arxiv and paper with code to provide better code/research plans 🧰 OpenAI, Ollama, etc supported. 🎆 Code RAG| | 1137|wpilibsuite/allwpilib !2025-03-2811610|Official Repository of WPILibJ and WPILibC| | 1138|elfvingralf/macOSpilot-ai-assistant !2025-03-2811470|Voice + Vision powered AI assistant that answers questions about any application, in context and in audio.| | 1139|langchain-ai/langchain-extract !2025-03-2811210|🦜⛏️ Did you say you like data?| | 1140|FoundationVision/GLEE !2025-03-2811120|【CVPR2024】GLEE: General Object Foundation Model for Images and Videos at Scale| | 1141|Profluent-AI/OpenCRISPR !2025-03-2810990|AI-generated gene editing systems| | 1142|zju3dv/EasyVolcap !2025-03-2810821|[SIGGRAPH Asia 2023 (Technical Communications)] EasyVolcap: Accelerating Neural Volumetric Video Research| | 1143|PaddlePaddle/PaddleHelix !2025-03-2810560|Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集| | 1144|myshell-ai/JetMoE !2025-03-289800|Reaching LLaMA2 Performance with 0.1M Dollars| | 1145|likejazz/llama3.np !2025-03-289770|llama3.np is pure NumPy implementation for Llama 3 model.| | 1146|mustafaaljadery/gemma-2B-10M !2025-03-289500|Gemma 2B with 10M context length using Infini-attention.| | 1147|HITsz-TMG/FilmAgent !2025-03-289382|Resources of our paper "FilmAgent: A Multi-Agent Framework for End-to-End Film Automation in Virtual 3D Spaces". New versions in the making!| | 1148|aws-samples/amazon-bedrock-samples !2025-03-289362|This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models| | 1149|Akkudoktor-EOS/EOS !2025-03-2893154|This repository features an Energy Optimization System (EOS) that optimizes energy distribution, usage for batteries, heat pumps& household devices. It includes predictive models for electricity prices (planned), load forecasting& dynamic optimization to maximize energy efficiency & minimize costs. Founder Dr. Andreas Schmitz (YouTube @akkudoktor)| Tip: | symbol| rule | | :----| :---- | |🔥 | 256 1k| |!green-up-arrow.svg !red-down-arrow | ranking up / down| |⭐ | on trending page today| [Back to Top] Tools | No. | Tool | Description | | ----:|:----------------------------------------------- |:------------------------------------------------------------------------------------------- | | 1 | ChatGPT | A sibling model to InstructGPT, which is trained to follow instructions in a prompt and provide a detailed response | | 2 | DALL·E 2 | Create original, realistic images and art from a text description | | 3 | Murf AI | AI enabled, real people's voices| | 4 | Midjourney | An independent research lab that produces an artificial intelligence program under the same name that creates images from textual descriptions, used in Discord | 5 | Make-A-Video | Make-A-Video is a state-of-the-art AI system that generates videos from text | | 6 | Creative Reality™ Studio by D-ID| Use generative AI to create future-facing videos| | 7 | chat.D-ID| The First App Enabling Face-to-Face Conversations with ChatGPT| | 8 | Notion AI| Access the limitless power of AI, right inside Notion. Work faster. Write better. Think bigger. | | 9 | Runway| Text to Video with Gen-2 | | 10 | Resemble AI| Resemble’s AI voice generator lets you create human–like voice overs in seconds | | 11 | Cursor| Write, edit, and chat about your code with a powerful AI | | 12 | Hugging Face| Build, train and deploy state of the art models powered by the reference open source in machine learning | | 13 | Claude | A next-generation AI assistant for your tasks, no matter the scale | | 14 | Poe| Poe lets you ask questions, get instant answers, and have back-and-forth conversations with AI. Gives access to GPT-4, gpt-3.5-turbo, Claude from Anthropic, and a variety of other bots| [Back to Top] Websites | No. | WebSite |Description | | ----:|:------------------------------------------ |:---------------------------------------------------------------------------------------- | | 1 | OpenAI | An artificial intelligence research lab | | 2 | Bard | Base Google's LaMDA chatbots and pull from internet | | 3 | ERNIE Bot | Baidu’s new generation knowledge-enhanced large language model is a new member of the Wenxin large model family | | 4 | DALL·E 2 | An AI system that can create realistic images and art from a description in natural language | | 5 | Whisper | A general-purpose speech recognition model | | 6| CivitAI| A platform that makes it easy for people to share and discover resources for creating AI art| | 7|D-ID| D-ID’s Generative AI enables users to transform any picture or video into extraordinary experiences| | 8| Nvidia eDiff-I| Text-to-Image Diffusion Models with Ensemble of Expert Denoisers | | 9| Stability AI| The world's leading open source generative AI company which opened source Stable Diffusion | | 10| Meta AI| Whether it be research, product or infrastructure development, we’re driven to innovate responsibly with AI to benefit the world | | 11| ANTHROPIC| AI research and products that put safety at the frontier | [Back to Top] Reports&Papers | No. | Report&Paper | Description | |:---- |:-------------------------------------------------------------------------------------------------------------- |:---------------------------------------------------- | | 1 | GPT-4 Technical Report | GPT-4 Technical Report | | 2 | mli/paper-reading | Deep learning classics and new papers are read carefully paragraph by paragraph. | | 3 | labmlai/annotateddeeplearningpaperimplementations| A collection of simple PyTorch implementations of neural networks and related algorithms, which are documented with explanations | | 4 | Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models | Talking, Drawing and Editing with Visual Foundation Models | | 5 | OpenAI Research | The latest research report and papers from OpenAI | | 6 | Make-A-Video: Text-to-Video Generation without Text-Video Data|Meta's Text-to-Video Generation| | 7 | eDiff-I: Text-to-Image Diffusion Models with Ensemble of Expert Denoisers| Nvidia eDiff-I - New generation of generative AI content creation tool | | 8 | Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo | 2023 GPT4All Technical Report | | 9 | Segment Anything| Meta Segment Anything | | 10 | LLaMA: Open and Efficient Foundation Language Models| LLaMA: a collection of foundation language models ranging from 7B to 65B parameters| | 11 | papers-we-love/papers-we-love |Papers from the computer science community to read and discuss| | 12 | CVPR 2023 papers |The most exciting and influential CVPR 2023 papers| [Back to Top] Tutorials | No. | Tutorial | Description| |:---- |:---------------------------------------------------------------- | --- | | 1 | Coursera - Machine Learning | The Machine Learning Specialization Course taught by Dr. Andrew Ng| | 2 | microsoft/ML-For-Beginners | 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all| | 3 | ChatGPT Prompt Engineering for Developers | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) will teach how to use a large language model (LLM) to quickly build new and powerful applications | | 4 | Dive into Deep Learning |Targeting Chinese readers, functional and open for discussion. The Chinese and English versions are used for teaching in over 400 universities across more than 60 countries | | 5 | AI Expert Roadmap | Roadmap to becoming an Artificial Intelligence Expert in 2022 | | 6 | Computer Science courses |List of Computer Science courses with video lectures| | 7 | Machine Learning with Python | Machine Learning with Python Certification on freeCodeCamp| | 8 | Building Systems with the ChatGPT API | This short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI), you will learn how to automate complex workflows using chain calls to a large language model| | 9 | LangChain for LLM Application Development | This short course taught by Harrison Chase (Co-Founder and CEO at LangChain) and Andrew Ng. you will gain essential skills in expanding the use cases and capabilities of language models in application development using the LangChain framework| | 10 | How Diffusion Models Work | This short course taught by Sharon Zhou (CEO, Co-founder, Lamini). you will gain a deep familiarity with the diffusion process and the models which carry it out. More than simply pulling in a pre-built model or using an API, this course will teach you to build a diffusion model from scratch| | 11 | Free Programming Books For AI |📚 Freely available programming books for AI | | 12 | microsoft/AI-For-Beginners |12 Weeks, 24 Lessons, AI for All!| | 13 | hemansnation/God-Level-Data-Science-ML-Full-Stack |A collection of scientific methods, processes, algorithms, and systems to build stories & models. This roadmap contains 16 Chapters, whether you are a fresher in the field or an experienced professional who wants to transition into Data Science & AI| | 14 | datawhalechina/prompt-engineering-for-developers |Chinese version of Andrew Ng's Big Model Series Courses, including "Prompt Engineering", "Building System", and "LangChain"| | 15 | ossu/computer-science |🎓 Path to a free self-taught education in Computer Science!| | 16 | microsoft/Data-Science-For-Beginners | 10 Weeks, 20 Lessons, Data Science for All! | |17 |jwasham/coding-interview-university !2023-09-29268215336 |A complete computer science study plan to become a software engineer.| [Back to Top] Thanks If this project has been helpful to you in any way, please give it a ⭐️ by clicking on the star.

RD-Agent
github
LLM Vibe Score0.548
Human Vibe Score0.27921589729164453
microsoftMar 28, 2025

RD-Agent

🖥️ Live Demo | 🎥 Demo Video ▶️YouTube | 📖 Documentation | 📃 Papers Data Science Agent Preview Check out our demo video showcasing the current progress of our Data Science Agent under development: https://github.com/user-attachments/assets/3eccbecb-34a4-4c81-bce4-d3f8862f7305 📰 News | 🗞️ News | 📝 Description | | -- | ------ | | Support LiteLLM Backend | We now fully support LiteLLM as a backend for integration with multiple LLM providers. | | More General Data Science Agent | 🚀Coming soon! | | Kaggle Scenario release | We release Kaggle Agent, try the new features! | | Official WeChat group release | We created a WeChat group, welcome to join! (🗪QR Code) | | Official Discord release | We launch our first chatting channel in Discord (🗪) | | First release | RDAgent is released on GitHub | 🌟 Introduction RDAgent aims to automate the most critical and valuable aspects of the industrial R&D process, and we begin with focusing on the data-driven scenarios to streamline the development of models and data. Methodologically, we have identified a framework with two key components: 'R' for proposing new ideas and 'D' for implementing them. We believe that the automatic evolution of R&D will lead to solutions of significant industrial value. R&D is a very general scenario. The advent of RDAgent can be your 💰 Automatic Quant Factory (🎥Demo Video|▶️YouTube) 🤖 Data Mining Agent: Iteratively proposing data & models (🎥Demo Video 1|▶️YouTube) (🎥Demo Video 2|▶️YouTube) and implementing them by gaining knowledge from data. 🦾 Research Copilot: Auto read research papers (🎥Demo Video|▶️YouTube) / financial reports (🎥Demo Video|▶️YouTube) and implement model structures or building datasets. 🤖 Kaggle Agent: Auto Model Tuning and Feature Engineering([🎥Demo Video Coming Soon...]()) and implementing them to achieve more in competitions. ... You can click the links above to view the demo. We're continuously adding more methods and scenarios to the project to enhance your R&D processes and boost productivity. Additionally, you can take a closer look at the examples in our 🖥️ Live Demo. ⚡ Quick start You can try above demos by running the following command: 🐳 Docker installation. Users must ensure Docker is installed before attempting most scenarios. Please refer to the official 🐳Docker page for installation instructions. Ensure the current user can run Docker commands without using sudo. You can verify this by executing docker run hello-world. 🐍 Create a Conda Environment Create a new conda environment with Python (3.10 and 3.11 are well-tested in our CI): Activate the environment: 🛠️ Install the RDAgent You can directly install the RDAgent package from PyPI: 💊 Health check rdagent provides a health check that currently checks two things. whether the docker installation was successful. whether the default port used by the rdagent ui is occupied. ⚙️ Configuration The demos requires following ability: ChatCompletion json_mode embedding query For example: If you are using the OpenAI API, you have to configure your GPT model in the .env file like this. However, not every API services support these features by default. For example: AZURE OpenAI, you have to configure your GPT model in the .env file like this. We now support LiteLLM as a backend for integration with multiple LLM providers. If you use LiteLLM Backend to use models, you can configure as follows: For more configuration information, please refer to the documentation. 🚀 Run the Application The 🖥️ Live Demo is implemented by the following commands(each item represents one demo, you can select the one you prefer): Run the Automated Quantitative Trading & Iterative Factors Evolution: Qlib self-loop factor proposal and implementation application Run the Automated Quantitative Trading & Iterative Model Evolution: Qlib self-loop model proposal and implementation application Run the Automated Medical Prediction Model Evolution: Medical self-loop model proposal and implementation application (1) Apply for an account at PhysioNet. (2) Request access to FIDDLE preprocessed data: FIDDLE Dataset. (3) Place your username and password in .env. Run the Automated Quantitative Trading & Factors Extraction from Financial Reports: Run the Qlib factor extraction and implementation application based on financial reports Run the Automated Model Research & Development Copilot: model extraction and implementation application Run the Automated Kaggle Model Tuning & Feature Engineering: self-loop model proposal and feature engineering implementation application Using sf-crime (San Francisco Crime Classification) as an example. Register and login on the Kaggle website. Configuring the Kaggle API. (1) Click on the avatar (usually in the top right corner of the page) -> Settings -> Create New Token, A file called kaggle.json will be downloaded. (2) Move kaggle.json to ~/.config/kaggle/ (3) Modify the permissions of the kaggle.json file. Reference command: chmod 600 ~/.config/kaggle/kaggle.json Join the competition: Click Join the competition -> I Understand and Accept at the bottom of the competition details page. Description of the above example: Kaggle competition data, contains two parts: competition description file (json file) and competition dataset (zip file). We prepare the competition description file for you, the competition dataset will be downloaded automatically when you run the program, as in the example. If you want to download the competition description file automatically, you need to install chromedriver, The instructions for installing chromedriver can be found in the documentation. The Competition List Available can be found here. 🖥️ Monitor the Application Results You can run the following command for our demo program to see the run logs. Note: Although port 19899 is not commonly used, but before you run this demo, you need to check if port 19899 is occupied. If it is, please change it to another port that is not occupied. You can check if a port is occupied by running the following command. 🏭 Scenarios We have applied RD-Agent to multiple valuable data-driven industrial scenarios. 🎯 Goal: Agent for Data-driven R&D In this project, we are aiming to build an Agent to automate Data-Driven R\&D that can 📄 Read real-world material (reports, papers, etc.) and extract key formulas, descriptions of interested features and models, which are the key components of data-driven R&D . 🛠️ Implement the extracted formulas (e.g., features, factors, and models) in runnable codes. Due to the limited ability of LLM in implementing at once, build an evolving process for the agent to improve performance by learning from feedback and knowledge. 💡 Propose new ideas based on current knowledge and observations. 📈 Scenarios/Demos In the two key areas of data-driven scenarios, model implementation and data building, our system aims to serve two main roles: 🦾Copilot and 🤖Agent. The 🦾Copilot follows human instructions to automate repetitive tasks. The 🤖Agent, being more autonomous, actively proposes ideas for better results in the future. The supported scenarios are listed below: | Scenario/Target | Model Implementation | Data Building | | -- | -- | -- | | 💹 Finance | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | 🤖 Iteratively Proposing Ideas & Evolving ▶️YouTube 🦾 Auto reports reading & implementation▶️YouTube | | 🩺 Medical | 🤖 Iteratively Proposing Ideas & Evolving▶️YouTube | - | | 🏭 General | 🦾 Auto paper reading & implementation▶️YouTube 🤖 Auto Kaggle Model Tuning | 🤖Auto Kaggle feature Engineering | RoadMap: Currently, we are working hard to add new features to the Kaggle scenario. Different scenarios vary in entrance and configuration. Please check the detailed setup tutorial in the scenarios documents. Here is a gallery of successful explorations (5 traces showed in 🖥️ Live Demo). You can download and view the execution trace using this command from the documentation. Please refer to 📖readthedocs_scen for more details of the scenarios. ⚙️ Framework Automating the R&D process in data science is a highly valuable yet underexplored area in industry. We propose a framework to push the boundaries of this important research field. The research questions within this framework can be divided into three main categories: | Research Area | Paper/Work List | |--------------------|-----------------| | Benchmark the R&D abilities | Benchmark | | Idea proposal: Explore new ideas or refine existing ones | Research | | Ability to realize ideas: Implement and execute ideas | Development | We believe that the key to delivering high-quality solutions lies in the ability to evolve R&D capabilities. Agents should learn like human experts, continuously improving their R&D skills. More documents can be found in the 📖 readthedocs. 📃 Paper/Work list 📊 Benchmark Towards Data-Centric Automatic R&D !image 🔍 Research In a data mining expert's daily research and development process, they propose a hypothesis (e.g., a model structure like RNN can capture patterns in time-series data), design experiments (e.g., finance data contains time-series and we can verify the hypothesis in this scenario), implement the experiment as code (e.g., Pytorch model structure), and then execute the code to get feedback (e.g., metrics, loss curve, etc.). The experts learn from the feedback and improve in the next iteration. Based on the principles above, we have established a basic method framework that continuously proposes hypotheses, verifies them, and gets feedback from the real-world practice. This is the first scientific research automation framework that supports linking with real-world verification. For more detail, please refer to our 🖥️ Live Demo page. 🛠️ Development Collaborative Evolving Strategy for Automatic Data-Centric Development !image 🤝 Contributing We welcome contributions and suggestions to improve RD-Agent. Please refer to the Contributing Guide for more details on how to contribute. Before submitting a pull request, ensure that your code passes the automatic CI checks. 📝 Guidelines This project welcomes contributions and suggestions. Contributing to this project is straightforward and rewarding. Whether it's solving an issue, addressing a bug, enhancing documentation, or even correcting a typo, every contribution is valuable and helps improve RDAgent. To get started, you can explore the issues list, or search for TODO: comments in the codebase by running the command grep -r "TODO:". Before we released RD-Agent as an open-source project on GitHub, it was an internal project within our group. Unfortunately, the internal commit history was not preserved when we removed some confidential code. As a result, some contributions from our group members, including Haotian Chen, Wenjun Feng, Haoxue Wang, Zeqi Ye, Xinjie Shen, and Jinhui Li, were not included in the public commits. ⚖️ Legal disclaimer The RD-agent is provided “as is”, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. The RD-agent is aimed to facilitate research and development process in the financial industry and not ready-to-use for any financial investment or advice. Users shall independently assess and test the risks of the RD-agent in a specific use scenario, ensure the responsible use of AI technology, including but not limited to developing and integrating risk mitigation measures, and comply with all applicable laws and regulations in all applicable jurisdictions. The RD-agent does not provide financial opinions or reflect the opinions of Microsoft, nor is it designed to replace the role of qualified financial professionals in formulating, assessing, and approving finance products. The inputs and outputs of the RD-agent belong to the users and users shall assume all liability under any theory of liability, whether in contract, torts, regulatory, negligence, products liability, or otherwise, associated with use of the RD-agent and any inputs and outputs thereof.