
๐๐ฎ๐ข๐ฅ๐ ๐๐๐๐ฌ ๐๐ซ๐จ๐ฆ ๐ฌ๐๐ซ๐๐ญ๐๐ก
โChatGPTโ is everywhereโitโs a tool we use daily to boost productivity, streamline tasks, and spark creativity. But have you ever wondered how it knows so much and performs across such diverse fields? Like many, I've been curious about how it really works and if I could create a similar tool to fit specific needs. ๐ค
To dive deeper, I found a fantastic resource: โBuild a Large Language Model (From Scratch)โ by Sebastian Raschka, which is explained with an insightful YouTube series โBuilding LLM from Scratchโ by Dr. Raj Dandekar (MIT PhD). This combination offers a structured, approachable way to understand the mechanics behind LLMsโand even to try building one ourselves!
https://preview.redd.it/35sdlxdb2m0e1.jpg?width=1037&format=pjpg&auto=webp&s=dd228136fbf7cbdeeae253118ee7a46b04948c24
While AI and generative language models architecture shown in the figure can seem difficult to understand, I believe that by taking it step-by-step, itโs achievableโeven for those without a tech background. ๐
Learning one concept at a time can open the doors to this transformative field, and we at Vizuara.ai are excited to take you through the journey where each step is explained in detail for creating an LLM. For anyone interested, I highly recommend going through the following videos:ย
Lecture 1: Building LLMs from scratch: Series introduction https://youtu.be/Xpr8D6LeAtw?si=vPCmTzfUY4oMCuVlย
Lecture 2: Large Language Models (LLM) Basics https://youtu.be/3dWzNZXA8DY?si=FdsoxgSRn9PmXTTzย
Lecture 3: Pretraining LLMs vs Finetuning LLMs https://youtu.be/-bsa3fCNGg4?si=j49O1OX2MT2k68plย
Lecture 4: What are transformers? https://youtu.be/NLn4eetGmf8?si=GVBrKVjGa5Y7ivVYย
Lecture 5: How does GPT-3 really work? https://youtu.be/xbaYCf2FHSY?si=owbZqQTJQYm5VzDxย
Lecture 6: Stages of building an LLM from Scratch https://youtu.be/z9fgKz1Drlc?si=dzAqz-iLKaxUH-lZย
Lecture 7: Code an LLM Tokenizer from Scratch in Python https://youtu.be/rsy5Ragmso8?si=MJr-miJKm7AHwhu9ย
Lecture 8: The GPT Tokenizer: Byte Pair Encoding https://youtu.be/fKd8s29e-l4?si=aZzzV4qT_nbQ1lzkย
Lecture 9: Creating Input-Target data pairs using Python DataLoader https://youtu.be/iQZFH8dr2yI?si=lH6sdboTXzOzZXP9ย
Lecture 10: What are token embeddings? https://youtu.be/ghCSGRgVB_o?si=PM2FLDl91ENNPJbdย
Lecture 11: The importance of Positional Embeddings https://youtu.be/ufrPLpKnapU?si=cstZgif13kyYo0Rcย
Lecture 12: The entire Data Preprocessing Pipeline of Large Language Models (LLMs) https://youtu.be/mk-6cFebjis?si=G4Wqn64OszI9ID0bย
Lecture 13: Introduction to the Attention Mechanism in Large Language Models (LLMs) https://youtu.be/XN7sevVxyUM?si=aJy7Nplz69jAzDnCย
Lecture 14: Simplified Attention Mechanism - Coded from scratch in Python | No trainable weights https://youtu.be/eSRhpYLerw4?si=1eiOOXa3V5LY-H8cย
Lecture 15: Coding the self attention mechanism with key, query and value matrices https://youtu.be/UjdRN80c6p8?si=LlJkFvrC4i3J0ERjย
Lecture 16: Causal Self Attention Mechanism | Coded from scratch in Python https://youtu.be/h94TQOK7NRA?si=14DzdgSx9XkAJ9Ppย
Lecture 17: Multi Head Attention Part 1 - Basics and Python code https://youtu.be/cPaBCoNdCtE?si=eF3GW7lTqGPdsS6yย
Lecture 18: Multi Head Attention Part 2 - Entire mathematics explained https://youtu.be/K5u9eEaoxFg?si=JkUATWM9Ah4IBRy2ย
Lecture 19: Birds Eye View of the LLM Architecture https://youtu.be/4i23dYoXp-A?si=GjoIoJWlMloLDedgย
Lecture 20: Layer Normalization in the LLM Architecture https://youtu.be/G3W-LT79LSI?si=ezsIvNcW4dTVa29iย
Lecture 21: GELU Activation Function in the LLM Architecture https://youtu.be/d_PiwZe8UF4?si=IOMD06wo1MzElY9Jย
Lecture 22: Shortcut connections in the LLM Architecture https://youtu.be/2r0QahNdwMw?si=i4KX0nmBTDiPmNcJย
Lecture 23: Coding the entire LLM Transformer Block https://youtu.be/dvH6lFGhFrs?si=e90uX0TfyVRasvelย
Lecture 24: Coding the 124 million parameter GPT-2 model https://youtu.be/G3-JgHckzjw?si=peLE6thVj6bds4M0ย
Lecture 25: Coding GPT-2 to predict the next token https://youtu.be/F1Sm7z2R96w?si=TAN33aOXAeXJm5Roย
Lecture 26: Measuring the LLM loss function https://youtu.be/7TKCrt--bWI?si=rvjeapyoD6c-SQm3ย
Lecture 27: Evaluating LLM performance on real dataset | Hands on project | Book data https://youtu.be/zuj_NJNouAA?si=Y_vuf-KzY3Dt1d1rย
Lecture 28: Coding the entire LLM Pre-training Loop https://youtu.be/Zxf-34voZss?si=AxYVGwQwBubZ3-Y9ย
Lecture 29: Temperature Scaling in Large Language Models (LLMs) https://youtu.be/oG1FPVnY0pI?si=S4N0wSoy4KYV5hbvย
Lecture 30: Top-k sampling in Large Language Models https://youtu.be/EhU32O7DkA4?si=GKHqUCPqG-XvCMFG
Vibe Score

0
Sentiment

1
Rate this Resource
Join the VibeBuilders.ai Newsletter
The newsletter helps digital entrepreneurs how to harness AI to build your own assets for your funnel & ecosystem without bloating your subscription costs.
Start the free 5-day AI Captain's Command Line Bootcamp when you sign up: