VibeBuilders.ai Logo
VibeBuilders.ai
๐๐ฎ๐ข๐ฅ๐ ๐‹๐‹๐Œ๐ฌ ๐Ÿ๐ซ๐จ๐ฆ ๐ฌ๐œ๐ซ๐š๐ญ๐œ๐ก

๐๐ฎ๐ข๐ฅ๐ ๐‹๐‹๐Œ๐ฌ ๐Ÿ๐ซ๐จ๐ฆ ๐ฌ๐œ๐ซ๐š๐ญ๐œ๐ก

Ambitious-Fix-3376
April 15, 2025
reddit

โ€œChatGPTโ€ is everywhereโ€”itโ€™s a tool we use daily to boost productivity, streamline tasks, and spark creativity. But have you ever wondered how it knows so much and performs across such diverse fields? Like many, I've been curious about how it really works and if I could create a similar tool to fit specific needs. ๐Ÿค”

To dive deeper, I found a fantastic resource: โ€œBuild a Large Language Model (From Scratch)โ€ by Sebastian Raschka, which is explained with an insightful YouTube series โ€œBuilding LLM from Scratchโ€ by Dr. Raj Dandekar (MIT PhD). This combination offers a structured, approachable way to understand the mechanics behind LLMsโ€”and even to try building one ourselves!

https://preview.redd.it/35sdlxdb2m0e1.jpg?width=1037&format=pjpg&auto=webp&s=dd228136fbf7cbdeeae253118ee7a46b04948c24

While AI and generative language models architecture shown in the figure can seem difficult to understand, I believe that by taking it step-by-step, itโ€™s achievableโ€”even for those without a tech background. ๐Ÿš€

Learning one concept at a time can open the doors to this transformative field, and we at Vizuara.ai are excited to take you through the journey where each step is explained in detail for creating an LLM. For anyone interested, I highly recommend going through the following videos:ย 

Lecture 1: Building LLMs from scratch: Series introduction https://youtu.be/Xpr8D6LeAtw?si=vPCmTzfUY4oMCuVlย 

Lecture 2: Large Language Models (LLM) Basics https://youtu.be/3dWzNZXA8DY?si=FdsoxgSRn9PmXTTzย 

Lecture 3: Pretraining LLMs vs Finetuning LLMs https://youtu.be/-bsa3fCNGg4?si=j49O1OX2MT2k68plย 

Lecture 4: What are transformers? https://youtu.be/NLn4eetGmf8?si=GVBrKVjGa5Y7ivVYย 

Lecture 5: How does GPT-3 really work? https://youtu.be/xbaYCf2FHSY?si=owbZqQTJQYm5VzDxย 

Lecture 6: Stages of building an LLM from Scratch https://youtu.be/z9fgKz1Drlc?si=dzAqz-iLKaxUH-lZย 

Lecture 7: Code an LLM Tokenizer from Scratch in Python https://youtu.be/rsy5Ragmso8?si=MJr-miJKm7AHwhu9ย 

Lecture 8: The GPT Tokenizer: Byte Pair Encoding https://youtu.be/fKd8s29e-l4?si=aZzzV4qT_nbQ1lzkย 

Lecture 9: Creating Input-Target data pairs using Python DataLoader https://youtu.be/iQZFH8dr2yI?si=lH6sdboTXzOzZXP9ย 

Lecture 10: What are token embeddings? https://youtu.be/ghCSGRgVB_o?si=PM2FLDl91ENNPJbdย 

Lecture 11: The importance of Positional Embeddings https://youtu.be/ufrPLpKnapU?si=cstZgif13kyYo0Rcย 

Lecture 12: The entire Data Preprocessing Pipeline of Large Language Models (LLMs) https://youtu.be/mk-6cFebjis?si=G4Wqn64OszI9ID0bย 

Lecture 13: Introduction to the Attention Mechanism in Large Language Models (LLMs) https://youtu.be/XN7sevVxyUM?si=aJy7Nplz69jAzDnCย 

Lecture 14: Simplified Attention Mechanism - Coded from scratch in Python | No trainable weights https://youtu.be/eSRhpYLerw4?si=1eiOOXa3V5LY-H8cย 

Lecture 15: Coding the self attention mechanism with key, query and value matrices https://youtu.be/UjdRN80c6p8?si=LlJkFvrC4i3J0ERjย 

Lecture 16: Causal Self Attention Mechanism | Coded from scratch in Python https://youtu.be/h94TQOK7NRA?si=14DzdgSx9XkAJ9Ppย 

Lecture 17: Multi Head Attention Part 1 - Basics and Python code https://youtu.be/cPaBCoNdCtE?si=eF3GW7lTqGPdsS6yย 

Lecture 18: Multi Head Attention Part 2 - Entire mathematics explained https://youtu.be/K5u9eEaoxFg?si=JkUATWM9Ah4IBRy2ย 

Lecture 19: Birds Eye View of the LLM Architecture https://youtu.be/4i23dYoXp-A?si=GjoIoJWlMloLDedgย 

Lecture 20: Layer Normalization in the LLM Architecture https://youtu.be/G3W-LT79LSI?si=ezsIvNcW4dTVa29iย 

Lecture 21: GELU Activation Function in the LLM Architecture https://youtu.be/d_PiwZe8UF4?si=IOMD06wo1MzElY9Jย 

Lecture 22: Shortcut connections in the LLM Architecture https://youtu.be/2r0QahNdwMw?si=i4KX0nmBTDiPmNcJย 

Lecture 23: Coding the entire LLM Transformer Block https://youtu.be/dvH6lFGhFrs?si=e90uX0TfyVRasvelย 

Lecture 24: Coding the 124 million parameter GPT-2 model https://youtu.be/G3-JgHckzjw?si=peLE6thVj6bds4M0ย 

Lecture 25: Coding GPT-2 to predict the next token https://youtu.be/F1Sm7z2R96w?si=TAN33aOXAeXJm5Roย 

Lecture 26: Measuring the LLM loss function https://youtu.be/7TKCrt--bWI?si=rvjeapyoD6c-SQm3ย 

Lecture 27: Evaluating LLM performance on real dataset | Hands on project | Book data https://youtu.be/zuj_NJNouAA?si=Y_vuf-KzY3Dt1d1rย 

Lecture 28: Coding the entire LLM Pre-training Loop https://youtu.be/Zxf-34voZss?si=AxYVGwQwBubZ3-Y9ย 

Lecture 29: Temperature Scaling in Large Language Models (LLMs) https://youtu.be/oG1FPVnY0pI?si=S4N0wSoy4KYV5hbvย 

Lecture 30: Top-k sampling in Large Language Models https://youtu.be/EhU32O7DkA4?si=GKHqUCPqG-XvCMFG

Vibe Score

LLM Vibe Score

0

Sentiment

Human Vibe Score

1

Rate this Resource

Join the VibeBuilders.ai Newsletter

The newsletter helps digital entrepreneurs how to harness AI to build your own assets for your funnel & ecosystem without bloating your subscription costs.

Start the free 5-day AI Captain's Command Line Bootcamp when you sign up:

By subscribing, you agree to our Privacy Policy and Terms of Service.