VibeBuilders.ai Logo
VibeBuilders.ai

Dcai Lab

Explore resources related to dcai lab to help implement AI solutions for your business.

dcai-lab
github
LLM Vibe Score0.541
Human Vibe Score0.3372420543528328
dcai-courseMar 8, 2025

dcai-lab

Lab assignments for Introduction to Data-Centric AI This repository contains the lab assignments for the Introduction to Data-Centric AI class. Contributions are most welcome! If you have ideas for improving the labs, please open an issue or submit a pull request. If you're looking for the 2023 version of the labs, check out the 2023 branch. [Lab 1: Data-Centric AI vs. Model-Centric AI][lab-1] The [first lab assignment][lab-1] walks you through an ML task of building a text classifier, and illustrates the power (and often simplicity) of data-centric approaches. [lab-1]: datacentricmodel_centric/Lab%20-%20Data-Centric%20AI%20vs%20Model-Centric%20AI.ipynb [Lab 2: Label Errors][lab-2] [This lab][lab-2] guides you through writing your own implementation of automatic label error identification using Confident Learning, the technique taught in [today’s lecture][lec-2]. [lab-2]: label_errors/Lab%20-%20Label%20Errors.ipynb [lec-2]: https://dcai.csail.mit.edu/lectures/label-errors/ [Lab 3: Dataset Creation and Curation][lab-3] [This lab assignment][lab-3] is to analyze an already collected dataset labeled by multiple annotators. [lab-3]: dataset_curation/Lab%20-%20Dataset%20Curation.ipynb [Lab 4: Data-centric Evaluation of ML Models][lab-4] [This lab assignment][lab-4] is to try improving the performance of a given model solely by improving its training data via some of the various strategies covered here. [lab-4]: datacentricevaluation/Lab%20-%20Data-Centric%20Evaluation.ipynb [Lab 5: Class Imbalance, Outliers, and Distribution Shift][lab-5] [The lab assignment][lab-5] for this lecture is to implement and compare different methods for identifying outliers. For this lab, we've focused on anomaly detection. You are given a clean training dataset consisting of many pictures of dogs, and an evaluation dataset that contains outliers (non-dogs). Your task is to implement and compare various methods for detecting these outliers. You may implement some of the ideas presented in [today's lecture][lec-5], or you can look up other outlier detection algorithms in the linked references or online. [lab-5]: outliers/Lab%20-%20Outliers.ipynb [lec-5]: https://dcai.csail.mit.edu/lectures/imbalance-outliers-shift/ [Lab 6: Growing or Compressing Datasets][lab-6] [This lab][lab-6] guides you through an implementation of active learning. [lab-6]: growing_datasets/Lab%20-%20Growing%20Datasets.ipynb [Lab 7: Interpretability in Data-Centric ML][lab-7] [This lab][lab-7] guides you through finding issues in a dataset’s features by applying interpretability techniques. [lab-7]: interpretable_features/Lab%20-%20Interpretable%20Features.ipynb [Lab 8: Encoding Human Priors: Data Augmentation and Prompt Engineering][lab-8] [This lab] guides you through prompt engineering, crafting inputs for large language models (LLMs). With these large pre-trained models, even small amounts of data can make them very useful. This lab is also [available on Colab][lab-8-colab]. [lab-8]: promptengineering/LabPrompt_Engineering.ipynb [lab-8-colab]: https://colab.research.google.com/drive/1cipH-u6Jz0EH-6Cd9MPYgY4K0sJZwRJq [Lab 9: Data Privacy and Security][lab-9] The [lab assignment][lab-9] for this lecture is to implement a membership inference attack. You are given a trained machine learning model, available as a black-box prediction function. Your task is to devise a method to determine whether or not a given data point was in the training set of this model. You may implement some of the ideas presented in [today’s lecture][lec-9], or you can look up other membership inference attack algorithms. [lab-9]: membership_inference/Lab%20-%20Membership%20Inference.ipynb [lec-9]: https://dcai.csail.mit.edu/lectures/data-privacy-security/ License Copyright (c) by the instructors of Introduction to Data-Centric AI (dcai.csail.mit.edu). dcai-lab is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. dcai-lab is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See GNU Affero General Public LICENSE for details.

MIT Introduction to Data-Centric AI
reddit
LLM Vibe Score0
Human Vibe Score1
anishathalyeThis week

MIT Introduction to Data-Centric AI

Announcing the first-ever course on Data-Centric AI. Learn how to train better ML models by improving the data. Course homepage | Lecture videos on YouTube | Lab Assignments The course covers: Data-Centric AI vs. Model-Centric AI Label Errors Dataset Creation and Curation Data-centric Evaluation of ML Models Class Imbalance, Outliers, and Distribution Shift Growing or Compressing Datasets Interpretability in Data-Centric ML Encoding Human Priors: Data Augmentation and Prompt Engineering Data Privacy and Security MIT, like most universities, has many courses on machine learning (6.036, 6.867, and many others). Those classes teach techniques to produce effective models for a given dataset, and the classes focus heavily on the mathematical details of models rather than practical applications. However, in real-world applications of ML, the dataset is not fixed, and focusing on improving the data often gives better results than improving the model. We’ve personally seen this time and time again in our applied ML work as well as our research. Data-Centric AI (DCAI) is an emerging science that studies techniques to improve datasets in a systematic/algorithmic way — given that this topic wasn’t covered in the standard curriculum, we (a group of PhD candidates and grads) thought that we should put together a new class! We taught this intensive 2-week course in January over MIT’s IAP term, and we’ve just published all the course material, including lecture videos, lecture notes, hands-on lab assignments, and lab solutions, in hopes that people outside the MIT community would find these resources useful. We’d be happy to answer any questions related to the class or DCAI in general, and we’d love to hear any feedback on how we can improve the course material. Introduction to Data-Centric AI is open-source opencourseware, so feel free to make improvements directly: https://github.com/dcai-course/dcai-course.

[P] MIT Introduction to Data-Centric AI
reddit
LLM Vibe Score0
Human Vibe Score1
anishathalyeThis week

[P] MIT Introduction to Data-Centric AI

Announcing the first-ever course on Data-Centric AI. Learn how to train better ML models by improving the data. Course homepage | Lecture videos on YouTube | Lab Assignments The course covers: Data-Centric AI vs. Model-Centric AI Label Errors Dataset Creation and Curation Data-centric Evaluation of ML Models Class Imbalance, Outliers, and Distribution Shift Growing or Compressing Datasets Interpretability in Data-Centric ML Encoding Human Priors: Data Augmentation and Prompt Engineering Data Privacy and Security MIT, like most universities, has many courses on machine learning (6.036, 6.867, and many others). Those classes teach techniques to produce effective models for a given dataset, and the classes focus heavily on the mathematical details of models rather than practical applications. However, in real-world applications of ML, the dataset is not fixed, and focusing on improving the data often gives better results than improving the model. We’ve personally seen this time and time again in our applied ML work as well as our research. Data-Centric AI (DCAI) is an emerging science that studies techniques to improve datasets in a systematic/algorithmic way — given that this topic wasn’t covered in the standard curriculum, we (a group of PhD candidates and grads) thought that we should put together a new class! We taught this intensive 2-week course in January over MIT’s IAP term, and we’ve just published all the course material, including lecture videos, lecture notes, hands-on lab assignments, and lab solutions, in hopes that people outside the MIT community would find these resources useful. We’d be happy to answer any questions related to the class or DCAI in general, and we’d love to hear any feedback on how we can improve the course material. Introduction to Data-Centric AI is open-source opencourseware, so feel free to make improvements directly: https://github.com/dcai-course/dcai-course.