VibeBuilders.ai Logo
VibeBuilders.ai

All Resources

AI
github
LLM Vibe Score0.358
Human Vibe Score0.006489749001329033
MatousMarikOct 31, 2024

AI

AI I This repository contains practical tasks for the Artificial Intelligence 1 course, that is based on book by Russel and Norvig Artificial Intellignece: A Modern Approach, 4th Edition. Tasks are designed to review AI algorithms and use them to play games. Requirements All assignments will be written in python. Task were created for python 3.9 however there should not be any problems with backward compatibility. You can solve all assignments while working exclusively with python standard library, however for game visualizations you will need to install modul pygame. For installation you can use pip: python3 -m pip install -U pygame --user If you need more detailed, platform-specific instructions you can visit pygame-GettingStarted. Assignments In total there will be 5 programming assignments whose solutions will be submitted via ReCodEx. In each of them you will write an AI agent that plays suitable games for corresponding lecture topic. Moreover there will by partial assignments, in which you will need to implement algorithms, that will allow you to implement suitable agent functions, however your agent implementation can use any approach you like. | Game | Suggested Approach | | ---- | ------ | | Dino | rule-based agent | | Pac-Man | uniform-cost search | | Sokoban | A* with custom heuristics | | Cell Wars | minimax or Monte Carlo tree search | | Minesweeper | backtracking search for CSPs | Note that information provided in the early assignments is omitted in later ones.

coursera-practical-data-science-specialization
github
LLM Vibe Score0.465
Human Vibe Score0.0230635140825568
honghanhhOct 9, 2024

coursera-practical-data-science-specialization

Solutions on Practical Data Science Specialization Access all courses in the Coursera Practical Data Science Specialization Specialization offered by deeplearning.ai. This repo contains the SOLUTIONS of exercises/labs to achieve the badge. Course keynotes and solutions of related quizzes, assignments Practical Data Science Specialization on Coursera contains three courses: Course 1: Analyze Datasets and Train ML Models using AutoML Week 1: Artificial Intelligence (AI) mimics human behavior. Machine Learning (ML) is a subset of AI that uses statistical methods and algorithms that are able to learn from data without being explicitly programmed. Deep learning (DL) is a subset of machine learning that uses artificial neural networks to learn from data. AWS SageMaker --> [x] Practice Quiz: Week 1. [x] Graded External Tool: Register and visualize dataset. Week 2: Statistical Bias: Training data does not comprehensively represent the underlying problem space. Statistical Bias Causes: Activity Bias, Societal Bias, Selection Bias, Data Drift/Shift, ... Class Imbalance (CI) measures the imbalance in the number of members between different facet values. Detecting Statistical Bias by AWS SageMaker DataWrangler and AWS SageMaker Clarify. Feature Importance explains the features that make up the training data using a score. How useful or valuable the feature is relative to other features? SHAP (SHapley Additive exPlanations) --> [x] Practice Quiz: Week 2. [x] Graded External Tool: Detect data bias with Amazon SageMaker Clarify. Week 3: Data Prepreration includes Ingesting & Analyzing, Prepraring & Transforming, Training & Tuning, and Deploying & Managing. AutoML aims at automating the process of building a model. Model Hosting. --> [x] Practice Quiz: Week 3. [x] Graded External Tool: Train a model with Amazon SageMaker Autopilot. Week 4: Built-in Alogrithms in AWS SageMaker supports Classification, Regression, and Clustering problems. Text Analysis Evolution: Word2Vec (CBOW & Skip-gram), GloVe, FastText, Transformer, BlazingText, ELMo, GPT, BERT, ... --> [x] Practice Quiz: Week 4. [x] Graded External Tool: Train a text classifier using Amazon SageMaker BlazingText built-in algorithm. Course 2: Build, Train, and Deploy ML Pipelines using BERT Week 1 Feature Engineering involves converting raw data from one or more sources into meaningful features that can be used for training machine learning models. Feature Engineering Step includes feature selection, creation, and transformation. BERT is Transformer-based pretrained language models that sucessfully capture bidirectional contexts in word representation. Feature Store: centralized, reusable, discoverable. --> [x] Practice Quiz: Week 1. [x] Graded External Tool: Feature transformation with Amazon SageMaker processing job and Feature Store. Week 2 Learn how to train a customized Pretrained BERT and its variant models, debug, and profile with AWS SageMaker. --> [x] Practice Quiz: Week 2. [x] Graded External Tool: Train a review classifier with BERT and Amazon SageMaker. Week 3 MLOps builds on DevOps practices that encompass people, process, and technology. MLOps also includes considerations and practices that are really unique to machine learning workloads. --> [x] Practice Quiz: Week 3. [x] Graded External Tool: SageMaker pipelines to train a BERT-Based text classifier. Course 3: Optimize ML Models and Deploy Human-in-the-Loop Pipelines Week 1 Model Tuning aims to fit the model to the underlying data patterns in your training data and learn the best possible parameters for your model. Automatic Model Tuning includes grid search, random search, bayesian optimization, hyperband. Challenges: checkpointing, distribution training strategy. --> [x] Practice Quiz: Week 1. [x] Graded External Tool: Optimize models using Automatic Model Tuning. Week 2 [x] Practice Quiz: Week 2. [x] Graded External Tool: A/B testing, traffic shifting and autoscaling. Week 3 [x] Practice Quiz: Week 3. [x] Graded External Tool: Data labeling and human-in-the-loop pipelines with Amazon Augmented AI (A2I). Disclaimer The solutions here are ONLY FOR REFERENCE to guide you if you get stuck somewhere. Highly recommended to try out the quizzes and assignments yourselves first before referring to the solutions here. Feel free to discuss further with me on .

StrategyAI
github
LLM Vibe Score0.347
Human Vibe Score0.018291295256960494
RoboCupULavalJul 30, 2024

StrategyAI

StrategyAI Toute contribution au code est sous la licence libre MIT. Information générale Ce dépôt regroupe les différents outils utilisés pour élaborer l'intelligence artificielle de Robocup ULaval. L'implémentation de l'intelligence artificielle est basée sur la STA, dont le papier de recherche se retrouve dans le dépôt Admin de l'équipe IA. Installation Pour install ultron et tous les outils (referee, simulator, ui and autoref): Workflow Git Le dépôt StrategyAI fonctionne avec les pull requests: Chaque nouvelle feature/issue doit être sur sa propre branche (git checkout -b branch_name). Une fois qu'une feature/issue est résolue, faire un pull-request. Standard de code Pour que le code soit considéré comme valide, celui-ci doit respecter le standard de code PEP-8. De plus, le code doit avoir les tests unitaires associés. Emplacements des logiciels ~/robocup/tools grSim/: Simulateur, peut-être lancer via la commande grsim ssl-refbox/: Logiciel de Referee, pour le lancer cd ~/robocup/tools/ssl-refbox && ./sslrefbox ~/robocup/ultron StrategyAI/: Back-end, pour lancer voir plus bas UI-Debug/: Front-end, pour lancer voir plus bas Exemple pour lancer deux équipes: À modifier selon vos chemins, à lancer à partir de la racine du dépôt de StrategyAI. Ce fichier est disponible à la racine du dépôt sous le nom de dual_launch.sh Setup dans pycharm Ajout de l'environnement virtuelle Pour rajouter l'environnement virtuel dans Pycharm aller dans File->Settings->Project StrategyAI->Project Interpreter. Appuyez sur l'icone d'un engrenage ->Add. Dans la fenêtre qui apparaît selectionner Existing Intepreter. Le chemin pour la location entrée: /home/votre_nom/robocup/ultron/virtualenv/bin/python. Ajout des runners Pour facilement tester l'ia dans Pycharm, il est utile de pouvoir lancer la lancer en utilisant un Run Configuration. Créer une configuration ayant ses paramètres, elle va lancer l'intelligence artificiel en simulation: name -> ia sim blue Script Path -> /home/votre_user/robocup/ultron/StrategyAI/main.py Parameter -> config/sim.cfg blue positive Working Directory -> /home/votre_user/robocup/ultron/StrategyAI Créer une configuration ayant ses paramètres, elle va lancer l'interface graphique de débugage: name -> UI Debug sim blue Script Path -> /home/votre_user/robocup/ultron/UI-Debug/main.py Parameter -> ../StrategyAI/config/field/sim.cfg blue Working Directory -> /home/votre_user/robocup/ultron/UI-Debug

AI-Chatbot-Using-Mixtral-8x7B-PGVector-Llama-Index-With-Websockets-For-SaaS
github
LLM Vibe Score0.328
Human Vibe Score0.0056
quamernasimJul 15, 2024

AI-Chatbot-Using-Mixtral-8x7B-PGVector-Llama-Index-With-Websockets-For-SaaS

Steps to Building an AI Chatbot Using Mixtral 8x7B for SaaS Entrepreneurs An AI based chatbot built for SaaS Entrepreneurs Introduction This is a step-by-step guide to building an AI chatbot using Mixtral 8x7B for SaaS Entrepreneurs. The guide is designed to help you understand the process of building an AI chatbot and how it can be used to improve your business. What is Mixtral 8x7B? Mixtral 8x7B is LLM released by Mistral AI. It is a powerful LLM that has performed well on a variety of language tasks. It is a Mixure of Experts Model. It has outperformed GPT-3 on a variety of language tasks. It is a powerful tool for building AI chatbots. Why Build an AI Chatbot? AI chatbots are becoming increasingly popular in the business world. They can be used to automate customer service, answer questions, and provide information to customers. They can also be used to improve the user experience on your website or app. Building an AI chatbot can help you save time and money, and improve the overall customer experience. How to Build an AI Chatbot Using Mixtral 8x7B Building an AI chatbot using Mixtral 8x7B is a relatively simple process. Here are the steps you need to follow: Step 1: Collect Data Step 2: Index The Data using Llama-Index Step 3: Store The Indexed Data in a Database (In our case, we will use PGVector) Step 4: Get the LLM and Embedding Model from Hugging Face Step 5: Load the indexed data from the database Step 6: Set up a query engine using llama-index Step 7: Combine all the above steps to build an AI chatbot Step 8: Finallly, integrate the chatbot with WebSockets Step 9: Test the chatbot How to Use the AI Chatbot Once you have built the AI chatbot, you can use it to automate customer service, answer questions, and provide information to customers. You can also use it to improve the user experience on your website or app. The possibilities are endless! app.py that contains the websockets code to integrate the chatbot with your website or app. To run the chatbot, you can use the following command: To test the chatbot, you can use the following command: Conclusion Building an AI chatbot using Mixtral 8x7B is a relatively simple process. It can help you save time and money, and improve the overall customer experience. References https://medium.com/@vivekpatil647/timeline-of-chatbots-f3baf14c05e6 https://arxiv.org/pdf/2005.11401v4.pdf https://www.e2enetworks.com/ https://docs.llamaindex.ai/en/stable/index.html https://mistral.ai/news/mixtral-of-experts/ https://huggingface.co/ https://arxiv.org/pdf/2309.07597.pdf https://huggingface.co/blog/ray-rag

conductor
github
LLM Vibe Score0.299
Human Vibe Score0.0112
foundation0May 2, 2024

conductor

Conductor: AI-first digital workbench creators, professionals, entrepreneurs and organizations --> Conductor is open-source, decentralized, community-driven software. Conductor has been designed as a modular platform that anyone can extend. Modules can be anything from a new AI model to a new UI component. Module architecture is still in flux but we will be releasing more information soon. Key Features 🎯 🎯 Laser-focused on productivity over chitchat 🗂️ Organize your work via workspaces, groups and folders 🔒 Privacy-first & local-first: everything e2e encrypted 🤖 Supports focused AI personas to improve results 🛠️ Compatible with any model, Conductor is model-neutral 🌐 Always 100% open-source \*Upcoming features 🆕 🗣️ Talk with AIs 🔮 Support for documents, images, audio, video and 3D 🤝 Go multiplayer, invite others to work with you 🧩 Extend almost any aspect of Conductor with user-built modules 🌌 Conductor goes fully decentralized Watch Conductor in action 🎥 Coming soon 🚧 Get started 🚀 Conductor is free and open-source, but in its current beta state, it is not yet ready for production use. We are working hard to get it there as soon as possible. Run Conductor locally Please note that as the module system is still under development, your milage running custom modules may vary. Contribute 🤝 We are looking for contributors to help us build Conductor. If you are interested, please join our Discord and say hi! Alternatively, follow us on Twitter to stay up to date with our progress.

promptAI
github
LLM Vibe Score0.14
Human Vibe Score0.0018666666666666664
jarrodkohlMar 14, 2024

promptAI

Creative Content Tool Welcome to our Content Creation Tool, PromptAI, a web application that allows users to effortlessly generate unique content ideas and posts at the touch of a button. Our app uses OpenAI's powerful language model to generate content, and includes features such as the ability to customize prompts and save favorites for later use. As well as creating a space for creators to take notes and track their progress! Technologies Used JavaScript React.js Node.js OpenAI API Features Generate unique content ideas with OpenAI's language model Customize prompts by editing goals, use cases and platform formats. Save favorite content for later use Real-time updates for the list of saved content Writing assistant with grammar and spell-check more features coming soon! How to Use To use our Content Tool, simply visit our web application and click on the "generate content" button to generate random content ideas. You can customize prompts by adding an industry or goal or even a specific platform and save your favorites for later use. The more specific you are the more detailed your content is, but as a generator, you can also start vague to get some more ideas about what you should be asking! That way, creating content for your business becomes easy and fun! Once content is created you can then edit or delete that content. You can also click on specific content to add notes or organize your content. Installation To install our Creative Writing Tool on your local machine, follow these steps: Clone the repository onto your local machine Run npm install to install the necessary dependencies Run npm start to start the app You will need your own API keys to run this application! Acknowledgements We would like to thank OpenAI for providing their language model for our application.

LearnAI-KnowledgeMiningBootcamp
github
LLM Vibe Score0.438
Human Vibe Score0.05521136990708693
sithukyaw007Jan 29, 2024

LearnAI-KnowledgeMiningBootcamp

LearnAI: Build an Enterprise Knowledge Mining Solution using the Microsoft AI Platform Build an enterprise scale intelligent search solution for searching business documents using Microsoft Azure and Cognitive Search About this Course In this course, you will learn to build an enterprise search solution by applying knowledge mining approach to search an organization’s business documents like Microsoft Office, PDFs and images using Azure search and Cognitive search skillsets and expose the results via a Bot interface. You will learn to perform entity recognition, image analysis, text translation and indexed search on enterprise business documents using Microsoft Cognitive Services and Azure Search. This approach can be used with almost any Azure service to augment a customer’s scenario involving intelligent search. While this course focusses on Azure and Cognitive search capabilities, a depth course on building Bots and integrating various cognitive services is available here - Building Intelligent Agents and Apps. In this course you will learn Fundamentals of Azure Search and its capabilities. Understand Microsoft Cognitive Search and its key scenarios for using them. Build an enriched data pipeline for search using predefined and custom skillsets: a. Text skills like entity recognition, language detection, text manipulation and key phrase extraction. b. Image skills like OCR. c. Language skills like text translation. d. Content moderation skills to block documents with incompliant content. Use the enriched data pipeline for a knowledge mining solution on business documents within an enterprise. Expose the knowledge mining solution using a bot interface for document search and consumption. Architecture !Architecture Technologies Covered !Technology Industry application Intelligent search is relevant to many major industries. Some are listed below. Retail and health care industries employ chatbots with advanced multi-language support capabilities to service their customers. Retail, Housing and Automotive industries for sales/listing. Entertainment industry uses search for relevant/contextual on-demand streaming. Pre-requisites Fundamental working knowledge of Azure Portal, Functions and Azure Search. Familiarity with Visual Studio. Familiarity with Azure Bots and Microsoft Bot Framework v4. If you do not have any familiarity with the above pre-requisites, please find below links To Read (10 minutes): Visual Studio Tutorial To Read (4 minutes): Azure Functions Overview To Read (10 minutes): Azure Search Overview To Read (7 minutes): Postman Tutorial To Do (30 minutes): CQuickstart Pre-Setup before you attend the class Mandatory To Create: You need a Microsoft Azure account to create the services we use in our solution. You can create a free account, use your MSDN account or use any other subscription where you have permission to create services. To Install: Visual Studio 2017 version version 15.5 or later, including the Azure development workload. To Install: Postman. To call the labs APIs. Course Details Primary Audience: Azure AI Developers, Architects. Secondary Audience: Any professional interested in learning AI. Level This content is designed as an intermediate to advanced level course for AI developers and/or architects. Type This course, in its full form, is designed to be taught in-person but you can also use the materials in a self-paced fashion. There are assignments and multiple reference links throughout the materials that support the concepts and skills you will learn. Length Full Course classroom training: 16 hours Related LearnAI Courses Building Intelligent Agents and Apps Course Modules Introduction – Overview of Azure Search, Cognitive Search, Scenarios and industry specific applications. Fundamentals of Azure Search. Architecture – Solution Architecture for building enterprise search solution. Cognitive Search Skillset – Applying text skills. Cognitive Search Skillset – Applying image skills. Cognitive Search Skillset – Applying Language skills. Cognitive Search Skillset – Applying Moderation skills. Build and Integrate a Bot with Cognitive Search API. Group Hands-on Lab to practice skills acquired.

responsible-ai-hub
github
LLM Vibe Score0.328
Human Vibe Score0.04251968503937008
Thebbie-ADec 21, 2023

responsible-ai-hub

Responsible AI Hub Welcome to the Responsible AI Hub for Developers with all levels of expertise in AI and Machine Learning. This is a dedicated space to help the community discover relevant training resources and events to learn about Responsible AI. View Hub Website You can visit the hosted Responsible AI Hub site to learn about upcoming training events, or to explore self-guided workshops to skill up on topics like: The Responsible AI Dashboard Azure Content Safety Azure Prompt Flow Build & Preview Site Want to contribute content? Start by making sure you can build and preview the site in a relevant development environment. The project is instrumented with a dev container, making it easy to launch using either Github Codespaces (in the cloud) or Docker Desktop (in your local device). The project is built using the Docusaurus 3 static site generator. Once the container is running, use these commands to build and preview the site: You should see something like this: You can now open the browser to that URL to see the site in preview mode. As you make changes to the content, the site preview will automatically refresh to show those updates. To learn more about how the website is configured and structured, see the Docusaurus documentation. Provide Feedback Have comments or questions? Post an Issue to let us know how we can improve the content to support you better, on your learning journey. TODO 🚧 Updating SUPPORT.MD as required Review security processes in SECURITY.MD Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments. Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

airtable-api-proxy
github
LLM Vibe Score0.348
Human Vibe Score0.008293886065546695
danilocJul 10, 2023

airtable-api-proxy

node.js Airtable API Proxy by Future Fluent ================= Here's a project demonstrating the basics of an Airtable API proxy using node.js and Express. Click here to see the source and remix for your own purposes. Why does Airtable need an API Proxy? Airtable's rate limit is five requests per second per base. Anything more than that and the API will lock down for thirty seconds. By implementing an API proxy, it's possible to cache common results for quick responses and enforce a rate limit for requests. Additionally, an API proxy allows you to keep your API key a secret. Since all Airtable API keys allow full CRUD access, using the key in client-side JavaScript code would leave your data subject to outside tampering. Click here for example output. Click here to see the source data. How does it work? Three files drive the proxy: server.js An API route, /api/ai/list/:page, demonstrates how to serve JSON in response to a request. caching.js Simple, file-based caching. readCacheWithPath(path) Returns cached JSON, if it's not too stale. Use cacheInterval to adjust this. writeCacheWithPath(path, object) Writes a JavaScript object to JSON at the specified path, creating intermediate directories as needed. database-connection.js This is the meat of the project. It uses the Airtable node.js client to connect to a base and writes the results out as a JSON response. Base ID and Airtable API key are in 🗝.env. For more on accessing Airtable via the API, see the interactive Airtable documentation. Rate limiting Bottleneck handles rate limiting. The Airtable database interactions are handled using Bottleneck's wrap function.

AI-basics
github
LLM Vibe Score0.387
Human Vibe Score0.023586079460427442
ai7dnnMar 10, 2023

AI-basics

AI-basics 2023년 1학기 인공지능 개론, 2023 0402 AM update 인공지능개론 학습 공유 문서 수요일 오전 QA반 수업 중 수요일 오후 QB반 수업 중 기말고사 시험범위 ['8장 스스로학습하는 머신러닝(p219)'부터 배운데까지] 인공지능개론 교과목 체험 사이트 구글 딥드림 생성 네이버 파파고 실습 네이버 웨일 브라우저 다운로드 아실로마 인공지능 원칙 MIT 모럴머신 블록 코딩 계정생성 블록 코딩: 엘사 보스톤 다이나믹스 휴먼로봇 보스톤 다이나믹스 사족로봇 보스톤 다이나믹스와 테슬라 MNIST 데이터 손글씨 숫자 인식 EHT 유튜브 이벤트 호라이즌 망원경 애니메이션 영화 머신러닝 최적화 기법: 경사하강법 실습 딥러닝 체험: 학습할수 있는 기계 두뇌기억과정 모의실험 MNIST 데이터 제공 사이트 MNIST 시각화 imagenet COCO Datasets 캐글 인공지능 관련 학습 동영상 kmooc 인공지능과 빅데이터, 전창재 | 세종대학교 관련 동영상 인간이 되고 싶었던 로봇 이야기 Bicentennial Man (1999) (https://www.youtube.com/watch?v=ODh2cpT-DqM) Ebs 이솦 AI 강좌 (11:10) (https://www.ebssw.kr/edc/cultursens/cultursensDetailView.do?alctcrSn=56149&pageIndex=3 인공지능 이야기 인공지능 개념 기계학습 지도학습 비지도학습 신경망과 심층 학습 유튜브 강좌 (6:30) (https://www.youtube.com/watch?v=xeWIcOy8rzY) 앨런튜링 이미테이션 게임 (https://www.youtube.com/watch?v=hAfQa2oddA0&t=724s) AI 역사와 딥러닝 (https://www.youtube.com/watch?v=BUTP-YsD3nM) 다양한 인공지능 활용(https://www.youtube.com/watch?v=MFLRRjcMR7I (2:10)) 인공지능 화가 (https://www.youtube.com/watch?v=Nou2jvqM-bY (3:40)) 인공지능 체험 사이트 (https://www.youtube.com/watch?v=FWdV-TeGuyI (11:00)) 구글 딥마인드의 인공지능 벽돌 깨기와 팩맨 게임 모습 https://www.youtube.com/watch?v=V1eYniJ0Rnk https://www.youtube.com/watch?v=QilHGSYbjDQ 자율주행 강화학습 aws https://www.youtube.com/watch?v=OBSIOlZ1yM8 인공지능 관련 자료 추천 인공지능 교재 https://sites.google.com/comedu.dnue.ac.kr/aiforkids/%EC%B6%94%EC%B2%9C-%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5-%EA%B5%90%EC%9E%AC Ebs 인공지능과 수학 교재 자료 pdf https://www.ebssw.kr/info/intrcn/infoTchmtrHeaderView.do?tabType=AI 비상교육 인공지능 기초 https://dn.vivasam.com/VS/EBOOK/%EA%B3%A0%EB%93%B1%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5%EA%B8%B0%EC%B4%88PC/index.html 길벗 인공지능 기초 https://textbook.gilbut.co.kr/book/index.html 인공지능 체험 손글씨 숫자 인식 Neural Net for Handwritten Digit Recognition in JavaScript http://myselph.de/neuralNet.html Digit Recognizer https://draw-digit-predict.herokuapp.com/ CNN Digit Recognition WebApp using PyTorch, Flask https://digit-recog-torch.uc.r.appspot.com/ 머신러닝, 비지도학습, DBSCAN Visualizing DBSCAN Clustering https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Practical-AI-Bootcamp
github
LLM Vibe Score0.4
Human Vibe Score0.010988541997291353
tinkerhubJan 8, 2023

Practical-AI-Bootcamp

Practical AI Bootcamp Practical AI Bootcamp by TinkerHub Foundation. Here you will learn how to build good AI products. This learning program cover the following. Finding the right machine learning model for a problem Building responsible AI - Bias and other issues How to train a good machine learning model - how to tune hyperparams Transfer Learning - where, when and how to use ? Speed and performance Wraping and hosting machine learning models On device machine learning Some tools and tricks Participants criteria Should know OOP and python Should know git and github Should know basic machine learning (different categories of ML, what is training ? What is testing ? What is dataset..etc) All the resources to get you started with the program is given in the resources folder. You can learn it and finish the task for joining the program! Join the program This bootcamp need you to have the following skills Python Github Machine learning There is a task for you in the tasks folder. Finish the task in a private repo. Give Gopikrishnan Sasikumar access to the private repo. Fill this form We will let you know if you are selected Program schedule This is a 2 week Bootcamp. There will be 1 hour sessions every Monday, Wednesday, Friday and Sunday. There will be tasks to do every other days. Day 1 (Aug 18) Finding the right machine learning model for a problem Should I use machine learning for this problem ? What kind of ML task is this ? Machine learning or deep learning ? Day 2 (Aug 19) Building responsible AI - Bias and other issues Bias Accountability and explainability Reproducability Robustness Privacy Day 3 (Aug 23) Dataset and performance Data prep Data reading Data Augumentation Day 4 (Aug 25) Techniques in training AI models How to find the right learning rate ? Effect of batch size Epochs and early stop Day 5 (Aug 27) Transfer learning where when and how to use Day 6 (Aug 29) Wraping and hosting machine learning models Building a micro service Making the model as an API Hosting and serving Day 7 (Aug 31) On device machine learning Techniques to make models small TensorFlow lite PyTorch quantisation Day 8 (Sep 02) Some tools and tricks Installation Finding models Data Privacy Cloud APIs and frameworks Projects (Sep 03 to Sep 09) You and your fellow teammates will be doing a project based on what you learnt through out the bootcamp

Showing 145-168 of 176 resources in category: github