VibeBuilders.ai Logo
VibeBuilders.ai

All Resources

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding
reddit
LLM Vibe Score0
Human Vibe Score1
jhojnac2This week

Built a Free AI Fitness Planner - From Passion to Product with No Traditional Coding

I wanted to share my journey of creating a free ai-powered workout planning tool with bolt. new and very minimal coding skills. It has taken me probably 4 days in total to complete and get to a point I am happy with. Many improvements coming but want to get it out there for some feedback and testing. I have been going to the gym for years and at this point my routines have gotten stale. I end up doing the same sets of exercises and repetitions over and over. I figured why not let chat gpt or some AI software help me develop or at least recommend different exercises. I was then was recommended youtube videos on creating your own web application without any coding. I will say it does take some coding knowledge, not that I am editing it myself, but I know what its trying to do and can prompt it correctly. I am still struggling with some things like integrating stripe for subscriptions so I only have it set up for donations currently. I dont mind it being free as I would like everyone the opportunity to help develop their own workouts. current cost breakdown to create: bolt. new credits - $100/month (gonna drop to the $20 now that its complete) supabase database - $35/month netlify domain - $11.99/year If anyone is interested or has questions feel free to let me know. It is called fitfocuscalendar. com Edit: title and 1st sentence came from AI everything else was typed by me.

I run an AI automation agency (AAA). My honest overview and review of this new business model
reddit
LLM Vibe Score0
Human Vibe Score1
AI_Scout_OfficialThis week

I run an AI automation agency (AAA). My honest overview and review of this new business model

I started an AI tools directory in February, and then branched off that to start an AI automation agency (AAA) in June. So far I've come across a lot of unsustainable "ideas" to make money with AI, but at the same time a few diamonds in the rough that aren't fully tapped into yet- especially the AAA model. Thought I'd share this post to shine light into this new business model and share some ways you could potentially start your own agency, or at the very least know who you are dealing with and how to pick and choose when you (inevitably) get bombarded with cold emails from them down the line. Foreword Running an AAA does NOT involve using AI tools directly to generate and sell content directly. That ship has sailed, and unless you are happy with $5 from Fiverr every month or so, it is not a real business model. Cry me a river but generating generic art with AI and slapping it onto a T-shirt to sell on Etsy won't make you a dime. At the same time, the AAA model will NOT require you to have a deep theoretical knowledge of AI, or any academic degree, as we are more so dealing with the practical applications of generative AI and how we can implement these into different workflows and tech-stacks, rather than building AI models from the ground up. Regardless of all that, common sense and a willingness to learn will help (a shit ton), as with anything. Keep in mind - this WILL involve work and motivation as well. The mindset that AI somehow means everything can be done for you on autopilot is not the right way to approach things. The common theme of businesses I've seen who have successfully implemented AI into their operations is the willingess to work with AI in a way that augments their existing operations, rather than flat out replace a worker or team. And this is exactly the train of thought you need when working with AI as a business model. However, as the field is relatively unsaturated and hype surrounding AI is still fresh for enterprises, right now is the prime time to start something new if generative AI interests you at all. With that being said, I'll be going over three of the most successful AI-adjacent businesses I've seen over this past year, in addition to some tips and resources to point you in the right direction. so.. WTF is an AI Automation Agency? The AI automation agency (or as some YouTubers have coined it, the AAA model) at its core involves creating custom AI solutions for businesses. I have over 1500 AI tools listed in my directory, however the feedback I've received from some enterprise users is that ready-made SaaS tools are too generic to meet their specific needs. Combine this with the fact virtually no smaller companies have the time or skills required to develop custom solutions right off the bat, and you have yourself real demand. I would say in practice, the AAA model is quite similar to Wordpress and even web dev agencies, with the major difference being all solutions you develop will incorporate key aspects of AI AND automation. Which brings me to my second point- JUST AI IS NOT ENOUGH. Rather than reducing the amount of time required to complete certain tasks, I've seen many AI agencies make the mistake of recommending and (trying to) sell solutions that more likely than not increase the workload of their clients. For example, if you were to make an internal tool that has AI answer questions based on their knowledge base, but this knowledge base has to be updated manually, this is creating unnecessary work. As such I think one of the key components of building successful AI solutions is incorporating the new (Generative AI/LLMs) with the old (programmtic automation- think Zapier, APIs, etc.). Finally, for this business model to be successful, ideally you should target a niche in which you have already worked and understand pain points and needs. Not only does this make it much easier to get calls booked with prospects, the solutions you build will have much greater value to your clients (meaning you get paid more). A mistake I've seen many AAA operators make (and I blame this on the "Get Rich Quick" YouTubers) is focusing too much on a specific productized service, rather than really understanding the needs of businesses. The former is much done via a SaaS model, but when going the agency route the only thing that makes sense is building custom solutions. This is why I always take a consultant-first approach. You can only build once you understand what they actually need and how certain solutions may impact their operations, workflows, and bottom-line. Basics of How to Get Started Pick a niche. As I mentioned previously, preferably one that you've worked in before. Niches I know of that are actively being bombarded with cold emails include real estate, e-commerce, auto-dealerships, lawyers, and medical offices. There is a reason for this, but I will tell you straight up this business model works well if you target any white-collar service business (internal tools approach) or high volume businesses (customer facing tools approach). Setup your toolbox. If you wanted to start a pressure washing business, you would need a pressure-washer. This is no different. For those without programming knowledge, I've seen two common ways AAA get setup to build- one is having a network of on-call web developers, whether its personal contacts or simply going to Upwork or any talent sourcing agency. The second is having an arsenal of no-code tools. I'll get to this more in a second, but this works beecause at its core, when we are dealing with the practical applications of AI, the code is quite simple, simply put. Start cold sales. Unless you have a network already, this is not a step you can skip. You've already picked a niche, so all you have to do is find the right message. Keep cold emails short, sweet, but enticing- and it will help a lot if you did step 1 correctly and intimately understand who your audience is. I'll be touching base later about how you can leverage AI yourself to help you with outreach and closing. The beauty of gen AI and the AAA model You don't need to be a seasoned web developer to make this business model work. The large majority of solutions that SME clients want is best done using an API for an LLM for the actual AI aspect. The value we create with the solutions we build comes with the conceptual framework and design that not only does what they need it to but integrates smoothly with their existing tech-stack and workflow. The actual implementation is quite straightforward once you understand the high level design and know which tools you are going to use. To give you a sense, even if you plan to build out these apps yourself (say in Python) the large majority of the nitty gritty technical work has already been done for you, especially if you leverage Python libraries and packages that offer high level abstraction for LLM-related functions. For instance, calling GPT can be as little as a single line of code. (And there are no-code tools where these functions are simply an icon on a GUI). Aside from understanding the capabilities and limitations of these tools and frameworks, the only thing that matters is being able to put them in a way that makes sense for what you want to build. Which is why outsourcing and no-code tools both work in our case. Okay... but how TF am I suppposed to actually build out these solutions? Now the fun part. I highly recommend getting familiar with Langchain and LlamaIndex. Both are Python libraires that help a lot with the high-level LLM abstraction I mentioned previously. The two most important aspects include being able to integrate internal data sources/knowledge bases with LLMs, and have LLMs perform autonomous actions. The two most common methods respectively are RAG and output parsing. RAG (retrieval augmented Generation) If you've ever seen a tool that seemingly "trains" GPT on your own data, and wonder how it all works- well I have an answer from you. At a high level, the user query is first being fed to what's called a vector database to run vector search. Vector search basically lets you do semantic search where you are searching data based on meaning. The vector databases then retrieves the most relevant sections of text as it relates to the user query, and this text gets APPENDED to your GPT prompt to provide extra context to the AI. Further, with prompt engineering, you can limit GPT to only generate an answer if it can be found within this extra context, greatly limiting the chance of hallucination (this is where AI makes random shit up). Aside from vector databases, we can also implement RAG with other data sources and retrieval methods, for example SQL databses (via parsing the outputs of LLM's- more on this later). Autonomous Agents via Output Parsing A common need of clients has been having AI actually perform tasks, rather than simply spitting out text. For example, with autonomous agents, we can have an e-commerce chatbot do the work of a basic customer service rep (i.e. look into orders, refunds, shipping). At a high level, what's going on is that the response of the LLM is being used programmtically to determine which API to call. Keeping on with the e-commerce example, if I wanted a chatbot to check shipping status, I could have a LLM response within my app (not shown to the user) with a prompt that outputs a random hash or string, and programmatically I can determine which API call to make based on this hash/string. And using the same fundamental concept as with RAG, I can append the the API response to a final prompt that would spit out the answer for the user. How No Code Tools Can Fit In (With some example solutions you can build) With that being said, you don't necessarily need to do all of the above by coding yourself, with Python libraries or otherwise. However, I will say that having that high level overview will help IMMENSELY when it comes to using no-code tools to do the actual work for you. Regardless, here are a few common solutions you might build for clients as well as some no-code tools you can use to build them out. Ex. Solution 1: AI Chatbots for SMEs (Small and Medium Enterprises) This involves creating chatbots that handle user queries, lead gen, and so forth with AI, and will use the principles of RAG at heart. After getting the required data from your client (i.e. product catalogues, previous support tickets, FAQ, internal documentation), you upload this into your knowledge base and write a prompt that makes sense for your use case. One no-code tool that does this well is MyAskAI. The beauty of it especially for building external chatbots is the ability to quickly ingest entire websites into your knowledge base via a sitemap, and bulk uploading files. Essentially, they've covered the entire grunt work required to do this manually. Finally, you can create a inline or chat widget on your client's website with a few lines of HTML, or altneratively integrate it with a Slack/Teams chatbot (if you are going for an internal Q&A chatbot approach). Other tools you could use include Botpress and Voiceflow, however these are less for RAG and more for building out complete chatbot flows that may or may not incorporate LLMs. Both apps are essentially GUIs that eliminate the pain and tears and trying to implement complex flows manually, and both natively incoporate AI intents and a knowledge base feature. Ex. Solution 2: Internal Apps Similar to the first example, except we go beyond making just chatbots but tools such as report generation and really any sort of internal tool or automations that may incorporate LLM's. For instance, you can have a tool that automatically generates replies to inbound emails based on your client's knowledge base. Or an automation that does the same thing but for replies to Instagram comments. Another example could be a tool that generates a description and screeenshot based on a URL (useful for directory sites, made one for my own :P). Getting into more advanced implementations of LLMs, we can have tools that can generate entire drafts of reports (think 80+ pages), based not only on data from a knowledge base but also the writing style, format, and author voice of previous reports. One good tool to create content generation panels for your clients would be MindStudio. You can train LLM's via prompt engineering in a structured way with your own data to essentially fine tune them for whatever text you need it to generate. Furthermore, it has a GUI where you can dictate the entire AI flow. You can also upload data sources via multiple formats, including PDF, CSV, and Docx. For automations that require interactions between multiple apps, I recommend the OG zapier/make.com if you want a no-code solution. For instance, for the automatic email reply generator, I can have a trigger such that when an email is received, a custom AI reply is generated by MyAskAI, and finally a draft is created in my email client. Or, for an automation where I can create a social media posts on multiple platforms based on a RSS feed (news feed), I can implement this directly in Zapier with their native GPT action (see screenshot) As for more complex LLM flows that may require multiple layers of LLMs, data sources, and APIs working together to generate a single response i.e. a long form 100 page report, I would recommend tools such as Stack AI or Flowise (open-source alternative) to build these solutions out. Essentially, you get most of the functions and features of Python packages such as Langchain and LlamaIndex in a GUI. See screenshot for an example of a flow How the hell are you supposed to find clients? With all that being said, none of this matters if you can't find anyone to sell to. You will have to do cold sales, one way or the other, especially if you are brand new to the game. And what better way to sell your AI services than with AI itself? If we want to integrate AI into the cold outreach process, first we must identify what it's good at doing, and that's obviously writing a bunch of text, in a short amount of time. Similar to the solutions that an AAA can build for its clients, we can take advantage of the same principles in our own sales processes. How to do outreach Once you've identified your niche and their pain points/opportunities for automation, you want to craft a compelling message in which you can send via cold email and cold calls to get prospects booked on demos/consultations. I won't get into too much detail in terms of exactly how to write emails or calling scripts, as there are millions of resources to help with this, but I will tell you a few key points you want to keep in mind when doing outreach for your AAA. First, you want to keep in mind that many businesses are still hesitant about AI and may not understand what it really is or how it can benefit their operations. However, we can take advantage of how mass media has been reporting on AI this past year- at the very least people are AWARE that sooner or later they may have to implement AI into their businesses to stay competitive. We want to frame our message in a way that introduces generative AI as a technology that can have a direct, tangible, and positive impact on their business. Although it may be hard to quantify, I like to include estimates of man-hours saved or costs saved at least in my final proposals to prospects. Times are TOUGH right now, and money is expensive, so you need to have a compelling reason for businesses to get on board. Once you've gotten your messaging down, you will want to create a list of prospects to contact. Tools you can use to find prospects include Apollo.io, reply.io, zoominfo (expensive af), and Linkedin Sales Navigator. What specific job titles, etc. to target will depend on your niche but for smaller companies this will tend to be the owner. For white collar niches, i.e. law, the professional that will be directly benefiting from the tool (i.e. partners) may be better to contact. And for larger organizations you may want to target business improvement and digital transformation leads/directors- these are the people directly in charge of projects like what you may be proposing. Okay- so you have your message, and your list, and now all it comes down to is getting the good word out. I won't be going into the details of how to send these out, a quick Google search will give you hundreds of resources for cold outreach methods. However, personalization is key and beyond simple dynamic variables you want to make sure you can either personalize your email campaigns directly with AI (SmartWriter.ai is an example of a tool that can do this), or at the very least have the ability to import email messages programmatically. Alternatively, ask ChatGPT to make you a Python Script that can take in a list of emails, scrape info based on their linkedin URL or website, and all pass this onto a GPT prompt that specifies your messaging to generate an email. From there, send away. How tf do I close? Once you've got some prospects booked in on your meetings, you will need to close deals with them to turn them into clients. Call #1: Consultation Tying back to when I mentioned you want to take a consultant-first appraoch, you will want to listen closely to their goals and needs and understand their pain points. This would be the first call, and typically I would provide a high level overview of different solutions we could build to tacke these. It really helps to have a presentation available, so you can graphically demonstrate key points and key technologies. I like to use Plus AI for this, it's basically a Google Slides add-on that can generate slide decks for you. I copy and paste my default company messaging, add some key points for the presentation, and it comes out with pretty decent slides. Call #2: Demo The second call would involve a demo of one of these solutions, and typically I'll quickly prototype it with boilerplate code I already have, otherwise I'll cook something up in a no-code tool. If you have a niche where one type of solution is commonly demanded, it helps to have a general demo set up to be able to handle a larger volume of calls, so you aren't burning yourself out. I'll also elaborate on how the final product would look like in comparison to the demo. Call #3 and Beyond: Once the initial consultation and demo is complete, you will want to alleviate any remaining concerns from your prospects and work with them to reach a final work proposal. It's crucial you lay out exactly what you will be building (in writing) and ensure the prospect understands this. Furthermore, be clear and transparent with timelines and communication methods for the project. In terms of pricing, you want to take this from a value-based approach. The same solution may be worth a lot more to client A than client B. Furthermore, you can create "add-ons" such as monthly maintenance/upgrade packages, training sessions for employeees, and so forth, separate from the initial setup fee you would charge. How you can incorporate AI into marketing your businesses Beyond cold sales, I highly recommend creating a funnel to capture warm leads. For instance, I do this currently with my AI tools directory, which links directly to my AI agency and has consistent branding throughout. Warm leads are much more likely to close (and honestly, much nicer to deal with). However, even without an AI-related website, at the very least you will want to create a presence on social media and the web in general. As with any agency, you will want basic a professional presence. A professional virtual address helps, in addition to a Google Business Profile (GBP) and TrustPilot. a GBP (especially for local SEO) and Trustpilot page also helps improve the looks of your search results immensely. For GBP, I recommend using ProfilePro, which is a chrome extension you can use to automate SEO work for your GBP. Aside from SEO optimzied business descriptions based on your business, it can handle Q/A answers, responses, updates, and service descriptions based on local keywords. Privacy and Legal Concerns of the AAA Model Aside from typical concerns for agencies relating to service contracts, there are a few issues (especially when using no-code tools) that will need to be addressed to run a successful AAA. Most of these surround privacy concerns when working with proprietary data. In your terms with your client, you will want to clearly define hosting providers and any third party tools you will be using to build their solution, and a DPA with these third parties listed as subprocessors if necessary. In addition, you will want to implement best practices like redacting private information from data being used for building solutions. In terms of addressing concerns directly from clients, it helps if you host your solutions on their own servers (not possible with AI tools), and address the fact only ChatGPT queries in the web app, not OpenAI API calls, will be used to train OpenAI's models (as reported by mainstream media). The key here is to be open and transparent with your clients about ALL the tools you are using, where there data will be going, and make sure to get this all in writing. have fun, and keep an open mind Before I finish this post, I just want to reiterate the fact that this is NOT an easy way to make money. Running an AI agency will require hours and hours of dedication and work, and constantly rearranging your schedule to meet prospect and client needs. However, if you are looking for a new business to run, and have a knack for understanding business operations and are genuinely interested in the pracitcal applications of generative AI, then I say go for it. The time is ticking before AAA becomes the new dropshipping or SMMA, and I've a firm believer that those who set foot first and establish themselves in this field will come out top. And remember, while 100 thousand people may read this post, only 2 may actually take initiative and start.

If only someone told me this before my first startup
reddit
LLM Vibe Score0
Human Vibe Score0.625
johnrushxThis week

If only someone told me this before my first startup

If only someone told me this before my first startup: Validate idea first. I wasted a decade building stuff nobody needed. Incubators and VCs served to me as a validation, but I was so wrong. Kill my EGO. It’s not about me, but the user. I must want what the user wants, not what I want. My taste isn't important. The user has expectations, and I must fulfill them. Don’t chaise investors. Chase users, and then investors will be chasing me. I've never had more incoming interest from VC than now when I'm the least interested in them. Never hire managers. Only hire doers until PMF. So many people know how to manage people and so few can actually get sh\*t done barehand. Landing page is the least important thing in a startup. Pick a simple template, edit texts with a no-code website builder in less than an hour and that's it! At the early stage, I win traffic outside of my website, people are already interested, so don't make them search for the signup button among the texts! Focus on conversion optimization only when the traffic is consistent. Keep it to one page. Nobody gonna browse this website. Hire only fullstack devs. There is nothing less productive in this world than a team of developers for an early-stage product. One full stack dev building the whole product. That’s it. Chase global market from day 1. If the product and marketing are good, it will work on the global market too, if it’s bad, it won’t work on the local market too. So better go global from day 1, so that if it works, the upside is 100x bigger. I launched all startups for the Norwegian market, hoping we will scale to international at some point. I wish I launched to international from day 1 as I do now. The size of the market is 10000x bigger. I can validate and grow products in days, not in years as it used to be. Do SEO from day 2. As early as I can. I ignored this for 14 years. It’s my biggest regret. It takes just 5 minutes to get it done on my landing page. I go to Google Keyword Planner, enter a few keywords around my product, sort them by traffic, filter out high competition kws, pick the top 10, and place them natively on my home page and meta tags. Add one blog article every week. Either manually or by paying for an AI blogging tool. Sell features, before building them. Ask existing users if they want this feature. I run DMs with 10-20 users every day, where I chat about all my ideas and features I wanna add. I clearly see what resonates with me most and only go build those. If I don't have followers, try HN, Reddit, or just search on X for posts and ask it in the replies. People are helpful, they will reply if the question is easy to understand. Hire only people I would wanna hug. My cofounder, an old Danish man said this to me in 2015. And it was a big shift. I realized that if I don’t wanna hug the person, it means I dislike them on a chemical/animal level. Even if I can’t say why, but that’s the fact. Sooner or later, we would have a conflict and eventually break up. It takes up to 10 years to build a startup, make sure I do it with people I have this connection with. Invest all money into my startups and friends. Not crypt0, not stockmarket, not properties. I did some math, if I kept investing all my money into all my friends’ startups, that would be about 70 investments. 3 of them turned into unicorns eventually. Even 1 would have made the bank. Since 2022, I have invested all my money into my products, friends, and network. If I don't have friends who do startups, invest it in myself. Post on Twitter daily. I started posting here in March last year. It’s my primary source of new connections and growth. I could have started it earlier, I don't know why I didn't. Don’t work/partner with corporates. Corporations always seem like an amazing opportunity. They’re big and rich, they promise huge stuff, millions of users, etc. But every single time none of this happens. Because I talk to a regular employees there. They waste my time, destroy focus, shift priorities, and eventually bring in no users/money. Don’t get ever distracted by hype e.g. crypt0. I lost 1.5 years of my life this way. I met the worst people along the way. Fricks, scammers, thieves. Some of my close friends turned into thieves along the way, just because it was so common in that space. I wish this didn’t happen to me. I wish I was stronger and stayed on my mission. Don’t build consumer apps. Only b2b. Consumer apps are so hard, like a lottery. It’s just 0.00001% who make it big. The rest don’t. Even if I got many users, then there is a monetization challenge. I’ve spent 4 years in consumer apps and regret it. Don’t hold on bad project for too long, max 1 year. Some projects just don’t work. In most cases, it’s either the idea that’s so wrong that I can’t even pivot it or it’s a team that is good one by one but can’t make it as a team. Don’t drag this out for years. Tech conferences are a waste of time. They cost money, take energy, and time and I never really meet anyone there. Most people there are the “good” employees of corporations who were sent there as a perk for being loyal to the corporation. Very few fellow makers. Scrum is a Scam. For small teams and bootstrapped teams. If I had a team that had to be nagged every morning with questions as if they were children in kindergarten, then things would eventually fail. The only good stuff I managed to do happened with people who were grownups and could manage their stuff on their own. We would just do everything over chat as a sync on goals and plans. Outsource nothing at all until PMF. In a startup, almost everything needs to be done in a slightly different way, more creative, and more integrated into the vision. When outsourcing, the external members get no love and no case for the product. It’s just yet another assignment in their boring job. Instead of coming up with great ideas for my project they will be just focusing on ramping up their skills to get a promotion or a better job offer. Bootstrap. I spent way too much time raising money. I raised more than 10 times, preseed, seeded, and series A. But each time it was a 3-9 month project, meetings every week, and lots of destruction. I could afford to bootstrap, but I still went the VC-funded way, I don’t know why. To be honest, I didn’t know bootstrapping was a thing I could do or anyone does. It may take a decade. When I was 20, I was convinced it takes a few years to build and succeed with a startup. So I kept pushing my plans forward, to do it once I exited. Family, kids. I wish I married earlier. I wish I had kids earlier. No Free Tier. I'd launch a tool with a free tier, and it'd get sign-ups, but very few would convert. I'd treat free sign-ups as KPIs and run on it for years. I'd brag about signups and visitors. I'd even raise VC money with these stats. But eventually, I would fail to reach PMF. Because my main feedback would come from free users and the product turned into a perfect free product. Once I switched to "paid only" until I validated the product, things went really well. Free and paid users often need different products. Don't fall into this trap as I did. Being To Cheap. I always started by checking all competitors and setting the lowest price. I thought this would be one of the key advantages of my product. But no, I was wrong. The audience on $5 and $50 are totally different. $5: pain in the \*ss, never happy, never recommend me to a friend, leave in 4 months. $50: polite, give genuine feedback, happy, share with friends, become my big fan if I solve their request. I will fail. When I started my first startup. I thought if I did everything right, it would work out. But it turned out that almost every startup fails. I wish I knew that and I tried to fail faster, to get to the second iteration, then to the third, and keep going on, until I either find out nothing works or make it work. Use boilerplates. I wasted years of dev time and millions of VC money to pay for basic things. To build yet another sidebar, yet another dashboard, and payment integration... I had too much pride, I couldn't see myself taking someone else code as a basis for my product. I wanted it to be 100% mine, original, from scratch. Because my product seems special to me. Spend more time with Family & Friends. I missed the weddings of all my best friends and family. I was so busy. I thought if I didn't do it on time, the world would end. Looking back today, it was so wrong. I meet my friends and can't share those memories with them, which makes me very sad. I realized now, that spending 10% of my time with family and friends would practically make no negative impact on my startups. Build Products For Audiences I Love. I never thought of this. I'd often build products either for corporates, consumers, or for developers. It turns out I have no love for all 3. But I deeply love indie founders. Because they are risk-takers and partly kids in their hearts. Once I switched the focus to indie makers on my products, my level of joy increased by 100x for me. Ignore Badges and Awards I was chasing those awards just like everyone else. Going to ceremonies, signing up for events and stuff. I've won tons of awards, but none of those were eventually useful to my business. I better focused on my business and users. Write Every Single Day. When I was a kid, I loved writing stories. In school, they would give an assignment, and I'd often write a long story for it, however, the teacher would put an F on it. The reason was simple, I had an issue with the direction of the letters and the sequence of letters in the words. I still have it, it's just the Grammarly app helping me to correct these issues. So the teacher would fail my stories because almost every sentence had a spelling mistake that I couldn't even see. It made me think I'm made at writing. So I stopped, for 15 years. But I kept telling stories all these years. Recently I realized that in any group, the setup ends up turning into me telling stories to everyone. So I tried it all again, here on X 10 months ago. I love it, the process, the feedback from people. I write every day. I wish I had done it all these years. The End. \ this is an updated version of my post on the same topic from 2 months ago. I've edited some of the points and added 9 new ones.* \\ This is not advice, it's my self-reflection that might help you avoid same mistakes if you think those were mistakes

I Quit My Tech Job 6 Months Ago. Built 10+ Products. Made $0. Here's Everything I Learned.
reddit
LLM Vibe Score0
Human Vibe Score1
WaynedevvvThis week

I Quit My Tech Job 6 Months Ago. Built 10+ Products. Made $0. Here's Everything I Learned.

I quit my tech job 6 months ago to go full indie. Had enough savings and didn't want to miss the AI wave. Since then, I've built 10+ products - B2C, B2B, mobile apps, directories, marketplaces, you name it. But I keep repeating the same cycle: have an idea, dream big, build for weeks, "launch" (and by launch, I mean just deploy and go live with zero promotion), then get bored and lose motivation to market it. Then I start looking for new ideas to build. Is it just me, or does anyone else face something similar? Maybe coding is my comfort zone and marketing isn't, that's why... I knew entrepreneurship was hard, but it's MUCH harder than I thought. After these failures, here's everything I've learned: Lessons Learned The Hard Way Don't build something you don't have passion for. Pushing a product is hard and takes tremendous effort. If you don't have passion for it, you won't push through the initial "no interest" zone. Think carefully: would you be proud of what you build after building it? If yes, proceed. If not, don't waste time. Build your audience/network first. This isn't new advice, but it's 100% key for entrepreneurs to succeed. I'm still figuring this out, but one thing is clear: "Value" is the key. Stop posting random stuff and instead give value. People don't care about you and your life, but they do care about what you can offer them. Don't rush. Entrepreneurship isn't a sprint; it's a marathon. Don't rush to build stuff. Take a step back to think, plan, and learn. Coding for 16 hours a day won't do you any good - you'll end up building something people don't want. What I'm Doing Differently Next Time After all these failures, I finally took time with myself to think about how I can approach things differently. Here's my new plan: I will not start a new project if I know I'll ditch it after building it. I will follow best practices: validate the idea, research competitors, look for beta users, and ship fast. I will start building my audience and personal brand through documenting the journey. I've already decided what I'm building next, and yes, this time I'm going all in. I'll apply everything I've learned so far, and hopefully, this time will be different. Will update you all soon. Keep shipping, folks! Hopefully we'll see your "I reached 10k MRR for my SaaS" post soon.

Demo: Scalable Custom Lead Generation for Tech Sales Reps?
reddit
LLM Vibe Score0
Human Vibe Score1
asheriff91This week

Demo: Scalable Custom Lead Generation for Tech Sales Reps?

Hey, Is anyone interested in relevant, recent, and validated tech sales leads w/ customized intro messages? I am building an AI solution that finds recent technical product problems and generates a custom introduction message. Here is an example situation and output.  I found a profitable graphic design tool product. I leveraged their product reviews to build a custom message for the product owner. Example Email Subject: Follow-Up on Feature Requests: Blending, Layering, and Export Formats Hi \[Product Owner\], I hope this message finds you well! My team and I have been analyzing recent feedback from users regarding \[App Name\], and I wanted to share some insights related to key feature requests that seem to resonate strongly with the community. Specifically, we’ve noticed recurring themes in the reviews regarding: Blending Tools: Users are finding the blending tools unintuitive and requiring extra steps compared to competitors. Additionally, there have been reports of crashes when using certain features like the paint-all tool for blending. Layering Capabilities: Many users are requesting unlimited layers and improvements in layer management (e.g., better renaming workflows to avoid visibility issues). Export Formats: Exporting to high-quality PSD and PNG is inconsistent, with issues such as loss of alpha transparency and layer data being highlighted. Users are eager for a more seamless export experience. Here are a few examples from recent reviews to illustrate these concerns: "Blending tools demand several additional steps, making them less streamlined than those offered by competitors." "Users are frustrated by the lack of unlimited layers, citing the inconvenience of having to save and re-import images to extend layer capacity." "The most recent update appears to have disrupted the Export function, as attempts to export drawings are unresponsive." Given how frequently these requests appear in the feedback, I wanted to touch base to understand how your team is currently approaching these areas. Are there any updates or plans in motion to address these features? We’re really excited to see where the app goes next and would love to assist in gathering more structured user insights if that would be helpful! Looking forward to your thoughts. Warm regards, \[Your Full Name\] \[Your Position\] \[Your Contact Information\] \---------------------------------------------------------------------------------------------- This approach demonstrates sincerity in understanding their business and lays a foundation to build a trusted advisor relationship. What do you all think? Is anyone interested in seeing a full demo? I would love to get some feedback.

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience
reddit
LLM Vibe Score0
Human Vibe Score1
hopefully_usefulThis week

We made $325k in 2023 from AI products, starting from 0, with no-code, no funding and no audience

I met my co-founder in late 2022 after an introduction from a mutual friend to talk about how to find contract Product Management roles. I was sporadically contracting at start-up at the time and he had just come out of another start-up that was wiped out by the pandemic. We hit it off, talking about ideas, sharing what other indie-hackers were doing, and given GPT-3’s prominence at the time, we started throwing around ideas about things we could build with it, if nothing else, just to learn. I should caveat, neither of us were AI experts when starting out, everything we learned has been through Twitter and blogs, my background is as an accountant, and his a consultant. Here’s how it went since then: &#x200B; Nov 2022 (+$50) \- We built a simple tool in around a week using GPT-3 fine-tuning and a no-code tool (Bubble) that helped UK university students write their personal statements for their applications \- We set some Google Ads going and managed to make a few sales (\~$50) in the first week \- OpenAI were still approving applications at the time and said this went against their “ethics” so we had to take it down &#x200B; Dec 2022 (+$200) \- We couldn’t stop coming up with ideas related to AI fine-tuning, but realised it was almost impossible to decide which to pursue \- We needed a deadline to force us so we signed up for the Ben’s Bites hackathon in late December \- In a week, we built and launched a no-code fine-tuning platform, allowing people to create fine-tuned models by dragging and dropping an Excel file onto it \- We launched it on Product Hunt, having no idea how to price it, and somehow managed to get \~2,000 visitors on the site and make 2 sales at $99 &#x200B; Jan 2023 (+$3,000) \- We doubled down on the fine-tuning idea and managed to get up to \~$300 MRR, plus a bunch of one-time sales and a few paid calls to help people get the most out of their models \- We quickly realised that people didn’t want to curate models themselves, they just wanted to dump data and get magic out \- That was when we saw people building “Talk with x book/podcast” on Twitter as side projects and realised that was the missing piece, we needed to turn it into a tool \- We started working on the new product in late January &#x200B; Feb 2023 (+$9,000) \- We started pre-selling access to an MVP for the new product, which allowed people to “chat with their data/content”, we got $5,000 in pre-sales, more than we made from the previous product in total \- By mid-February, after 3 weeks of building we were able to launch and immediately managed to get traction, getting to $1k MRR in < 1 week, building on the hype of ChatGPT and AI (we were very lucky here) &#x200B; Mar - Jul 2023 (+$98,000) \- We worked all the waking hours to keep up with customer demand, bugs, OpenAI issues \- We built integrations for a bunch of services like Slack, Teams, Wordpress etc, added tons of new functionality and continue talking to customers every day \- We managed to grow to $17k MRR (just about enough to cover our living expenses and costs in London) through building in public on Twitter, newsletters and AI directories (and a million other little things) \- We sold our fine-tuning platform for \~$20k and our university project for \~$3k on Acquire &#x200B; Aug 2023 (+$100,000) \- We did some custom development work based on our own product for a customer that proved pretty lucrative &#x200B; Sep - Oct 2023 (+$62,000) \- After 8 months of building constantly, we started digging more seriously into our usage and saw subscriptions plateauing \- We talked to and analysed all our paying users to identify the main use cases and found 75% were for SaaS customer support \- We took the leap to completely rebuild a version of our product around this use case, our biggest to date (especially given most features with no-code took us <1 day) &#x200B; Nov - Dec 2023 (+$53,000) \- We picked up some small custom development work that utilised our own tech \- We’re sitting at around $22k MRR now with a few bigger clients signed up and coming soon \- After 2 months of building and talking to users, we managed to finish our “v2” of our product, focussed squarely on SaaS customer support and launched it today. &#x200B; We have no idea what the response will be to this new version, but we’re pretty happy with it, but couldn’t have planned anything that happened to us in 2023 so who knows what will come of 2024, we just know that we are going to be learning a ton more. &#x200B; Overall, it is probably the most I have had to think in my life - other jobs you can zone out from time to time or rely on someone else if you aren’t feeling it - not when you are doing this, case and point, I am writing this with a banging head-cold right now, but wanted to get this done. A few more things we have learned along the way - context switching is unreal, as is keeping up with, learning and reacting to AI. There isn’t a moment of the day I am not thinking about what we do next. But while in some way we now have hundreds of bosses (our customers) I still haven’t felt this free and can’t imagine ever going back to work for someone else. Next year we’re really hoping to figure out some repeatable distribution channels and personally, I want to get a lot better at creating content/writing, this is a first step! Hope this helps someone else reading this to just try starting something and see what happens.

Jinxed - $0 month after bragging about my first $10k month here. (PROGRESS UPDATE)
reddit
LLM Vibe Score0
Human Vibe Score1
swagamoneyThis week

Jinxed - $0 month after bragging about my first $10k month here. (PROGRESS UPDATE)

A month ago I made a post in this sub about my first $10k month. It went viral. And guess what - I didn't make another dollar since. Honestly, I shouldn't have made any money that first month also. Because I didn't have an offer. If you're familiar with Alex Hormozi you know that the offer is what makes or breaks a business. And I simply didn't have it. I managed to close my first clients just because I rode the AI hype train and managed to capture a couple of CEOs who were riding it too. Took whatever I could get for installment without thinking about the future. (It also helped that I wasn't bullshitting and had a legit enterprise-grade custom GPT framework ready). But that's not a business strategy at all. You can't base your business solely off hype. So the last month was dedicated to crafting a proper offer. No selling involved. Purely discovery chats with as many people as possible. The viral post helped because I connected with some badass people I wouldn't have reached otherwise. Even managed to add a new team member from Reddit. But most importantly, we now have the offer: Enterprise-grade AI assistant trained on your data for a fraction of the market cost. Basically a custom GPT for companies that want a secure assistant "trained" on their data but are not willing to spend millions on OpenAI's Custom Models or hundreds of thousands on Enterprise ChatGPT. (OpenAI's introduction of exclusive business GPTs for $2-3M is an incredibly good leverage for this offer). Also got rid of the big installment fee and switched to a $1k/month starting price for attractiveness and simplicity for companies (that covers their Azure fees also). The key offer points here are: Data security (as there are cheap, but not enterprise-grade tools like PDF.ai) Good price (as not all businesses can afford to pay 6 figure premiums for their data security) So the lesson here (I suppose) is that it's okay to take a step back sometimes. Reevaluate your direction. It's not worth sprinting when you're running in circles. P.S. finally made a website https://jongri.tech

12 months from idea to product - bootstrapping my own mobile app from 0
reddit
LLM Vibe Score0
Human Vibe Score1
MaartinBlack1996This week

12 months from idea to product - bootstrapping my own mobile app from 0

Introduction It has taken 12 months to develop an app that uses a camera to seamlessly detect fridge ingredients and generate recipes—solving the everyday problem I faced while traveling: "What should I cook for dinner today?" Although the end product has evolved from the initial concept, the ingredient detection feature remains one of the key elements that makes this app truly unique. When I started Keto, the biggest challenge I faced was tracking carbs, typically done through barcode scanning or manual searches. While Swifto offers both of these options, we are proud to introduce a feature that allows you to extract net carb values from a single image with just one click. We’ve combined AI with a great user experience to ensure that anyone embarking on their Keto journey can track their progress with ease. My Experience The app is now at a stage where I can truly seek market validation. Yes, this journey took me around 12 months, starting with the idea, creating the website, and developing the app's UI/UX and backend. At this point, many people might wonder: "Did you validate your idea before? Why create such a complex app without first understanding if there's a market need?" While this approach is undoubtedly risky and may not pay off in the future, I had a strong belief that this product could only be validated when people experienced how it works and saw how seamless the UX is compared to other similar apps. Would I Do It Again? Probably not. While developing the mobile app, I learned a lot about how mobile apps are advertised on the Google Play Store and how challenging it is to break into niche markets. You can develop the best application out there, but if no one sees it, it will never reach the top searches, which is crucial for any app's organic reach. I'll need to devise very creative strategies to gain the attention of those who truly matter for this product's validation and then go from there. However, it seems this will require much more effort than I initially anticipated. I'm open to any questions/suggestions.

Raised $450k for my startup, here are the lessons I've learned along the way
reddit
LLM Vibe Score0
Human Vibe Score1
marin_smiljanicThis week

Raised $450k for my startup, here are the lessons I've learned along the way

2021 has been a pretty amazing year for Omnisearch. Having started initial work on Omnisearch at the end of 2020, we entered the new year with a working MVP yet no revenue, no significant partnerships, and no funding. Fast forward to the end of 2021, and we now have fantastic revenue growth, a partnership with a public company, and a far more powerful, complete and polished product. But one milestone really changed Omnisearch’s trajectory: our $450,000 USD pre-seed round by GoAhead Ventures. In this post I want to share the story of how it came about and offer a couple of takeaways to keep in mind when preparing for fundraising. &#x200B; The story Contrary to most advice, my co-founder Matej and I didn’t allocate a specific time to switch to “fundraising mode” but rather talked to investors on an ongoing basis. It was a bit of a distraction from working on the product, but on the positive side we were able to constantly get feedback on the idea, pitch, go-to-market strategy and hiring, as well as hearing investors’ major concerns sooner rather than later. That being said, our six-month long fundraising efforts weren’t yielding results - we talked to about twenty investors, mostly angels or smaller funds, with no success. The feedback was generally of the “too early for us” variety (since we were still pre-revenue), with additional questions about our go-to-market strategy and ideal customer persona. The introduction to our eventual investors, California-based GoAhead Ventures, came through a friend who had pitched them previously. We wrote a simple blurb and sent our pitch deck. We then went through GoAhead’s hyper-efficient screening process, consisting of a 30-minute call, a recorded three-minute pitch, and filling out a simple Google doc. Throughout the whole process, the GoAhead team left an awesome impression thanks to their knowledge of enterprise software and their responsiveness. They ended up investing and the whole deal was closed within two weeks, which is super fast even by Silicon Valley standards. While our fundraising experience is a single data point and your case might be different, here are the key takeaways from our journey. &#x200B; Perseverance wins: Like I said above, we talked to about twenty investors before we closed our round. Getting a series of “no”s sucks, but we took the feedback seriously and tried to prepare better for questions that caught us off guard. But we persevered, keeping in mind that from a bird’s eye perspective it’s an amazing time to be building startups and raising funds. Focus on traction: Sounds pretty obvious, right? The truth is, though, that even a small amount of revenue is infinitely better than none at all. One of the major differences between our eventual successful investor pitch and the earlier ones was that we had actual paying customers, though our MRR was low. This allows you to talk about customers in the present tense, showing there’s actual demand for your product and making the use cases more tangible. And ideally, highlight a couple of customer testimonials to boost your credibility. Have a demo ready: In Omnisearch’s case, the demo was oftentimes the best received part of the pitch or call. We’d show investors the live demo, and for bonus points even asked them to choose a video from YouTube and then try searching through it. This always had a “wow” effect on prospective investors and made the subsequent conversation more exciting and positive. Accelerators: Accelerators like Y Combinator or Techstars can add enormous value to a startup, especially in the early stages. And while it’s a great idea to apply, don’t rely on them too heavily. Applications happen only a few times a year, and you should have a foolproof fundraising plan in case you don’t get in. In our case, we just constantly looked for investors who were interested in our space (defined as enterprise SaaS more broadly), using LinkedIn, AngelList, and intros from our own network. Practice the pitch ad nauseam: Pitching is tough to get right even for seasoned pros, so it pays to practice as often as possible. We took every opportunity to perfect the pitch: attending meetups and giving the thirty-second elevator pitch to other attendees over beer and pizza, participating in startup competitions, going to conferences and exhibiting at our own booth, attending pre-accelerator programs, and pitching to friends who are in the startup world. Show an understanding of the competition: Frankly, this was one of the strongest parts of our pitch and investor conversations. If you’re in a similar space to ours, Gartner Magic Quadrants and Forrester Waves are an awesome resource, as well as sites like AlternativeTo or Capterra and G2. By thoroughly studying these resources we gained a great understanding of the industry landscape and were able to articulate our differentiation more clearly and succinctly. Presenting this visually in a coordinate system or a feature grid is, from our experience, even more effective. Remember it’s just the beginning! Getting your first round of funding is just the beginning of the journey, so it’s important to avoid euphoria and get back to building and selling the product as soon as possible. While securing funding enables you to scale the team, and is a particular relief if the founders had worked without a salary, the end goal is still to build a big, profitable, and overall awesome startup.

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a Small Startup in Asia Secured a Contract with the US Department of Homeland Security

Uzair Javaid, a Ph.D. with a passion for data privacy, co-founded Betterdata to tackle one of AI's most pressing challenges: protecting privacy while enabling innovation. Recently, Betterdata secured a lucrative contract with the US Department of Homeland Security, 1 of only 4 companies worldwide to do so and the only one in Asia. Here's how he did it: The Story So what's your story? I grew up in Peshawar, Pakistan, excelling in coding despite studying electrical engineering. Inspired by my professors, I set my sights on studying abroad and eventually earned a Ph.D. scholarship at NUS Singapore, specializing in data security and privacy. During my research, I ethically hacked Ethereum and published 15 papers—three times the requirement. While wrapping up my Ph.D., I explored startup ideas and joined Entrepreneur First, where I met Kevin Yee. With his expertise in generative models and mine in privacy, we founded Betterdata. Now, nearly three years in, we’ve secured a major contract with the U.S. Department of Homeland Security—one of only four companies globally and the only one from Asia. The Startup In a nutshell, what does your startup do? Betterdata is a startup that uses AI and synthetic data generation to address two major challenges: data privacy and the scarcity of high-quality data for training AI models. By leveraging generative models and privacy-enhancing technologies, Betterdata enables businesses, such as banks, to use customer data without breaching privacy regulations. The platform trains AI on real data, learns its patterns, and generates synthetic data that mimics the real thing without containing any personal or sensitive information. This allows companies to innovate and develop AI solutions safely and ethically, all while tackling the growing need for diverse, high-quality data in AI development. How did you conduct ideation and validation for your startup? The initial idea for Betterdata came from personal experience. During my Ph.D., I ethically hacked Ethereum’s blockchain, exposing flaws in encryption-based data sharing. This led me to explore AI-driven deep synthesis technology—similar to deepfakes but for structured data privacy. With GDPR impacting 28M+ businesses, I saw a massive opportunity to help enterprises securely share data while staying compliant. To validate the idea, I spoke to 50 potential customers—a number that strikes the right balance. Some say 100, but that’s impractical for early-stage founders. At 50, patterns emerge: if 3 out of 10 mention the same problem, and this repeats across 50, you have 10–15 strong signals, making it a solid foundation for an MVP. Instead of outbound sales, which I dislike, we used three key methods: Account-Based Marketing (ABM)—targeting technically savvy users with solutions for niche problems, like scaling synthetic data for banks. Targeted Content Marketing—regular customer conversations shaped our thought leadership and outreach. Raising Awareness Through Partnerships—collaborating with NUS, Singapore’s PDPC, and Plug and Play to build credibility and educate the market. These strategies attracted serious customers willing to pay, guiding Betterdata’s product development and market fit. How did you approach the initial building and ongoing product development? In the early stages, we built synthetic data generation algorithms and a basic UI for proof-of-concept, using open-source datasets to engage with banks. We quickly learned that banks wouldn't share actual customer data due to privacy concerns, so we had to conduct on-site installations and gather feedback to refine our MVP. Through continuous consultation with customers, we discovered real enterprise data posed challenges, such as missing values, which led us to adapt our prototype accordingly. This iterative approach of listening to customer feedback and observing their usage allowed us to improve our product, enhance UX, and address unmet needs while building trust and loyalty. Working closely with our customers also gives us a data advantage. Our solution’s effectiveness depends on customer data, which we can't fully access, but bridging this knowledge gap gives us a competitive edge. The more customers we test on, the more our algorithms adapt to diverse use cases, making it harder for competitors to replicate our insights. My approach to iteration is simple: focus solely on customer feedback and ignore external noise like trends or advice. The key question for the team is: which customer is asking for this feature or solution? As long as there's a clear answer, we move forward. External influences, such as AI hype, often bring more confusion than clarity. True long-term success comes from solving real customer problems, not chasing trends. Customers may not always know exactly what they want, but they understand their problems. Our job is to identify these problems and solve them in innovative ways. While customers may suggest specific features, we stay focused on solving the core issue rather than just fulfilling their exact requests. The idea aligns with the quote often attributed to Henry Ford: "If I asked people what they wanted, they would have said faster horses." The key is understanding their problems, not just taking requests at face value. How do you assess product-market fit? To assess product-market fit, we track two key metrics: Customers' Willingness to Pay: We measure both the quantity and quality of meetings with potential customers. A high number of meetings with key decision-makers signals genuine interest. At Betterdata, we focused on getting meetings with people in banks and large enterprises to gauge our product's resonance with the target market. How Much Customers Are Willing to Pay: We monitor the price customers are willing to pay, especially in the early stages. For us, large enterprises, like banks, were willing to pay a premium for our synthetic data platform due to the growing need for privacy tech. This feedback guided our product refinement and scaling strategy. By focusing on these metrics, we refined our product and positioned it for scaling. What is your business model? We employ a structured, phase-driven approach for out business model, as a B2B startup. I initially struggled with focusing on the core value proposition in sales, often becoming overly educational. Eventually, we developed a product roadmap with models that allowed us to match customer needs to specific offerings and justify our pricing. Our pricing structure includes project-based pilots and annual contracts for successful deployments. At Betterdata, our customer engagement unfolds across three phases: Phase 1: Trial and Benchmarking \- We start with outreach and use open-source datasets to showcase results, offering customers a trial period to evaluate the solution. Phase 2: Pilot or PoC \- After positive trial results, we conduct a PoC or pilot using the customer’s private data, with the understanding that successful pilots lead to an annual contract. Phase 3: Multi-Year Contracts \- Following a successful pilot, we transition to long-term commercial contracts, focusing on multi-year agreements to ensure stability and ongoing partnerships. How do you do marketing for your brand? We take a non-conventional approach to marketing, focusing on answering one key question: Which customers are willing to pay, and how much? This drives our messaging to show how our solution meets their needs. Our strategy centers around two main components: Building a network of lead magnets \- These are influential figures like senior advisors, thought leaders, and strategic partners. Engaging with institutions like IMDA, SUTD, and investors like Plug and Play helps us gain access to the right people and foster warm introductions, which shorten our sales cycle and ensure we’re reaching the right audience. Thought leadership \- We build our brand through customer traction, technology evidence, and regulatory guidelines. This helps us establish credibility in the market and position ourselves as trusted leaders in our field. This holistic approach has enabled us to navigate diverse market conditions in Asia and grow our B2B relationships. By focusing on these areas, we drive business growth and establish strong trust with stakeholders. What's your advice for fundraising? Here are my key takeaways for other founders when it comes to fundraising: Fundraise When You Don’t Need To We closed our seed round in April 2023, a time when we weren't actively raising. Founders should always be in fundraising mode, even when they're not immediately in need of capital. Don’t wait until you have only a few months of runway left. Keep the pipeline open and build relationships. When the timing is right, execution becomes much easier. For us, our investment came through a combination of referrals and inbound interest. Even our lead investor initially rejected us, but after re-engaging, things eventually fell into place. It’s crucial to stay humble, treat everyone with respect, and maintain those relationships for when the time is right. Be Mindful of How You Present Information When fundraising, how you present information matters a lot. We created a comprehensive, easily digestible investment memo, hosted on Notion, which included everything an investor might need—problem, solution, market, team, risks, opportunities, and data. The goal was for investors to be able to get the full picture within 30 minutes without chasing down extra details. We also focused on making our financial model clear and meaningful, even though a 5-year forecast might be overkill at the seed stage. The key was clarity and conciseness, and making it as easy as possible for investors to understand the opportunity. I learned that brevity and simplicity are often the best ways to make a memorable impact. For the pitch itself, keep it simple and focus on 4 things: problem, solution, team, and market. If you can summarize each of these clearly and concisely, you’ll have a compelling pitch. Later on, you can expand into market segments, traction, and other metrics, but for seed-stage, focus on those four areas, and make sure you’re strong in at least three of them. If you do, you'll have a compelling case. How do you run things day-to-day? i.e what's your operational workflow and team structure? Here's an overview of our team structure and process: Internally: Our team is divided into two main areas: backend (internal team) and frontend (market-facing team). There's no formal hierarchy within the backend team. We all operate as equals, defining our goals based on what needs to be developed, assigning tasks, and meeting weekly to share updates and review progress. The focus is on full ownership of tasks and accountability for getting things done. I also contribute to product development, identifying challenges and clearing obstacles to help the team move forward. Backend Team: We approach tasks based on the scope defined by customers, with no blame or hierarchy. It's like a sports team—sometimes someone excels, and other times they struggle, but we support each other and move forward together. Everyone has the creative freedom to work in the way that suits them best, but we establish regular meetings and check-ins to ensure alignment and progress. Frontend Team: For the market-facing side, we implement a hierarchy because the market expects this structure. If I present myself as "CEO," it signals authority and credibility. This distinction affects how we communicate with the market and how we build our brand. The frontend team is split into four main areas: Business Product (Software Engineering) Machine Learning Engineering R&D The C-suite sits at the top, followed by team leads, and then the executors. We distill market expectations into actionable tasks, ensuring that everyone is clear on their role and responsibilities. Process: We start by receiving market expectations and defining tasks based on them. Tasks are assigned to relevant teams, and execution happens with no communication barriers between team members. This ensures seamless collaboration and focused execution. The main goal is always effectiveness—getting things done efficiently while maintaining flexibility in how individuals approach their work. In both teams, there's an emphasis on accountability, collaboration, and clear communication, but the structure varies according to the nature of the work and external expectations.

The delicate balance of building an online community business
reddit
LLM Vibe Score0
Human Vibe Score0.895
matthewbarbyThis week

The delicate balance of building an online community business

Hey /r/Entrepreneur 👋 Just under two years ago I launched an online community business called Traffic Think Tank with two other co-founders, Nick Eubanks and Ian Howells. As a Traffic Think Tank customer you (currently) pay $119 a month to get access to our online community, which is run through Slack. The community is focused on helping you learn various aspects of marketing, with a particular focus on search engine optimization (SEO). Alongside access to the Slack community, we publish new educational video content from outside experts every week that all customers have access to. At the time of writing, Traffic Think Tank has around 650 members spanning across 17 of the 24 different global time zones. I was on a business trip over in Sydney recently, and during my time there I met up with some of our Australia-based community members. During dinner I was asked by several of them how the idea for Traffic Think Tank came about and what steps we took to validate that the idea was worth pursuing.  This is what I told them… How it all began It all started with a personal need. Nick, an already successful entrepreneur and owner of a marketing agency, had tested out an early version Traffic Think Tank in early 2017. He offered real-time consulting for around ten customers that he ran from Slack. He would publish some educational videos and offer his advice on projects that the members were running. The initial test went well, but it was tough to maintain on his own and he had to charge a fairly high price to make it worth his time. That’s when he spoke to me and Ian about turning this idea into something much bigger. Both Ian and I offered something slightly different to Nick. We’ve both spent time in senior positions at marketing agencies, but currently hold senior director positions in 2,000+ public employee companies (HubSpot and LendingTree). Alongside this, as a trio we could really ramp up the quality and quantity of content within the community, spread out the administrative workload and just generally have more resources to throw at getting this thing off the ground. Admittedly, Nick was much more optimistic about the potential of Traffic Think Tank – something I’m very thankful for now – whereas Ian and I were in the camp of “you’re out of your mind if you think hundreds of people are going to pay us to be a part of a Slack channel”. To validate the idea at scale, we decided that we’d get an initial MVP of the community up and running with a goal of reaching 100 paying customers in the first six months. If we achieved that, we’d validated that it was a viable business and we would continue to pursue it. If not, we’d kill it. We spent the next month building out the initial tech stack that enabled us to accept payments, do basic user management to the Slack channel, and get a one-page website up and running with information on what Traffic Think Tank was all about.  After this was ready, we doubled down on getting some initial content created for members – I mean, we couldn’t have people just land in an empty Slack channel, could we? We created around ten initial videos, 20 or so articles and then some long threads full of useful information within the Slack channel so that members would have some content to pour into right from the beginning.  Then, it was time to go live. The first 100 customers Fortunately, both Nick and I had built a somewhat substantial following in the SEO space over the previous 5-10 years, so we at least had a large email list to tap into (a total of around 40,000 people). We queued up some launch emails, set an initial price of $99 per month and pressed send. [\[LINK\] The launch email I sent to my subscribers announcing Traffic Think Tank](https://mailchi.mp/matthewbarby/future-of-marketing-1128181) What we didn’t expect was to sell all of the initial 100 membership spots in the first 72 hours. “Shit. What do we do now? Are we ready for this many people? Are we providing them with enough value? What if something breaks in our tech stack? What if they don’t like the content? What if everyone hates Slack?” All of these were thoughts running through my head. This brings me to the first great decision we made: we closed down new membership intake for 3 months so that we could focus completely on adding value to the first cohort of users. The right thing at the right time SEO is somewhat of a dark art to many people that are trying to learn about it for the first time. There’s hundreds of thousands (possibly millions) of articles and videos online that talk about how to do SEO.  Some of it’s good advice; a lot of it is very bad advice.  Add to this that the barrier to entry of claiming to be an “expert” in SEO is practically non-existent and you have a recipe for disaster. This is why, for a long time, individuals involved in SEO have flocked in their masses to online communities for information and to bounce ideas off of others in the space. Forums like SEObook, Black Hat World, WickedFire, Inbound.org, /r/BigSEO, and many more have, at one time, been called home by many SEOs.  In recent times, these communities have either been closed down or just simply haven’t adapted to the changing needs of the community – one of those needs being real-time feedback on real-world problems.  The other big need that we all spotted and personally had was the ability to openly share the things that are working – and the things that aren’t – in SEO within a private forum. Not everyone wanted to share their secret sauce with the world. One of the main reasons we chose Slack as the platform to run our community on was the fact that it solved these two core needs. It gave the ability to communicate in real-time across multiple devices, and all of the information shared within it was outside of the public domain. The other problem that plagued a lot of these early communities was spam. Most of them were web-based forums that were free to access. That meant they became a breeding ground for people trying to either sell their services or promote their own content – neither of which is conducive to building a thriving community. This was our main motivation for charging a monthly fee to access Traffic Think Tank. We spent a lot of time thinking through pricing. It needed to be enough money that people would be motivated to really make use of their membership and act in a way that’s beneficial to the community, but not too much money that it became cost prohibitive to the people that would benefit from it the most. Considering that most of our members would typically spend between $200-800 per month on SEO software, $99 initially felt like the perfect balance. Growing pains The first three months of running the community went by without any major hiccups. Members were incredibly patient with us, gave us great feedback and were incredibly helpful and accommodating to other members. Messages were being posted every day, with Nick, Ian and myself seeding most of the engagement at this stage.  With everything going smoothly, we decided that it was time to open the doors to another intake of new members. At this point we’d accumulated a backlog of people on our waiting list, so we knew that simply opening our doors would result in another large intake. Adding more members to a community has a direct impact on the value that each member receives. For Traffic Think Tank in particular, the value for members comes from three areas: The ability to have your questions answered by me, Nick and Ian, as well as other members of the community. The access to a large library of exclusive content. The ability to build connections with the wider community. In the early stages of membership growth, there was a big emphasis on the first of those three points. We didn’t have an enormous content library, nor did we have a particularly large community of members, so a lot of the value came from getting a lot of one-to-one time with the community founders. [\[IMAGE\] Screenshot of engagement within the Traffic Think Tank Slack community](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1322/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-in-Traffic-Think-Tank.png) The good thing about having 100 members was that it was just about feasible to give each and every member some one-to-one time within the month, which really helped us to deliver those moments of delight that the community needed early on. Two-and-a-half months after we launched Traffic Think Tank, we opened the doors to another 250 people, taking our total number of members to 350. This is where we experienced our first growing pains.  Our original members had become used to being able to drop us direct messages and expect an almost instant response, but this wasn’t feasible anymore. There were too many people, and we needed to create a shift in behavior. We needed more value to come from the community engaging with one another or we’d never be able to scale beyond this level. We started to really pay attention to engagement metrics; how many people were logging in every day, and of those, how many were actually posting messages within public channels.  We asked members that were logging in a lot but weren’t posting (the “lurkers”) why that was the case. We also asked the members that engaged in the community the most what motivated them to post regularly. We learned a lot from doing this. We found that the large majority of highly-engaged members had much more experience in SEO, whereas most of the “lurkers” were beginners. This meant that most of the information being shared in the community was very advanced, with a lot of feedback from the beginners in the group being that they “didn’t want to ask a stupid question”.  As managers of the community, we needed to facilitate conversations that catered to all of our members, not just those at a certain level of skill. To tackle this problem, we created a number of new channels that had a much deeper focus on beginner topics so novice members had a safe place to ask questions without judgment.  We also started running live video Q&As each month where we’d answer questions submitted by the community. This gave our members one-on-one time with me, Nick and Ian, but spread the value of these conversations across the whole community rather than them being hidden within private messages. As a result of these changes, we found that the more experienced members in the community were really enjoying sharing their knowledge with those with less experience. The number of replies within each question thread was really starting to increase, and the community started to shift away from just being a bunch of threads created by me, Nick and Ian to a thriving forum of diverse topics compiled by a diverse set of individuals. This is what we’d always wanted. A true community. It was starting to happen. [\[IMAGE\] Chart showing community engagement vs individual member value](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1602/https://www.matthewbarby.com/wp-content/uploads/2019/08/Community-Engagement-Balance-Graph.jpg) At the same time, we started to realize that we’ll eventually reach a tipping point where there’ll be too much content for us to manage and our members to engage with. When we reach this point, the community will be tough to follow and the quality of any given post will go down. Not only that, but the community will become increasingly difficult to moderate. We’re not there yet, but we recognize that this will come, and we’ll have to adjust our model again. Advocating advocacy As we started to feel more comfortable about the value that members were receiving, we made the decision to indefinitely open for new members. At the same time, we increased the price of membership (from $99 a month to $119) in a bid to strike the right balance between profitability as a business and to slow down the rate at which we were reaching the tipping point of community size. We also made the decision to repay all of our early adopters by grandfathering them in to the original pricing – and committing to always do this in the future. Despite the price increase, we saw a continued flow of new members come into the community. The craziest part about this was that we were doing practically no marketing activities to encourage new members– this was all coming from word of mouth. Our members were getting enough value from the community that they were recommending it to their friends, colleagues and business partners.  The scale at which this was happening really took us by surprise and it told us one thing very clearly: delivering more value to members resulted in more value being delivered to the business. This is a wonderful dynamic to have because it perfectly aligns the incentives on both sides. We’d said from the start that we wouldn’t sacrifice value to members for more revenue – this is something that all three of us felt very strongly about. First and foremost, we wanted to create a community that delivered value to its members and was run in a way that aligned with our values as people. If we could find a way to stimulate brand advocacy, while also tightening the bonds between all of our individual community members, we’d be boosting both customer retention and customer acquisition in the same motion. This became our next big focus. [\[TWEET\] Adam, one of our members wore his Traffic Think Tank t-shirt in the Sahara desert](https://twitter.com/AdamGSteele/status/1130892481099382784) We started with some simple things: We shipped out Traffic Think Tank branded T-shirts to all new members. We’d call out each of the individuals that would submit questions to our live Q&A sessions and thank them live on air. We set up a new channel that was dedicated to sharing a quick introduction to who you are, what you do and where you’re based for all new members. We’d created a jobs channel and a marketplace for selling, buying and trading services with other members. Our monthly “blind dates” calls were started where you’d be randomly grouped with 3-4 other community members so that you could hop on a call to get to know each other better. The Traffic Think Tank In Real Life (IRL)* channel was born, which enabled members to facilitate in-person meetups with each other. In particular, we saw that as members started to meet in person or via calls the community itself was feeling more and more like a family. It became much closer knit and some members started to build up a really positive reputation for being particularly helpful to other members, or for having really strong knowledge in a specific area. [\[TWEET\] Dinner with some of the Traffic Think Tank members in Brighton, UK](https://twitter.com/matthewbarby/status/1117175584080134149) Nick, Ian and I would go out of our way to try and meet with members in real life wherever we could. I was taken aback by how appreciative people were for us doing this, and it also served as an invaluable way to gain honest feedback from members. There was another trend that we’d observed that we didn’t really expect to happen. More and more members were doing business with each another. We’ve had people find new jobs through the community, sell businesses to other members, launch joint ventures together and bring members in as consultants to their business. This has probably been the most rewarding thing to watch, and it was clear that the deeper relationships that our members were forming were resulting in an increased level of trust to work with each other. We wanted to harness this and take it to a new level. This brought us to arguably the best decision we’ve made so far running Traffic Think Tank… we were going to run a big live event for our members. I have no idea what I’m doing It’s the first week of January 2019 and we’re less than three weeks away from Traffic Think Tank LIVE, our first ever in-person event hosting 150 people, most of which are Traffic Think Tank members. It's like an ongoing nightmare I can’t wake up from. That was Nick’s response in our private admin channel to myself and Ian when I asked if they were finding the run-up to the event as stressful as I was. I think that all three of us were riding on such a high from how the community was growing that we felt like we could do anything. Running an event? How hard can it be? Well, turns out it’s really hard. We had seven different speakers flying over from around the world to speak at the event, there was a pre- and after event party, and we’d planned a charity dinner where we would take ten attendees (picked at random via a raffle) out for a fancy meal. Oh, and Nick, Ian and I were hosting a live Q&A session on stage. It wasn’t until precisely 48 hours before the event that we’d realized we didn’t have any microphones, nor had a large amount of the swag we’d ordered arrived. Plus, a giant storm had hit Philly causing a TON of flight cancellations. Perfect. Just perfect. This was honestly the tip of the iceberg. We hadn’t thought about who was going to run the registration desk, who would be taking photos during the event and who would actually field questions from the audience while all three of us sat on stage for our live Q&A panel. Turns out that the answer to all of those questions were my wife, Laura, and Nick’s wife, Kelley. Thankfully, they were on hand to save our asses. The weeks running up to the event were honestly some of the most stressful of my life. We sold around 50% of our ticket allocation within the final two weeks before the event. All of the event organizers told us this would happen, but did we believe them? Hell no!  Imagine having two weeks until the big day and as it stood half of the room would be completely empty. I was ready to fly most of my extended family over just to make it look remotely busy. [\[IMAGE\] One of our speakers, Ryan Stewart, presenting at Traffic Think Tank LIVE](https://cdn.shortpixel.ai/client/qglossy,retimg,w_1920/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LIVE-Ryan-Presenting.jpg) Thankfully, if all came together. We managed to acquire some microphones, the swag arrived on the morning of the event, all of our speakers were able to make it on time and the weather just about held up so that our entire allocation of ticket holders was able to make it to the event. We pooled together and I’m proud to say that the event was a huge success. While we made a substantial financial loss on the event itself, January saw a huge spike in new members, which more than recouped our losses. Not only that, but we got to hang out with a load of our members all day while they said really nice things about the thing we’d built. It was both exhausting and incredibly rewarding. Bring on Traffic Think Tank LIVE 2020! (This time we’re hiring an event manager...)   The road ahead Fast forward to today (August 2019) and Traffic Think Tank has over 650 members. The biggest challenges that we’re tackling right now include making sure the most interesting conversations and best content surfaces to the top of the community, making Slack more searchable (this is ultimately one of its flaws as a platform) and giving members a quicker way to find the exclusive content that we create. You’ll notice there’s a pretty clear theme here. In the past 30 days, 4,566 messages were posted in public channels inside Traffic Think Tank. If you add on any messages posted inside private direct messages, this number rises to 21,612. That’s a lot of messages. To solve these challenges and enable further scale in the future, we’ve invested a bunch of cash and our time into building out a full learning management system (LMS) that all members will get access to alongside the Slack community. The LMS will be a web-based portal that houses all of the video content we produce. It will also  provide an account admin section where users can update or change their billing information (they have to email us to do this right now, which isn’t ideal), a list of membership perks and discounts with our partners, and a list of links to some of the best threads within Slack – when clicked, these will drop you directly into Slack. [\[IMAGE\] Designs for the new learning management system (LMS)](https://cdn.shortpixel.ai/client/qglossy,retimg,w_2378/https://www.matthewbarby.com/wp-content/uploads/2019/08/Traffic-Think-Tank-LMS.png) It’s not been easy, but we’re 95% of the way through this and I’m certain that it will have a hugely positive impact on the experience for our members. Alongside this we hired a community manager, Liz, who supports with any questions that our members have, coordinates with external experts to arrange webinars for the community, helps with new member onboarding, and has tightened up some of our processes around billing and general accounts admin. This was a great decision. Finally, we’ve started planning next year’s live event, which we plan to more than double in size to 350 attendees, and we decided to pick a slightly warmer location in Miami this time out. Stay tuned for me to have a complete meltdown 3 weeks from the event. Final thoughts When I look back on the journey we’ve had so far building Traffic Think Tank, there’s one very important piece to this puzzle that’s made all of this work that I’ve failed to mention so far: co-founder alignment. Building a community is a balancing act that relies heavily on those in charge being completely aligned. Nick, Ian and I completely trust each other and more importantly, are philosophically aligned on how we want to run and grow the community. If we didn’t have this, the friction between us could tear apart the entire community. Picking the right people to work with is important in any company, but when your business is literally about bringing people together, there’s no margin for error here.  While I’m sure there will be many more challenges ahead, knowing that we all trust each other to make decisions that fall in line with each of our core values makes these challenges dramatically easier to overcome. Finally, I’d like to thank all of our members for making the community what it is today – it’d be nothing without you and I promise that we’ll never take that for granted. &#x200B; I originally posted this on my blog here. Welcoming all of your thoughts, comments, questions and I'll do my best to answer them :)

Turning a Social Media Agency into $1.5 Million in Revenue
reddit
LLM Vibe Score0
Human Vibe Score1
FounderFolksThis week

Turning a Social Media Agency into $1.5 Million in Revenue

Steffie here from Founder Folks, with a recent interview I did with Jason Yormark from Socialistics. Here is his story how he started and grew his social media agency. Name: Jason Yormark Company: Socialistics Employee Size: 10 Revenue: $1,500,000/year Year Founded: 2018 Website: www.socialistics.com Technology Tools: ClickUp, Slack, KumoSpace, Google Workspace, Shift, Zapier, Klayvio, Zoom, Gusto, Calendly, Pipedrive Introduction: I am the founder of Socialistics (www.socialistics.com), a leading social media agency that helps businesses turn their social media efforts into real measurable results. I am a 20+ year marketing veteran whose prior work has included launching and managing social media efforts for Microsoft Advertising, Office for Mac, the Air Force, and Habitat for Humanity. I have been recognized as a top B2B social media influencer and thought leader on multiple lists and publications including Forbes, ranking #30 on their 2012 list. I've recently published the book Anti-Agency: A Realistic Path to a $1,000,000 Business, and host the Anti Agency podcast where I share stories of doing business differently. You can learn more about me at www.jasonyormark.com. The Inspiration To Become An Entrepreneur: I’ve been involved with social media marketing since 2007, and have pretty much carved my career out of that. It was a natural progression for me to transition into starting a social media agency. From Idea to Reality: For me realistically, I had to side hustle something long enough to build it up to a point that I could take the leap and risks going full time on my own. For these reasons, I built the company and brand on the side putting out content regularly, and taking on side hustle projects to build out my portfolio and reputation. This went on for about 18 months at which point I had reached the breaking point of my frustrations of working for someone else, and felt I was ready to take the leap since I had the wheels in motion. While balancing a full-time job, I made sure not to overdo it. My main focus was on building out the website/brand and putting out content regularly to gain some traction and work towards some search visibility. I only took on 1-2 clients at a time to make sure I could still meet their needs while balancing a full time job. Attracting Customers: Initially I tapped into my existing network to get my first few clients. Then it was a mix of trade shows, networking events, and throwing a bit of money at paid directories and paid media. This is really a long game. You have to plant seeds over time with people and nurture those relationships over time. A combination of being helpful, likable and a good resource for folks will position you to make asks in the future. If people respect and like you, it makes it much easier to approach for opportunities when the time comes. Overcoming Challenges in Starting the Business: Plenty. Learning when to say no, only hiring the very best, and ultimately the realization that owning a marketing agency is going to have hills and valleys no matter what you do. Costs and Revenue: My largest expense by FAR is personnel, comprising between 50-60% of the business’ expenses, and justifiably so. It’s a people business. Our revenue doubled from the years 2018 through 2021, and we’ve seen between 10-20% growth year over year. A Day in the Life: I’ve successfully removed myself from the day to day of the business and that’s by design. I have a tremendous team, and a rock start Director of Operations who runs the agency day to day. It frees me up to pursue other opportunities, and to mentor, speak and write more. It also allows me to evangelize the book I wrote detailing my journey to a $1M business titled: Anti-Agency: A Realistic Path To A $1,000,000 Business (www.antiagencybook.com). Staying Ahead in a Changing Landscape: You really have to stay on top of technology trends. AI is a huge impact on marketing these days, so making sure we are up to speed on that, and not abusing it or relying on it too much. You also have to embrace that technology and not hide the fact that it’s used. Non-marketers still don’t and can’t do the work regardless of how much AI can help, so we just need to be transparent and smart on how we integrate it, but the fact is, technology will never replace creativity. As an agency, it’s imperative that we operationally allow our account managers to have bandwidth to be creative for clients all the time. It’s how we keep clients and buck the trend of companies changing agencies every year or two. The Vision for Socialistics: Continuing to evolve to cater to our clients through learning, education, and staying on top of the latest tools and technologies. Attracting bigger and more exciting clients, and providing life changing employment opportunities.

AI is taking over Google, huge changes to search
reddit
LLM Vibe Score0
Human Vibe Score1
chouprojectsThis week

AI is taking over Google, huge changes to search

AI is taking over Google, and it's revolutionizing the search experience. Instead of focusing on chatbots or homepage redesigns, Google is integrating AI into search results, introducing AI snapshots with generated summaries and corroborating sources. This shift marks the future of Google Search. Link to The Verge article. For SEOs like me, it's a game-changer. Edit: in a negative way. Before, we had rich snippets, but now we have AI snapshots. It's a revamped version of the snippet, providing users with more valuable information upfront. Here's a before and after. But why did Google choose this approach? Well, monetizing something like ChatGPT is challenging. So, they decided to prioritize an AI-first approach in the most valuable space on the internet: search results. What does this mean for normal people? Let me share some insights from my own businesses. Currently, the top spot on Google garners around 20-35% click-through rate (CTR). However, with the introduction of AI snapshots, that CTR is likely to drop to the equivalent of position 5, ranging from 5-10%. In other words, we're looking at a minimum drop of 50% and a maximum drop of 85% in CTR. It's a significant impact that people who rely on Google traffic need to consider. The good news is that users will need to opt-in to access AI snapshots through Search Generative Experience (SGE). It's still an experimental feature, but it's a probable long-term change in search. However, this uncertainty has already led to a drop in niche site valuations. I have no doubt that we can adapt to these changes. However, let's not undermine the potential impact. It's not a "nothing burger." Imo we have around 1-2 years before we witness seismic changes, so let's make the most of it and stack that 💰💰. What do you think? How do you see AI transforming the search landscape? PS: You can subscribe here to join 25k+ marketers who receive updates on recent marketing news.

7 free ways to find customers
reddit
LLM Vibe Score0
Human Vibe Score1
doublescoop24This week

7 free ways to find customers

You do not need to burn thousands on paid ads to find customers. Most businesses think ads are the only way to get customers. They spend huge amounts on Google and Facebook ads with low conversion rates and end up desperate when the money runs out. Here are some FREE strategies that work way better: Be where your customers already hang out Monitor platforms like Reddit, LinkedIn, Facebook groups and other online communities where your target audience discusses their problems. Look for people actively seeking solutions you provide. The conversion rate is much higher because these are people already looking for what you sell. Create content that solves real problems Create blog posts, videos, or social content that addresses specific pain points your audience has. I started writing detailed guides about problems I knew my customers faced and they began finding me organically through search. Strategic partnerships with complementary businesses I connected with businesses that served the same customers but offered different products. We created joint social posts and shared each other's content at zero cost. This opened up their audience to me and vice versa. Get interviewed on podcasts This one surprised me. Many niche industry podcasts need guests constantly. I reached out offering specific topics I could speak on with value for their audience. This positioned me as an expert while reaching new potential customers. Build in public Sharing your journey building your product creates a following of interested people. I posted weekly updates on X about challenges and wins, which created a small but engaged community before we even launched. Leverage personal networks properly Not by spamming friends, but by asking for specific introductions to people who might genuinely benefit from what you offer. One quality introduction beats 100 cold emails. Create free tools or resources This is one of the most effective strategies. You can easily build these free tools using AI now. I built a simple calculator that helped people in my industry solve a common problem. It generated leads because users found it valuable and shared it. The most important thing I learned is that these methods actually produce higher quality customers. They come to you already understanding the value you provide, which means better conversion rates and longer customer relationships. It takes more patience than ads, but the ROI is significantly better in the long run. Plus, these strategies help you understand your customers better, which improves everything else in your business.

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)
reddit
LLM Vibe Score0
Human Vibe Score1
Royal_Rest8409This week

How a founder built a B2B AI startup to serve with 65+ global brands (including Fortune500 companies)

AI Palette is an AI-driven platform that helps food and beverage companies predict emerging product trends. I had the opportunity recently to sit down with the founder to get his advice on building an AI-first startup, which he'll be going through in this post. About AI Palette: Co-founders: >!2 (Somsubhra GanChoudhuri, Himanshu Upreti)!!100+!!$12.7M USD!!AI-powered predictive analytics for the CPG (Consumer Packaged Goods) industry!!Signed first paying customer in the first year!!65+ global brands, including Cargill, Diageo, Ajinomoto, Symrise, Mondelez, and L’Oréal, use AI Palette!!Every new product launched has secured a paying client within months!!Expanded into Beauty & Personal Care (BPC), onboarding one of India’s largest BPC companies within weeks!!Launched multiple new product lines in the last two years, creating a unified suite for brand innovation!Identify the pain points in your industry for ideas* When I was working in the flavour and fragrance industry, I noticed a major issue CPG companies faced: launching a product took at least one to two years. For instance, if a company decided today to launch a new juice, it wouldn’t hit the market until 2027. This long timeline made it difficult to stay relevant and on top of trends. Another big problem I noticed was that companies relied heavily on market research to determine what products to launch. While this might work for current consumer preferences, it was highly inefficient since the product wouldn’t actually reach the market for several years. By the time the product launched, the consumer trends had already shifted, making that research outdated. That’s where AI can play a crucial role. Instead of looking at what consumers like today, we realised that companies should use AI to predict what they will want next. This allows businesses to create products that are ahead of the curve. Right now, the failure rate for new product launches is alarmingly high, with 8 out of 10 products failing. By leveraging AI, companies can avoid wasting resources on products that won’t succeed, leading to better, more successful launches. Start by talking to as many industry experts as possible to identify the real problems When we first had the idea for AI Palette, it was just a hunch, a gut feeling—we had no idea whether people would actually pay for it. To validate the idea, we reached out to as many people as we could within the industry. Since our focus area was all about consumer insights, we spoke to professionals in the CPG sector, particularly those in the insights departments of CPG companies. Through these early conversations, we began to see a common pattern emerge and identified the exact problem we wanted to solve. Don’t tell people what you’re building—listen to their frustrations and challenges first. Going into these early customer conversations, our goal was to listen and understand their challenges without telling them what we were trying to build. This is crucial as it ensures that you can gather as much data about the problem to truly understand it and that you aren't biasing their answers by showing your solution. This process helped us in two key ways: First, it validated that there was a real problem in the industry through the number of people who spoke about experiencing the same problem. Second, it allowed us to understand the exact scale and depth of the problem—e.g., how much money companies were spending on consumer research, what kind of tools they were currently using, etc. Narrow down your focus to a small, actionable area to solve initially. Once we were certain that there was a clear problem worth solving, we didn’t try to tackle everything at once. As a small team of two people, we started by focusing on a specific area of the problem—something big enough to matter but small enough for us to handle. Then, we approached customers with a potential solution and asked them for feedback. We learnt that our solution seemed promising, but we wanted to validate it further. If customers are willing to pay you for the solution, it’s a strong validation signal for market demand. One of our early customer interviewees even asked us to deliver the solution, which we did manually at first. We used machine learning models to analyse the data and presented the results in a slide deck. They paid us for the work, which was a critical moment. It meant we had something with real potential, and we had customers willing to pay us before we had even built the full product. This was the key validation that we needed. By the time we were ready to build the product, we had already gathered crucial insights from our early customers. We understood the specific information they wanted and how they wanted the results to be presented. This input was invaluable in shaping the development of our final product. Building & Product Development Start with a simple concept/design to validate with customers before building When we realised the problem and solution, we began by designing the product, but not by jumping straight into coding. Instead, we created wireframes and user interfaces using tools like InVision and Figma. This allowed us to visually represent the product without the need for backend or frontend development at first. The goal was to showcase how the product would look and feel, helping potential customers understand its value before we even started building. We showed these designs to potential customers and asked for feedback. Would they want to buy this product? Would they pay for it? We didn’t dive into actual development until we found a customer willing to pay a significant amount for the solution. This approach helped us ensure we were on the right track and didn’t waste time or resources building something customers didn’t actually want. Deliver your solution using a manual consulting approach before developing an automated product Initially, we solved problems for customers in a more "consulting" manner, delivering insights manually. Recall how I mentioned that when one of our early customer interviewees asked us to deliver the solution, we initially did it manually by using machine learning models to analyse the data and presenting the results to them in a slide deck. This works for the initial stages of validating your solution, as you don't want to invest too much time into building a full-blown MVP before understanding the exact features and functionalities that your users want. However, after confirming that customers were willing to pay for what we provided, we moved forward with actual product development. This shift from a manual service to product development was key to scaling in a sustainable manner, as our building was guided by real-world feedback and insights rather than intuition. Let ongoing customer feedback drive iteration and the product roadmap Once we built the first version of the product, it was basic, solving only one problem. But as we worked closely with customers, they requested additional features and functionalities to make it more useful. As a result, we continued to evolve the product to handle more complex use cases, gradually developing new modules based on customer feedback. Product development is a continuous process. Our early customers pushed us to expand features and modules, from solving just 20% of their problems to tackling 50–60% of their needs. These demands shaped our product roadmap and guided the development of new features, ultimately resulting in a more complete solution. Revenue and user numbers are key metrics for assessing product-market fit. However, critical mass varies across industries Product-market fit (PMF) can often be gauged by looking at the size of your revenue and the number of customers you're serving. Once you've reached a certain critical mass of customers, you can usually tell that you're starting to hit product-market fit. However, this critical mass varies by industry and the type of customers you're targeting. For example, if you're building an app for a broad consumer market, you may need thousands of users. But for enterprise software, product-market fit may be reached with just a few dozen key customers. Compare customer engagement and retention with other available solutions on the market for product-market fit Revenue and the number of customers alone isn't always enough to determine if you're reaching product-market fit. The type of customer and the use case for your product also matter. The level of engagement with your product—how much time users are spending on the platform—is also an important metric to track. The more time they spend, the more likely it is that your product is meeting a crucial need. Another way to evaluate product-market fit is by assessing retention, i.e whether users are returning to your platform and relying on it consistently, as compared to other solutions available. That's another key indication that your solution is gaining traction in the market. Business Model & Monetisation Prioritise scalability Initially, we started with a consulting-type model where we tailor-made specific solutions for each customer use-case we encountered and delivered the CPG insights manually, but we soon realized that this wasn't scalable. The problem with consulting is that you need to do the same work repeatedly for every new project, which requires a large team to handle the workload. That is not how you sustain a high-growth startup. To solve this, we focused on building a product that would address the most common problems faced by our customers. Once built, this product could be sold to thousands of customers without significant overheads, making the business scalable. With this in mind, we decided on a SaaS (Software as a Service) business model. The benefit of SaaS is that once you create the software, you can sell it to many customers without adding extra overhead. This results in a business with higher margins, where the same product can serve many customers simultaneously, making it much more efficient than the consulting model. Adopt a predictable, simplistic business model for efficiency. Look to industry practices for guidance When it came to monetisation, we considered the needs of our CPG customers, who I knew from experience were already accustomed to paying annual subscriptions for sales databases and other software services. We decided to adopt the same model and charge our customers an annual upfront fee. This model worked well for our target market, aligning with industry standards and ensuring stable, recurring revenue. Moreover, our target CPG customers were already used to this business model and didn't have to choose from a huge variety of payment options, making closing sales a straightforward and efficient process. Marketing & Sales Educate the market to position yourself as a thought leader When we started, AI was not widely understood, especially in the CPG industry. We had to create awareness around both AI and its potential value. Our strategy focused on educating potential users and customers about AI, its relevance, and why they should invest in it. This education was crucial to the success of our marketing efforts. To establish credibility, we adopted a thought leadership approach. We wrote blogs on the importance of AI and how it could solve problems for CPG companies. We also participated in events and conferences to demonstrate our expertise in applying AI to the industry. This helped us build our brand and reputation as leaders in the AI space for CPG, and word-of-mouth spread as customers recognized us as the go-to company for AI solutions. It’s tempting for startups to offer products for free in the hopes of gaining early traction with customers, but this approach doesn't work in the long run. Free offerings don’t establish the value of your product, and customers may not take them seriously. You should always charge for pilots, even if the fee is minimal, to ensure that the customer is serious about potentially working with you, and that they are committed and engaged with the product. Pilots/POCs/Demos should aim to give a "flavour" of what you can deliver A paid pilot/POC trial also gives you the opportunity to provide a “flavour” of what your product can deliver, helping to build confidence and trust with the client. It allows customers to experience a detailed preview of what your product can do, which builds anticipation and desire for the full functionality. During this phase, ensure your product is built to give them a taste of the value you can provide, which sets the stage for a broader, more impactful adoption down the line. Fundraising & Financial Management Leverage PR to generate inbound interest from VCs When it comes to fundraising, our approach was fairly traditional—we reached out to VCs and used connections from existing investors to make introductions. However, looking back, one thing that really helped us build momentum during our fundraising process was getting featured in Tech in Asia. This wasn’t planned; it just so happened that Tech in Asia was doing a series on AI startups in Southeast Asia and they reached out to us for an article. During the interview, they asked if we were fundraising, and we mentioned that we were. As a result, several VCs we hadn’t yet contacted reached out to us. This inbound interest was incredibly valuable, and we found it far more effective than our outbound efforts. So, if you can, try to generate some PR attention—it can help create inbound interest from VCs, and that interest is typically much stronger and more promising than any outbound strategies because they've gone out of their way to reach out to you. Be well-prepared and deliberate about fundraising. Keep trying and don't lose heart When pitching to VCs, it’s crucial to be thoroughly prepared, as you typically only get one shot at making an impression. If you mess up, it’s unlikely they’ll give you a second chance. You need to have key metrics at your fingertips, especially if you're running a SaaS company. Be ready to answer questions like: What’s your retention rate? What are your projections for the year? How much will you close? What’s your average contract value? These numbers should be at the top of your mind. Additionally, fundraising should be treated as a structured process, not something you do on the side while juggling other tasks. When you start, create a clear plan: identify 20 VCs to reach out to each week. By planning ahead, you’ll maintain momentum and speed up the process. Fundraising can be exhausting and disheartening, especially when you face multiple rejections. Remember, you just need one investor to say yes to make it all worthwhile. When using funds, prioritise profitability and grow only when necessary. Don't rely on funding to survive. In the past, the common advice for startups was to raise money, burn through it quickly, and use it to boost revenue numbers, even if that meant operating at a loss. The idea was that profitability wasn’t the main focus, and the goal was to show rapid growth for the next funding round. However, times have changed, especially with the shift from “funding summer” to “funding winter.” My advice now is to aim for profitability as soon as possible and grow only when it's truly needed. For example, it’s tempting to hire a large team when you have substantial funds in the bank, but ask yourself: Do you really need 10 new hires, or could you get by with just four? Growing too quickly can lead to unnecessary expenses, so focus on reaching profitability as soon as possible, rather than just inflating your team or burn rate. The key takeaway is to spend your funds wisely and only when absolutely necessary to reach profitability. You want to avoid becoming dependent on future VC investments to keep your company afloat. Instead, prioritize reaching break-even as quickly as you can, so you're not reliant on external funding to survive in the long run. Team-Building & Leadership Look for complementary skill sets in co-founders When choosing a co-founder, it’s important to find someone with a complementary skill set, not just someone you’re close to. For example, I come from a business and commercial background, so I needed someone with technical expertise. That’s when I found my co-founder, Himanshu, who had experience in machine learning and AI. He was a great match because his technical knowledge complemented my business skills, and together we formed a strong team. It might seem natural to choose your best friend as your co-founder, but this can often lead to conflict. Chances are, you and your best friend share similar interests, skills, and backgrounds, which doesn’t bring diversity to the table. If both of you come from the same industry or have the same strengths, you may end up butting heads on how things should be done. Having diverse skill sets helps avoid this and fosters a more collaborative working relationship. Himanshu (left) and Somsubhra (right) co-founded AI Palette in 2018 Define roles clearly to prevent co-founder conflict To avoid conflict, it’s essential that your roles as co-founders are clearly defined from the beginning. If your co-founder and you have distinct responsibilities, there is no room for overlap or disagreement. This ensures that both of you can work without stepping on each other's toes, and there’s mutual respect for each other’s expertise. This is another reason as to why it helps to have a co-founder with a complementary skillset to yours. Not only is having similar industry backgrounds and skillsets not particularly useful when building out your startup, it's also more likely to lead to conflicts since you both have similar subject expertise. On the other hand, if your co-founder is an expert in something that you're not, you're less likely to argue with them about their decisions regarding that aspect of the business and vice versa when it comes to your decisions. Look for employees who are driven by your mission, not salary For early-stage startups, the first hires are crucial. These employees need to be highly motivated and excited about the mission. Since the salary will likely be low and the work demanding, they must be driven by something beyond just the paycheck. The right employees are the swash-buckling pirates and romantics, i.e those who are genuinely passionate about the startup’s vision and want to be part of something impactful beyond material gains. When employees are motivated by the mission, they are more likely to stick around and help take the startup to greater heights. A litmus test for hiring: Would you be excited to work with them on a Sunday? One of the most important rounds in the hiring process is the culture fit round. This is where you assess whether a candidate shares the same values as you and your team. A key question to ask yourself is: "Would I be excited to work with this person on a Sunday?" If there’s any doubt about your answer, it’s likely not a good fit. The idea is that you want employees who align with the company's culture and values and who you would enjoy collaborating with even outside of regular work hours. How we structure the team at AI Palette We have three broad functions in our organization. The first two are the big ones: Technical Team – This is the core of our product and technology. This team is responsible for product development and incorporating customer feedback into improving the technology Commercial Team – This includes sales, marketing, customer service, account managers, and so on, handling everything related to business growth and customer relations. General and Administrative Team – This smaller team supports functions like finance, HR, and administration. As with almost all businesses, we have teams that address the two core tasks of building (technical team) and selling (commercial team), but given the size we're at now, having the administrative team helps smoothen operations. Set broad goals but let your teams decide on execution What I've done is recruit highly skilled people who don't need me to micromanage them on a day-to-day basis. They're experts in their roles, and as Steve Jobs said, when you hire the right person, you don't have to tell them what to do—they understand the purpose and tell you what to do. So, my job as the CEO is to set the broader goals for them, review the plans they have to achieve those goals, and periodically check in on progress. For example, if our broad goal is to meet a certain revenue target, I break it down across teams: For the sales team, I’ll look at how they plan to hit that target—how many customers they need to sell to, how many salespeople they need, and what tactics and strategies they plan to use. For the technical team, I’ll evaluate our product offerings—whether they think we need to build new products to attract more customers, and whether they think it's scalable for the number of customers we plan to serve. This way, the entire organization's tasks are cascaded in alignment with our overarching goals, with me setting the direction and leaving the details of execution to the skilled team members that I hire.

Built an AI Writing Tool for Research - Thoughts?
reddit
LLM Vibe Score0
Human Vibe Score1
azurewave5This week

Built an AI Writing Tool for Research - Thoughts?

Hi Everyone, I built Blainy, an ai writing tool designed to make writing easier and more efficient. Blainy fills the gaps left by other AI assistant tools like hether you're writing your essays, assignments or research papers blainy will streamlines the process, born from my personal experience with the limitations of common assistant tools. Blainy's Features: AI Suggestions: This feature provides you with suggestions while you are writing, so you don't face the writer's block issue. This was the main issue I usually faced when writing my essays. You will get suggestions while you are writing, and if you don't like them, you can always ask for alternatives. AI Automation: If you want AI to write for you, you can choose this feature. It will write one to two paragraphs according to what you select. You can choose to write an introduction, conclusion, arguments, etc. If you just want it to write casually, select the "continue writing" feature, and it will write all on its own. AI Essay Writer: Automatically generates essays based on your input. Essay Expander: Enhances and expands your essay content. AI Summarizer: Summarizes lengthy documents and articles to save time. Paragraph Generator: Creates paragraphs on specific topics or prompts. Paraphrasing Tool: Refines your text with various tone options such as academic, friendly, and simple. Citations: By using this feature, you no longer need to search for citations on Google or ChatGPT. Blainy will load millions of citations for you in seconds. You can select any citation you want, and if you want to add a custom citation, you can do that too. Built-in Plagiarism Checker: Ensures your content is original and plagiarism-free. PDF Chat: If you have any questions about a document that you are curious about or don't understand, you can use this feature. It will answer your question and help you summarize the whole article, and more. If you have any good ideas that you think can help us in any way, please let me know. Thank you in advance for your support and feedback!

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]
reddit
LLM Vibe Score0
Human Vibe Score1
jamesackerman1234This week

[CASE STUDY] From 217/m to $2,836/m in 9 months - Sold for $59,000; I grow and monetise web traffic of 5, 6, 7 figures USD valued passive income content sites [AMA]

Hello Everyone (VERY LONG CASE STUDY AHEAD) - 355% return in 9 months Note: I own a 7-figures USD valued portfolio of 41+ content sites that generates 5-6 figures USD a month in passive income. This is my first time posting in this sub and my goal is to NOT share generic advice but precise numbers, data and highly refined processes so you can also get started with this business yourself or if you already have an existing business, drive huge traffic to it and scale it substantially (get more customers). I will use a case study to explain the whole process. As most of us are entrepreneurs here, explaining an actual project would be more meaningful. In this case study I used AI assisted content to grow an existing site from $217/m to $2,836/m in 9 months (NO BACKLINKS) and sold it for $59,000. ROI of 3 months: 355% Previous case studies (before I give an overview of the model) Amazon Affiliate Content Site: $371/m to $19,263/m in 14 MONTHS - $900K CASE STUDY \[AMA\] Affiliate Website from $267/m to $21,853/m in 19 months (CASE STUDY - Amazon?) \[AMA\] Amazon Affiliate Website from $0 to $7,786/month in 11 months Amazon Affiliate Site from $118/m to $3,103/m in 8 MONTHS (SOLD it for $62,000+) Note: You can check pinned posts on my profile. Do go through the comments as well as a lot of questions are answered in those. However, if you still have any questions, feel free to reach out. This is an \[AMA\]. Quick Overview of the Model Approach: High traffic, niche specific, informative content websites that monetise its traffic through highly automated methods like display ads and affiliate. The same model can be applied to existing businesses to drive traffic and get customers. Main idea: Make passive income in a highly automated way Easy to understand analogy You have real estate (here you have digital asset like a website) You get rental income (here you get ads and affiliate income with no physical hassle, in case you have a business like service, product etc. then you can get customers for that too but if not, it's alright) Real estate has value (this digital asset also has value that can be appreciated with less effort) Real estate can be sold (this can be sold too but faster) IMPORTANT NOTE: Search traffic is the BEST way to reach HUGE target audience and it's important when it comes to scaling. This essentially means that you can either monetise that via affiliate, display etc. or if you have a business then you can reach a bigger audience to scale. Overview of this website's valuation (then and now: Oct. 2022 and June 2023) Oct 2022: $217/m Valuation: $5,750.5 (26.5x) - set it the same as the multiple it was sold for June 2023: $2,836/m Traffic and revenue trend: growing fast Last 3 months avg: $2,223 Valuation now: $59,000 (26.5x) Description: The domain was registered in 2016, it grew and then the project was left unattended. I decided to grow it again using properly planned AI assisted content. Backlink profile: 500+ Referring domains (Ahrefs). Backlinks mean the sites linking back to you. This is important when it comes to ranking. Summary of Results of This Website - Before and After Note: If the terms seem technical, do not worry. I will explain them in detail later. Still if you have any questions. Feel free to comment or reach out. |Metric|Oct 2022|June 2023|Difference|Comments| |:-|:-|:-|:-|:-| |Articles|314|804|\+490|AI Assisted content published in 3 months| |Traffic|9,394|31,972|\+22,578|Organic| |Revenue|$217|$2,836|\+$2,619|Multiple sources| |RPM (revenue/1000 web traffic)|23.09|$88.7|\+$65.61|Result of Conversion rate optimisation (CRO). You make changes to the site for better conversions| |EEAT (expertise, experience, authority and trust of website)|2 main authors|8 authors|6|Tables, video ads and 11 other fixations| |CRO|Nothing|Tables, video ads |Tables, video ads and 11 other fixations || &#x200B; Month by Month Growth |Month|Revenue|Steps| |:-|:-|:-| |Sept 2022|NA|Content Plan| |Oct 2022|$217|Content Production| |Nov 2022|$243|Content production + EEAT authors| |Dec 2022|$320|Content production + EEAT authors| |Jan 2023|$400|Monitoring| |Feb 2023|$223|Content production + EEAT authors| |Mar 2023|$2,128|CRO & Fixations| |April 2023|$1,609|CRO & Fixations| |May 2023|$2,223|Content production + EEAT authors| |June 2023|$2,836|CRO and Fixations| |Total|$10,199|| &#x200B; What will I share Content plan and Website structure Content Writing Content Uploading, formatting and onsite SEO Faster indexing Conversion rate optimisation Guest Posting EEAT (Experience, Expertise, Authority, Trust) Costing ROI The plans moving forward with these sites &#x200B; Website Structure and Content Plan This is probably the most important important part of the whole process. The team spends around a month just to get this right. It's like defining the direction of the project. Description: Complete blueprint of the site's structure in terms of organisation of categories, subcategories and sorting of articles in each one of them. It also includes the essential pages. The sorted articles target main keyword, relevant entities and similar keywords. This has to be highly data driven and we look at over 100 variables just to get it right. It's like beating Google's algorithm to ensure you have a blueprint for a site that will rank. It needs to be done right. If there is a mistake, then even if you do everything right - it's not going to work out and after 8-16 months you will realise that everything went to waste. Process For this project, we had a niche selected already so we didn't need to do a lot of research pertaining to that. We also knew the topic since the website was already getting good traffic on that. We just validated from Ahrefs, SEMRUSH and manual analysis if it would be worth it to move forward with that topic. &#x200B; Find entities related to the topic: We used Ahrefs and InLinks to get an idea about the related entities (topics) to create a proper topical relevance. In order to be certain and have a better idea, we used ChatGPT to find relevant entities as well \> Ahrefs (tool): Enter main keyword in keywords explorer. Check the left pain for popular topics \> Inlinks (tool): Enter the main keyword, check the entity maps \> ChatGPT (tool): Ask it to list down the most important and relevant entities in order of their priority Based on this info, you can map out the most relevant topics that are semantically associated to your main topic Sorting the entities in topics (categories) and subtopics (subcategories): Based on the information above, cluster them properly. The most relevant ones must be grouped together. Each group must be sorted into its relevant category. \> Example: Site about cycling. \> Categories/entities: bicycles, gear and equipment, techniques, safety, routes etc. \> The subcategories/subentities for let's say "techniques" would be: Bike handling, pedaling, drafting etc. Extract keywords for each subcategory/subentity: You can do this using Ahrefs or Semrush. Each keyword would be an article. Ensure that you target the similar keywords in one article. For example: how to ride a bicycle and how can I ride a bicycle will be targeted by one article. Make the more important keyword in terms of volume and difficulty as the main keyword and the other one(s) as secondary Define main focus vs secondary focus: Out of all these categories/entities - there will be one that you would want to dominate in every way. So, focus on just that in the start. This will be your main focus. Try to answer ALL the questions pertaining to that. You can extract the questions using Ahrefs. \> Ahrefs > keywords explorer \> enter keyword \> Questions \> Download the list and cluster the similar ones. This will populate your main focus category/entity and will drive most of the traffic. Now, you need to write in other categories/subentities as well. This is not just important, but crucial to complete the topical map loop. In simple words, if you do this Google sees you as a comprehensive source on the topic - otherwise, it ignores you and you don't get ranked Define the URLs End result: List of all the entities and sub-entities about the main site topic in the form of categories and subcategories respectively. A complete list of ALL the questions about the main focus and at around 10 questions for each one of the subcategories/subentities that are the secondary focus Content Writing So, now that there's a plan. Content needs to be produced. Pick out a keyword (which is going to be a question) and... Answer the question Write about 5 relevant entities Answer 10 relevant questions Write a conclusion Keep the format the same for all the articles. Content Uploading, formatting and onsite SEO Ensure the following is taken care of: H1 Permalink H2s H3s Lists Tables Meta description Socials description Featured image 2 images in text \\Schema Relevant YouTube video (if there is) Note: There are other pointers link internal linking in a semantically relevant way but this should be good to start with. Faster Indexing Indexing means Google has read your page. Ranking only after this step has been done. Otherwise, you can't rank if Google hasn't read the page. Naturally, this is a slow process. But, we expedite it in multiple ways. You can use RankMath to quickly index the content. Since, there are a lot of bulk pages you need a reliable method. Now, this method isn't perfect. But, it's better than most. Use Google Indexing API and developers tools to get indexed. Rank Math plugin is used. I don't want to bore you and write the process here. But, a simple Google search can help you set everything up. Additionally, whenever you post something - there will be an option to INDEX NOW. Just press that and it would be indexed quite fast. Conversion rate optimisation Once you get traffic, try adding tables right after the introduction of an article. These tables would feature a relevant product on Amazon. This step alone increased our earnings significantly. Even though the content is informational and NOT review. This still worked like a charm. Try checking out the top pages every single day in Google analytics and add the table to each one of them. Moreover, we used EZOIC video ads as well. That increased the RPM significantly as well. Both of these steps are highly recommended. Overall, we implemented over 11 fixations but these two contribute the most towards increasing the RPM so I would suggest you stick to these two in the start. Guest Posting We made additional income by selling links on the site as well. However, we were VERY careful about who we offered a backlink to. We didn't entertain any objectionable links. Moreover, we didn't actively reach out to anyone. We had a professional email clearly stated on the website and a particularly designated page for "editorial guidelines" A lot of people reached out to us because of that. As a matter of fact, the guy who bought the website is in the link selling business and plans to use the site primarily for selling links. According to him, he can easily make $4000+ from that alone. Just by replying to the prospects who reached out to us. We didn't allow a lot of people to be published on the site due to strict quality control. However, the new owner is willing to be lenient and cash it out. EEAT (Experience, Expertise, Authority, Trust) This is an important ranking factor. You need to prove on the site that your site has authors that are experienced, have expertise, authority and trust. A lot of people were reaching out to publish on our site and among them were a few established authors as well. We let them publish on our site for free, added them on our official team, connected their socials and shared them on all our socials. In return, we wanted them to write 3 articles each for us and share everything on all the social profiles. You can refer to the tables I shared above to check out the months it was implemented. We added a total of 6 writers (credible authors). Their articles were featured on the homepage and so were their profiles. Costing Well, we already had the site and the backlinks on it. Referring domains (backlinks) were already 500+. We just needed to focus on smart content and content. Here is the summary of the costs involved. Articles: 490 Avg word count per article: 1500 Total words: 735,000 (approximately) Cost per word: 2 cents (includes research, entities, production, quality assurance, uploading, formatting, adding images, featured image, alt texts, onsite SEO, publishing/scheduling etc.) Total: $14,700 ROI (Return on investment) Earning: Oct 22 - June 23 Earnings: $10,199 Sold for: $59,000 Total: $69,199 Expenses: Content: $14,700 Misc (hosting and others): $500 Total: $15,200 ROI over a 9 months period: 355.25% The plans moving forward This website was a part of a research and development experiment we did. With AI, we wanted to test new waters and transition more towards automation. Ideally, we want to use ChatGPT or some other API to produce these articles and bulk publish on the site. The costs with this approach are going to be much lower and the ROI is much more impressive. It's not the the 7-figures projects I created earlier (as you may have checked the older case studies on my profile), but it's highly scalable. We plan to refine this model even further, test more and automate everything completely to bring down our costs significantly. Once we have a model, we are going to scale it to 100s of sites. The process of my existing 7-figures websites portfolio was quite similar. I tested out a few sites, refined the model and scaled it to over 41 sites. Now, the fundamentals are the same however, we are using AI in a smarter way to do the same but at a lower cost, with a smaller team and much better returns. The best thing in my opinion is to run numerous experiments now. Our experimentation was slowed down a lot in the past since we couldn't write using AI but now it's much faster. The costs are 3-6 times lower so when it used to take $50-100k to start, grow and sell a site. Now you can pump 3-6 more sites for the same budget. This is a good news for existing business owners as well who want to grow their brand. Anyway, I am excited to see the results of more sites. In the meantime, if you have any questions - feel free to let me know. Best of luck for everything. Feel free to ask questions. I'd be happy to help. This is an AMA.

[Ultimate List] A list of Marketing Tools That I’ve tested over the years and found helpful to do better marketing with less work. More than 50 Tools To Help you with Marketing, Copywriting & Sales!
reddit
LLM Vibe Score0
Human Vibe Score0.973
lazymentorsThis week

[Ultimate List] A list of Marketing Tools That I’ve tested over the years and found helpful to do better marketing with less work. More than 50 Tools To Help you with Marketing, Copywriting & Sales!

Starting to focus on marketing for your business, You will come across the same tools mentioned over and over by marketers. I would like to mention here tools that you might haven’t seen going viral in the community but actually will help you grow faster and efficiently. Starting off with My favourite Marketing Channel! #Email Marketing For SMBs Convertkit / Mailerlite / Mailchimp - These 3 Platforms are the best options for SMBs and entrepreneurs just starting out with email marketing. All 3 have free plans up to 1,000 subscribers. Scribe - Email Signature Tool, Create Great Email signatures for your emails. Liramail - Most Email marketing platforms don’t offer great email templates. This tool will help you build great email templates with drag and drop. Quick mail Auto-Warmer - Most Businesses at the beginning don’t know what to do when open rate drops. You need to use an email warmer like this to keep it up. #Email Marketing For Big Businesses SendGrid - Overall Email Marketing Tools, this tool is best for brands that have huge email lists and email marketing is the key marketing channel. Braze - This tool is leading in email marketing for large Email senders. When I was working for agencies, this was one of the best email marketing tools I had used. NeoCertified - Protect your emails for spammers and threats. To keep your email list healthy, this is a must have! Sparkloop - Referral Marketing For Email Campaigns. Email can generate great huge amount of referrals for you and Sparkloop makes it easier. #Cold Emails & Lead Generation Hunter - A Great Tool to scrape emails from domain names. The tool comes with a green free plan but Pro plan is worth the amount of features it provides. Icyleads - It’s better than Hunter as it’s heavily focused on the sales and prospecting to help you derive great results from your campaigns. Mailshake - Beginner Friend Cold Email Tool with Great features like email list warming. #Communication Tools Twilio - One do the best customer engagement platform used by Companies like Stripe and mine too. Chatlio - Use Live chat feature on your website with slack integration. My favourite easier to catch up on conversations through slack integration. Intercom - Used by Most Marketers, Industry Leading customer communication platform. Great for beginners! Chatwoot - Another Amazing Communication Tool but the best part is they have a great free plan useful for new businesses. Loom - Communicate with your audience through Videos. Loom is great for SaaS and to show human interaction to close new visitors effectively. #CRM Outseta - This tool provides great CRM and their billing system is better than other tools out their which makes it stands out! Hubspot - I don’t think this tool needs an introduction because Hubspot’s CRM is the best in industry. Salesflare - This CRM is a great alternative to hubspot as it’s beginner friendly and helpful for SMBs. #SEO Tools Ahrefs - One of the best SEO tool in the industry. They also just launched a bunch of free tools to help SEO beginners. Screaming frog - The only website crawler I have used since I bought my first domain. It’s the best! Ubersuggest- The Tool by Neil Patel is the best SEO tool for you. (I’m Joking, it’s the worst) Contentking - This tool is good at Real-time SEO Auditing, they do a lot of Marketing work through Newsletters. If you are subscribed to any SEO newsletter. You may have seen this tool. SEOquake & Semrush - SEOquake is a great tool to conduct on-page analysis, SERP, and much more. Great tool but it’s owned by Semrush. You should go for Semrush because that tool will cover all SEO aspects for you. #Content Marketing Buzzsumo - This tool is great for content research and but you may find the regular emails pretty annoying sometimes. Contentrow - Analyse Your Content and find it’s strength. Highly recommended who are weak at content structuring like me. Grammarly - If you are not a native English speaker like me, you might think you need it or not. You need it for sure for grammar corrections. #Graphic Design Tools Visme - At agencies, Infographics can be more effective than usual postscript. Visme is a graphic design tool focused on infographics and designs related to B2B and B2C. It’s great for agencies! Glorify - A Graphic Design Tool focused on E-commerce, filled with Designs useful for E-commerce store owners. Canva - All-in-one Industry leading Graphic Design Tool that everyone knows and every template is overused now. Adobe Creative Cloud ( previously Sparkpost) - It’s a great alternative to Canva filled with Amazing Stock images to use in your visuals but the only backlash is the exports in this tool are not high quality. Snaps - A Canva Alternative that might not have overused templates for your Social Accounts. #Advertising Tools Plai - It’s a great PPC tool to create Ads for Instagram and Tiktok. Wordstream - It’s an industry leading PPC Tool, great for Ad Grading and auditing. AdEspresso - This Is a tool by Hootsuite. They have a lot of Data sourced at the backend, which helps in Ad optimisation through this tool. That’s the reason I recommend this tool. #Video Editing Tools Veed Studio - I have been using Veed from last year. It’s one of the best Video Marketing Tool Optimized for Instagram & Tiktok. Synthesia - It’s a new AI video generation platform. From last few months, if you have seen marketing agencies including Videos in Emails. The chances are that’s not a Agency member taking but AI generated Human. Motionbox - It’s also a great video editing tool focused on video editing for Digital Marketers. Jitter Video - It’s a great motion design tool. Comes with great templates, the only place where other tools I mentioned lacks. It’s great and beginner friendly. #Copywriting Jasper AI - Google’s John Mueller says AI generated content is banned on Search but I think with Jasper AI you can generate SEO optimised Content but you have to put in some efforts like at least give 30 minutes for editing the Copy by yourself. Copy AI - Another AI tool to help you write better copy. This one is more focused on helping you write copy suitable for Ads and Social media campaigns. Hemingway App - To help you write more clearly and Bold. This tool is better than Grammarly if you look for writing perspective and it’s free. #Social Media Management App I’ve used a Lot of SMM Tools and that’s why going to mention all of them with a short review. Sprout social - The Best with deep insights coverage. Hootsuite - Great Scheduling tool just under sprout social. Later - Heavily Focused on Instagram from beginning and Now Tiktok too. SkedSocial - It’s like a Later alternative with great addition features like link-in-bio. Facebook’s Business Manager- Great but sometimes bugs can make a huge issue for you and customer support is like dead. Tweet Hunter & Hypefury- Both are Twitter Scheduling tools growing very fast on platform and are great for growth. Buffer - It’s a great tool but I haven’t seen any new updates to help with management. Zoho Social - It’s a great SMM tool and if you use other marketing solutions from Zoho. It’s a must have! #Market Research Tool • SparkToro - That’s the only one I have ever used. It’s great for audience research and comes with great customer service. Founded by Rand Fishkin, it’s one of the best research tool. #Influencer Marketing & UGC InfluenceGrid - A free search engine To find Tiktok & Instagram Influencers for your campaigns. Tiktok Creative Center- TikTok’s in-built tool called “Creative Center” is the best to find content trends, audience demographics and much more. Archive - Find Instagram Stories and Posts mentioning Your brands and use them as Ads for your business Marketing. #Landing Page Builders Leadpages - Its a great landing page builder because the integration and drag-and-drop features makes it easier to work with! Cardd co - A Great Landing page builder with easy step up but it lacks the copywriting and tracking features. Instapage - It’s one of the best out and I think the overall product is effective enough to help you stand out with your landing page. Unbounce - It’s a great alternative to Instapage due its well polished landing page templates that might be helpful for you. #Community Building Mighty Networks - A Great Community building platform, and you can also sell courses within the platform. Circle so - A great alternative to Mighty networks focused on Communities specifically. We are currently using for small community Of ours. #Sales Tools Drift - You can get much more out of Drift than just sales tools but The Sales solutions provided in Drift are one of the best. Salesforce - It’s the industry Sales solution provider. A go-to and have various pricing plans making it suitable for majority of SMBs. #Social Proof Tools People don’t have enough time to search across internet to decide to trust you after seeing your Ad first time. That’s what you might be facing too. Here are two tools I absolutely love for social proof! Use Proof - Show Recent Activities occurring on your website and build the trust of your visitors. Testimonial to - Gather Testimonials across Social Media platforms related to your business with this tool. Capture tweets and comments mentioning your brands and mention them. #Analytics Tools Plausible Analytics- A privacy friendly Analytics alternative to Google Analytics if you hate Analytics 4 like me. Mixpanel - Product Analytics and funnel reports better than Google Analytics. #Reddit Marketing Gummysearch- This tool will help To find your target audience on Reddit and interact with them with its help and close your new customers. Howitzer- It’s another pretty similar tool to Gummysearch focused on Reddit cold outreach to get clients and new customers. Both are great but Gummysearch provides better customer support while Howtizer is helpful on a large scale Reddit Marketing. #Text Marketing Klaviyo - It’s an email + SMS marketing tool, it’s taking up space in marketing industry very quickly as an industry leader due to its great integrations but you need to learn the platform usage to maximise the outcome. Cartloop - This tool provides great text marketing solutions with integration with Spotify and other e-commerce marketing tools. Attentive Mobile - This is my favourite Text marketing tool due to the interactive dashboard + they have a library of Text marketing examples to help you out with your campaigns. #Other Tools I have used throughout my journey! Triple Whale - It’s a great E-commerce marketing tools with Triple pixel to help you track your campaigns more efficiently. Fastory - To create well optimized Instagram & Tiktok Stories for your business. Jotform - Online Form Builder with integrations with leading marketing tools. Gated - As an entrepreneur and marketer, you may receive a bunch of unwanted emails. Use Gated to get rid of them and receive useful mails only! ClickUp- The main Tool for Project Management, one of the best and highly recommended. Riverside - Forget Zoom or Google Meet, For your Podcast Interviews and Marketing conferences. You need riverside with great video quality and recording features. Manychat- Automate your Instagram DMs and interact with your followers more efficiently + sell out your products/ services when you are offline. Calendy - To schedule meetings with your ideal clients. ServiceProviderPro - It’s a client portal for SEO & Growing Agencies, very helpful in scaling agencies. SendCheckit - Compare your Email Subject Lines with 100,000+ others in the database for free. Otter AI - Using AI track your meetings more effectively, you can easily edit, annotate and share notes from the meetings. Ryte - Optimise your website User experience with this tool focused on UX aspects + SEO too. PhantomBuster - Scrape LinkedIn Profile and Data from Facebook/LinkedIn groups. I clearly love this tool! #Honourable Mentions Zapier - The Only tool you need to integrate your favourite tool with a new effective tool. Elementor - That’s what I use for web design and it’s great! Marketer Hire - To hire world class marketers to work with you. InShot & Capcut - I create Instagram Reels and TikTok’s and life without these tools isn’t possible. Nira - It’s a great tool to Manage your workspace and this tool has launched many marketing templates in-built helpful for marketers and also entrepreneurs. X - The tool you love that wasn’t mentioned here is valuable and I honour that tool and share that if you would like to! I mean thanks for reading what I have curated all over my life as a marketer. I share 5 Marketing Tools, 5 Marketing Resources and 1 Free Resourceevery week in my newsletter, you can subscribe here to receive that for free. Also, You can read an expanded list of email marketing tools in this Reddit post!

Thoughts on FasterCapital VC?
reddit
LLM Vibe Score0
Human Vibe Score1
Momof3rascalsThis week

Thoughts on FasterCapital VC?

TLDR: I pitched to FasterCapital and got an "offer". Trying to figure out if this is a legitimate opportunity or a waste of my time. I'm not familiar with VCs and hadn't considered actually getting an investor on board with my plan. I sent my pitch deck to FasterCapital, honestly not expecting a response. It was my first pitch deck and a complete long shot. I ended up getting a response, they asked me for clarification on a few things. Than I get this email about what they are offering here's the main part We specialize in warm introductions to angel investors, VCs, and HNWIs, ensuring you connect with the right investors through personalized recommendations—not ineffective mass email campaigns. Cold outreach, such as LinkedIn messages, rarely succeeds, as investors receive hundreds of such requests and disregard them. To raise money, you need a strong partner like ourselves who has a wide network and direct connection with those angel investors built throughout 10 years. You can see some of the reviews of the startups we have helped attached and reviews on independent sites. Based on our experience and the matching that we have done already on our own AI system and for raising $55M-$65M in 5 years, a suitable package in your case is $50k - $64k and the chances of raising money is %87 - %93, but you were accepted in the exceptional rising star offer, where you pay half of that amount as an advance which is $25k-$32k and the other half ONLY when we raise you the first $1M. Other startups in our standard offers pays double that amount. First, I don't understand all of it, except for the "where you pay half of that amount as an advance which is $25k-$32k" I am no where near being able to come close to that, mostly because if I had that much, I wouldn't apply to a VC. I responded and politely told her that was not something our company could financially do right now. Than this email Thanks for your kind reply. We are flexible on paying this amount into monthly installments. We offer money back guarantee if we didn't raise the capital in 6 months from signing. This is how much we are confident with our approach of warm introductions. Raising the first amount of money and getting the first investor onboard is the most challenging part. You need time to build trust and network of investors. You need to have a good partner to help you. Please note that the down payment is for raising at least $55M over five years as we are interested in long-term partnership to raise multiple rounds because we make money through the commission. Companies take only commission or success fee are doing cold introductions and mass emails and this approach has low chances of success when it comes to raising capital. It is about the chances of success. You can talk to these companies and ask them about their success rate. Mass emails campaign has zero chances of success.  We have helped more than 742 startups raise more than $2.2B. Our network includes 155,000 angel investors and more than 50K funding institutions (VCs, HNI, family offices..etc). We have been in this business for more than 10 years. We have more than 92% success rate in our program so far. So if you are familiar with VC, Is this an actual opportunity. I have a tendency to jump or dive head first into things. As much as I want to get excited because this would be the jumpstart to most of my goals and ambitions. I'm not familiar with VCs. I have bootstrapped all my ventures so far.

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING
reddit
LLM Vibe Score0
Human Vibe Score1
Millionaire_This week

In 2018, I started an AI chatbot company...today, we have over 4000 paying customers and ChatGPT is changing EVERYTHING

Intro: 5 years ago, my co-founders and I ventured into the space of AI chatbots and started our first truly successful company. Never in a million years did I see myself in this business and we truly stumbled upon the opportunity by chance. Prior to that, we ran a successful lead generation business and questioned whether a simple ai chat product would increase our online conversions. Of the 3 co-founders, I was skeptical that it would, but the data was clear that we had something that really worked. We built a really simple MVP version of the product and gave it to some of our top lead buyers who saw even better conversion improvements on their own websites. In just a matter of weeks, a new business opportunity was born and a major pivot away from our lead generation business started. Our growth story: Startup growth is really interesting and in most cases, founders aren't really educated on what a typical growth curve looks like. While we hear about "hockey stick" growth curves, it's really atypical to actually see or experience this. From my experience, growth curves take place in a "stair curve". For example, you can scrap your way to a $100k run rate without much process or tracking. You can even get to $1 million ARR being super disorganized. As you start going beyond $1M ARR, things start to break and growth can flatten out while you put new processes and systems in place. Eventually you'll get to $2M or 3M with your new strategy and then things start breaking again. I've seen the process repeat itself and as you increase your ARR, the processes and systems become more difficult to work through...mainly because more people get involved and the product becomes more complex. When you do end up cracking the code in each step, the growth accelerates faster and faster before things start to break down and flatten out again. Without getting too much into the numbers, here were some of our initial levers for growth: Our first "stair" step was to leverage our existing customer base from our prior lead generation business. Having prior business relationships and a proven track record made it really simple to have conversations with people who already trusted us to try something new that we had to offer. Stair #2 was to build out a partner channel. Since our chat product involved a web developer or agency installing the chat on client sites, we partnered with these developers and agencies to leverage their already existing customer bases. We essentially piggy-backed off of their relationships and gave them a cut of the revenue. We built an internal partner tracking portal which took 6+ months, but it was well worth it. Stair #3 was our most expensive step, biggest headache, but added the most revenue. After COVID, we had and SDR/Account Executive sales team of roughly 30 people. It added revenue fast, but the payback periods were 12+ months so we had to cut back on this strategy after exhausting our universe of clients. Stair #4 involves a variety of paid advertisement strategies with product changes and the introduction of new onboarding features. We're in the middle of this stair and hope it's multiple years before things breakdown again. Don't give up I know it sounds really cliché, but the #1 indicator of success is doing the really boring stuff day in and day out and making incremental improvements. As the weeks, months, and years pass by, you will slowly gain domain expertise and start to see the gaps in the market that can set you apart from your competition. It's so hard for founders to stay focused and not get distracted so I would say it's equally as important to have co-founders who hold each other accountable on what your collective goals are. How GPT is changing everything I could write pages and pages about how GPT is going to change how the world operates, but I'll keep it specific to our business and chatbots. In 2021, we built an industry specific AI model that did a great job of classifying intents which allowed us to train future actions during a chat. It was a great advancement in our customer's industry at the time. With GPT integrated into our system, that training process that would take an employee hours to do, can be done in 5 minutes. The model is also cheaper than our own and more accurate. Because of these training improvements, we have been able to conduct research that is allowing us to leverage GPT models like no one else in the industry. This is both in the realm of chat and also training during onboarding. I really want to refrain from sharing our company, but if you are interested in seeing a model trained for your specific company or website, just PM me your link and I'll send you a free testing link with a model fully trained for your site to play around with. Where we are headed and the dangers of AI The level of advancement in AI is not terribly dangerous in its current state. I'm sure you've heard it before, but those who leverage the technology today will be the ones who get ahead. In the coming years, AI will inevitably replace a large percentage of human labor. This will be great for overall value creation and productivity for the world, but the argument that humans have always adapted and new jobs will be created is sadly not going to be as relevant in this case. As the possibility of AGI becomes a reality in the coming years or decades, productivity through AI will be off the charts. There is a major risk that human innovation and creative thinking will be completely stalled...human potential as we know it will be capped off and there will need to be major economic reform for displaced workers. This may not happen in the next 5 or 10 years, but you would be naïve not to believe the world we live in today will not be completely different in 20 to 30 years. Using AI to create deepfakes, fake voice agents, scam the unsuspecting, or exploit technical vulnerabilities are just a few other examples I could write about, but don't want to go into to much detail for obvious reasons. Concluding If you found the post interesting or you have any questions, please don't hesitate to ask. I'll do my best to answer whatever questions come from this! &#x200B; \*EDIT: Wasn't expecting this sort of response. I posted this right before I went to sleep so I'll get to responding soon.

Follow Along as I Flip this Website - Case Study
reddit
LLM Vibe Score0
Human Vibe Score1
jshogren10This week

Follow Along as I Flip this Website - Case Study

I am starting a new case study where I will be documenting my attempt to flip a website that I just purchased from Flippa. However, unlike most case studies where people hide certain parts and details from the public I will instead be sharing everything. That means you will know the exact URL of the site that I purchased and I will share everything with you all as I progress.I know that case studies are lot more interesting and you can learn better when you can see real examples of what I am talking about. Enough of the chatting, let's jump straight into this new case study and I will explain what this is all about. Before you get into the case study I want to give you the option of reading this one my website where all of the images can be seen within the post and it is easier to read. I also want to say that I have nothing to sell you or anything close to it. So if you want to read it there you can do so here ##Introductory Video I have put together a video that talks about many of the things that I cover in this article. So if you would rather watch a video you can watch that here - https://www.youtube.com/watch?v=EE3SxtNnqts However, I go into more detail in the actual article FYI. Also, I plan on using Youtube very frequently in this case study so be on the lookout for new videos.There is going to be a video that will accompany every single case study post because I like having it being presented in two different mediums. ##The Website I Just Bought Around a week ago I made a new website purchase from Flippa and you can view the website's Flippa listing here - https://flippa.com/6439965-hvactraining101-com Screenshot of the Homepage - http://imgur.com/T6Iv1QN I paid $1,250 for the site and you will soon see that I got a really good deal. As you might be able to tell from the URL, this site is focused around training and education for becoming a HVAC technician. This is a lucrative niche to be in and Adsense pays very well. I do not have control of the site yet due to the transfer process not being completed. However, I am hoping within a few days everything will be finalized and I will take full control of the site. In the meantime, I figured it would be a good time to put together the introduction post for this new case study! ##Why I Bought this Website Now that you have a general idea of the website that I purchased, I now want to explain the reasoning behind the purchase. There are 3 major reasons for this purchase and I will explain each one of them below. GREAT Price As I mentioned earlier, I bought this website for $1,250. However, that doesn't mean a whole lot unless you know how much the site is making each month. Screenshot of the earnings for the last 12 months - http://imgur.com/NptxCHy Average Monthly Profits: 3 Month = $126 6 Month = $128 12 Month = $229.50 Let's use the 6 month average of $128/month as our baseline average. Since it is making on average $128/month and it was sold for $1,250 then that means I bought this site at a multiple of 9.76x! Most sites in today's market go for 20x-30x multiples. As you can see, I got a great deal on this site. Although the great price was the biggest reason for me buying this site there are other factors that persuaded me as well. You need to remember that just because you can get a website for a good price it doesn't mean it is a good deal. There are other factors that you need to look at as well. Extremely Under Optimized This site is currently being monetized mainly by Adsense and a very small amount from Quinstreet. From my experience with testing and optimizing Adsense layouts for my site in my Website Investing case study I know the common ad layouts that work best for maximizing Adsense revenue. With that being said, I can quickly determine if a website is being under optimized in terms of the ad layout. One of the first things I did when analyzing this site was examine the ad layout it was using. Screenshot of the website with the ad layout the previous owner was using - http://imgur.com/wqleLVA There is only ONE ad per page being used, that's it. Google allows up to 6 total ads to be used per page and you can imagine how much money is being left on the table because of this. I am estimating that I can probably double the earnings for the site practically overnight once I add more ads to the site. Adding more ads in combination with my favorite Adsense plugin, AmpedSense, I will be able to easily boost the earnings for this site quickly. It is also worth mentioning how lucrative this niche is and how much advertisers are willing to spend on a per click basis. The average CPC for the top keywords this site is currently ranking for in Google - http://imgur.com/ifxiy8B Look at those average CPC numbers, they are insanely high! I could be making up to $25 per click for some of those keywords, which is so absurd to me. Combine these extremely high CPC with the fact that the site currently only has one ad per page and you can start to understand just how under optimized this site truly is. I also plan on utilizing other ad networks such as Quinstreet and Campus Explorer more as well. These two networks are targeted at the education niche which works very well with my site. I will be testing to see if these convert better than normal Adsense ads. Goldmine of Untapped Keywords One of the biggest opportunities I see for growing this site is to target local keywords related to HVAC training. As of right now, the site has only scratched the surface when it comes to trying to rank for state/city keywords. Currently there are only two pages on the entire website which go after local keywords, those two pages target Texas and Florida HVAC search terms. These two pages are two of the more popular pages in terms of total amount of traffic. See the screenshot of the Google Analytics - http://imgur.com/NB0xJ4G Two out of the top five most popular pages for the entire website are focused on local search terms. However, these are the ONLY two pages that target local search terms on the whole site! There are 48 other states, although there may not be search volume for all states, and countless cities that are not being targeted. Why do I think this is such a good opportunity? For a few reasons: Local keywords are a lot easier to rank for in Google than more general keywords This site has been able to rank for two states successfully already and it proves it is possible Traffic going to these local pages is WAY more targeted and will convert at a much higher rate, which means more commissions for me There are so many more states and cities that get a good amount of searches that I can target To give you an idea of the type of keywords these local pages rank for, you can see the top keywords that the Florida page is ranking for in Google: Top ranking keywords for the Florida page - http://imgur.com/j7uKzl2 As you can see these keywords don't get a ton of searches each month, but ranking 1st for a keyword getting 90 searches a month is better than being ranked 10th for a keyword getting 1,000 searches a month. I have started to do some keyword research for other states and I am liking what I am finding so far. Keywords that I have found which I will be targeting with future articles - http://imgur.com/8CCCCWU I will go into more detail about my keyword research in future articles, but I wanted to give you an idea of what my strategy will be! I also wanted to share why I am super excited about the future potential to grow this site by targeting local keywords. ##Risks Yes, there are many good things about this website, but there are always risks involved no matter what the investment is. The same thing goes for this site. Below are some of the risks that I currently see. HTML Site This website is a HTML site and I will need to transfer it to Wordpress ASAP. I have been doing some research on this process and it shouldn't be too hard to get this over to Wordpress. In doing so it will make adding content, managing the back end and just about everything else easier. Also, I am hoping that when I transfer it to Wordpress that it will become more optimized for Google which will increase keyword rankings. Declining Earnings Looking at the last 12 months of earnings you will notice a drop off from last year till now. Earnings from the last 12 months - http://imgur.com/WsotZsj In May of 2015 it looks like the site earned right around $500, which is much higher than the $128 that it is earning now. However, the last 7 or so months have been consistent which is a good sign. Even though the earnings are much lower now then they were a year ago it is good to know that this site has the potential to earn $500/month because it has done it before. Slightly Declining Traffic In the last 12 months the site's traffic has declined, however, it looks like it is picking back up. Traffic from the last 12 months - http://imgur.com/aiYZW9W The decline is nothing serious, but there is a drop on traffic. Let's take a look at the complete history of this site's traffic so we can get a better idea of what is going on here: Complete traffic history - http://imgur.com/tYmboVn The above screenshot is from 2012 all the way up to right now. In the grand scheme of things you can see that the traffic is still doing well and it looks like it is on the upswing now. Those three risks mentioned above are the three biggest risks with this site at this point. It is always good to note the risks and do everything you can to prevent them from causing a problem. ##My Growth Strategy Whenever I purchase a new site I always create an outline or plan on how I will grow the site. Right now, I have some basic ideas on how I will grow this site, but as I go on I will continue to change and optimize my strategies to be more effective. Below I have outlined my current plans to grow: Add more Adsense Ads The very first thing I will do once I get control of the site is add more ads per page. I am predicting that by just adding a few more ads per page I will be able to more than likely double the earnings. I will touch on exactly how I will be optimizing the ad layouts in future posts. Test other Ad Networks I will be doing a lot of testing and experimenting when it comes to the ad networks. I plan on trying out Adsense, Media.net, Quinstreet, Campus Explorer and finding the combination of those 4 which produces the most revenue. The Adsense and Media.net ads will perform well on the more general pages while Quinstreet and Campus Explorer ads will be geared towards the local search terms. There will probably be other ad networks I will try out but these are the four which I will be using right away. If you are aware of any other ad networks out there which are geared towards the education niche please let me know in the comments below! Target Local Keywords with new Content I have already touched on this, but I will starting to produce content targeting these local keywords ASAP. The sooner I add the content to the site the sooner it will start to rank and bring in traffic. I will not be writing my own content and instead I will be outsourcing all of it via Upwork. I will show you all how I go about outsourcing content production and you can see my process for doing that. ##Goals for this Website My goal for the website is to have it valued at $10,000+ within 12 months. Let's break down this larger goal into smaller chunks which will make achieving it easier and more attainable. Earnings - $500/month To get the site valued at $10,000 the site will need to be making $500/month using a 20x monthly multiple. Right now, the site is making around $130/month so it has a ways to before it reaches the $500 a month mark. However, after doing some Adsense optimization I think we could push the earnings to around $300/month without much work. From there, it will come down to trying to bring in more traffic! Traffic - 5,000 Visitors per Month Why 5,000 visitors? Because that is how much traffic it is going to take to get to the $500/month goal. Let me explain how I came to this conclusion: The average RPM for this site is currently $50, which means for every 1,000 page views the site earns $50. After I optimize the Adsense layout for the site and add more ads per page I think I will be able to double the RPM to $100. Using the RPM of $100 the site will need to have 5,000 monthly visitors to earn $500. So 5,000 monthly visitors is the traffic goal I have set and aiming for! The site is currently getting around 3,000 visitors per month so I will need to add an extra 2,000 visitors to get to this goal. ##Want to Follow this Case Study? I will be using Youtube a lot in this case study so make sure to follow my Youtube channel here - www.youtube.com/c/joshshogren Other than that, I think that is going to bring us to the end of the introductory post for this new case study. I hope that you enjoyed reading and that you are excited to follow along! If you have any suggestions to make this case study better PLEASE let me know in the comment below. I want to make this case study the best one I have done yet. Talk to you all in the comment section.

Showing 937-960 of 1945 resources